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Prague 1, Czechia

3Charles University, Faculty of Mathematics and Physics, Sokolovská 83, 186 75
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Abstract

We study various mathematical aspects of the charged rotating black hole with two equal-
magnitude angular momenta in five dimensions. We introduce a coordinate system that is
regular on the horizon and in which Einstein–Maxwell equations reduce to an autonomous
system of ODEs. Employing Bondi and Kruskal-like coordinates, we analyze the geometric
regularity of the black hole metric at infinity and the horizon, respectively, and the well-
posedness of the corresponding boundary value problem.

We also study the algebraic types of the electromagnetic and curvature tensors. While
outside the horizon the electromagnetic and Ricci tensors are of type D, the Weyl tensor is
algebraically general. The Weyl tensor simplifies to type II on the horizon and type D on
the bifurcation sphere. These results imply inconsistency of the metric with the Kerr–Schild
form with a geodesic Kerr–Schild vector. This feature is shared by the four-dimensional
Kerr–Newman metric and the vacuum Myers–Perry or charged Schwarzschild–Tangherlini
geometries in arbitrary dimension, but hence not by the black hole we have considered here.

1 Introduction

Black holes represent the most basic objects of general relativity in four and higher dimensions. It
is relatively straightforward to find static, spherically symmetric black hole solutions to vacuum
Einstein or Einstein–Maxwell equations. However, it is much more difficult to generalize such
black hole solutions to the rotating case and usually, an additional simplifying assumption about
the metric has to be employed on top of stationarity and axial symmetry.

In particular, in constructing the Kerr metric in [16], the metric was assumed to be of Petrov
type D. For the construction of a vacuum higher-dimensional rotating black hole metric [23], the
essential assumption was that it can be cast in the Kerr–Schild form, similarly as in the four-
dimensional case:

gµν = ηµν − 2Hkµkν , (1)

where ηµν is the Minkowski metric, H a scalar function and k is a null vector with respect to ηµν
1.

The above two assumptions—Petrov type D and the Kerr–Schild form—in fact also hold for
the four-dimensional charged rotating black hole described by the Kerr–Newman metric [26, 25]

1It follows that k is also null with respect to the full metric gµν .
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and for charged Schwarzschild–Tangherlini black holes [38] in arbitrary dimension. Furthermore,
in these cases, the null eigenvectors of the electromagnetic field F coincide with the principal
null directions of the Weyl tensor [27]. Note also that for Kerr, Kerr–Newman, Myers–Perry, and
Schwarzschild–Tangherlini metrics, the Kerr–Schild vector k is geodesic.

In contrast with the four-dimensional case, where the Kerr–Newman solution was constructed
in less than a year after the publication of the Kerr metric, the exact solution representing a higher-
dimensional charged rotating black hole is now, three and a half decades after the publication of the
Myers–Perry solution [23], still unknown2. Being a 5-dimensional object, such a black hole is not
of direct relevance to the emerging field of gravitational wave astrophysics, which has accompanied
the development of LIGO, LISA and other gravitational wave observatories. However, it may be
of interest to more detailed future phenomenological investigations of new physics scenarios like
brane world models, where 5-dimensional gravity interacts with matter confined to a 4-dimensional
brane [11]. Independent of their phenomenological significance, charged rotating black holes are
a good theoretical testing ground for methods of interpolating between known charged static and
uncharged rotating solutions, which besides higher dimensions may become useful also in modified
theories of gravity in 4 dimensions.

In this paper, we focus on the charged rotating black hole in five dimensions with two equal-
magnitude angular momenta, starting with the metric ansatz previously employed in the numerical
studies of this black hole, initiated in [18, 19] and continued in [24, 9]. These works have demon-
strated the existence (or mathematically speaking, provided very strong evidence thereof) of a
solution to the Einstein–Maxwell equations with this ansatz, by numerically solving an ordinary
boundary value problem in the region between the horizon and infinity. Their focus was on study-
ing the numerical relationships between various black hole parameters that can only be determined
from the knowledge of the global solution, rather than from only local approximations. For in-
stance, while the horizon radius, surface gravity, rotation speed, and surface electric potential at
the horizon are all quantities local to the horizon, and while the total mass, angular momentum,
charge, and gyromagnetic ratio are local to infinity, definite relations between these two groups
of parameters must be globally determined. However, these previous works have not discussed
or have left implicit certain structural or algebraic properties of these black holes. It is to these
matters that we turn our attention in this work.

Namely, we focus on two main aspects: the geometric regularity of the black hole solution at
infinity and at the horizon, and on the algebraic type of the metric in the region between these
two extremes. Indeed, we confirm that the black hole metric has a regular extension across the
horizon and that it possesses a regular null infinity without incoming or outgoing radiation. On
the other hand, we also show that in the bulk the metric is algebraically general3 and incompatible
with Kerr–Schild form (1) with geodesic k, so it could not have appeared in the lists of exact
solutions obtained under these simplifying assumptions. On the other hand, employing Kruskal-
like coordinates, we show that the metric does become algebraically special at the horizon, in
agreement with the geometric horizon conjecture of [7] (cf. also [20]).

It is worth noting that while most of our results hold for equal-magnitude angular momenta,
the results on the algebraically general Weyl tensor and non-compatibility of the metric with the
Kerr–Schild form (1) with geodesic k can be obviously extended to the case of generic angular
momenta (see [18] for the corresponding metric ansatz).

The paper is structured as follows: In Section 2, we recall the metric ansatz from [19] and show
why it is not optimal for studying the regularity of the metric at the horizon by matching it to
the known exact uncharged (Myers–Perry) and non-rotating (charged Schwarzschild–Tangherlini)
solutions. In Section 3, we introduce a different radial coordinate and a modified metric ansatz,
which is better adapted to studying the regularity of the horizon. We then obtain the corresponding
autonomous system of Einstein–Maxwell equations in the form of a constrained ordinary boundary
value problem with singular end-points. Then a careful comparison of the solution at the singular
end-points with the geometric regularity conditions at infinity and at the horizon shows that the

2Note that various approximate solutions, for example for small charge [3, 24], slow rotation [2, 1] or large
dimensions [4], are known.

3Here we refer to the generalization of the standard Petrov classification of the Weyl tensor in four dimensions
to other tensors and to higher dimensions [8], [22] (see [29] for a review). Algebraically general means that the
Weyl tensor does not admit a multiple Weyl aligned null direction (multiple WAND). In contrast, type II and D
spacetime admit one and (at least) two multiple WANDs respectively.
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boundary value problem is indeed well-posed. This analysis also suggests how to ensure numerical
accuracy in future investigations of these solutions.

In Section 4, we then study the simplifying assumptions holding for Kerr, Kerr–Newman,
Schwarzschild–Tangherlini, and Myers–Perry metrics and we show that none of these hold for the
five-dimensional charged rotating black hole with two equal-magnitude angular momenta. We
show that this black hole is algebraically general. It also turns out that while the Ricci tensor is
of type D and aligned with a type D Maxwell tensor F , the geometric properties of the common
null aligned vector imply that the five-dimensional charged rotating black hole is not compatible
with the Kerr–Schild ansatz (1) with geodesic k. In five dimensions the necessary condition for
such compatibility boils down to Q̂Ĵ = 0 (see Equation (60)) which explains why this ansatz holds
only for rotating vacuum or charged non-rotating five-dimensional black holes.

We should note that the previous work [9] also attempted to put the charged rotating black hole
metric into Kerr–Schild form (1), but they only succeeded by replacing the reference Minkowski
metric ηab by a different metric with unclear algebraic or geometric properties. Moreover, the
authors claim that by using some differential identities, they have simplified the corresponding
Einstein–Maxwell equations to a system on only two unknown functions, while also giving an
asymptotic solution to the resulting equations. Unfortunately, we have identified a mistake in a
key identity that allowed their simplification and have also found that their asymptotic solution is
not accurate. A more detailed discussion can be found in Appendix A.

2 Metric ansatz

Specializing the metric and vector potential ansatz for equal-magnitude angular momenta black
holes in Einstein–Maxwell theory from [19] to five dimensions, gives

ds2 = gµν dx
µ dxν = −f dt2 + m

f

(
dr2 + r2 dθ2

)
+
n

f
r2
[
sin2 θ

(
dϕ− ω

r
dt
)2

+ cos2 θ
(
dψ − ω

r
dt
)2]

+
m− n

f
r2 sin2 θ cos2 θ (dϕ− dψ)

2
, (2)

and
A = Aµ dx

µ = a0 dt+ aϕ
(
sin2 θ dϕ+ cos2 θ dψ

)
, (3)

where the six functions f , m, n, ω, a0 and aϕ only depend on the radial coordinate r. Ordering
the coordinates as t, r, θ, ϕ, ψ, the metric in matrix form is

gµν = 1
f


−f2 + nω2 0 0 −nωr sin2 θ −nωr cos2 θ

0 m 0 0 0
0 0 mr2 0 0

−nωr sin2 θ 0 0
(
m cos2 θ + n sin2 θ

)
r2 sin2 θ (n−m)r2 sin2 θ cos2 θ

−nωr cos2 θ 0 0 (n−m)r2 sin2 θ cos2 θ
(
m sin2 θ + n cos2 θ

)
r2 cos2 θ

 , (4)

The outer horizon, located at r = rH, is determined by the condition f(rH) = 0, with the value of
rH closest to r = ∞. Two sets of boundary conditions are imposed, one at infinity and one at the
horizon. At infinity (r → ∞) we require asymptotic flatness, namely

ds2 ∼ −dt2 + dr2 + r2 dθ2 + r2 sin2 θ dϕ2 + r2 cos2 θ dϕ2 , (5)

A ∼ 0 , (6)

where we have followed [19] by not specifying further details about what higher dimensional asymp-
totic flatness means (we give a more detailed definition of asymptotic flatness later in Section 3.1).
In [19], the corresponding boundary condition is stated as the following asymptotic limits:

f,m, n ∼ 1 , (7)

ω, a0, aϕ ∼ 0 . (8)
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At the horizon (r = rH), we require regularity, which means the existence of local coordinates
in which the metric smoothly extends through the horizon. In [19], the corresponding boundary
condition is stated as follows:

f(rH),m(rH), n(rH) = 0 , (9)

|ω(rH)|, |a0|, |aϕ| <∞ , (10)

a′ϕ(rH) = 0 . (11)

Following [19, Sec. 3], provided the function f , ω and a0 have asymptotic expansions at spatial
infinity (r → ∞) of the form

f = 1− M̂

r2
+ · · · , ω =

Ĵ

r3
+ · · · , a0 =

Q̂

r2
+ · · · , (12)

the physical mass, angular momentum and electric charges are respectively given by

M =
(d− 2)A(Sd−2)

16Gd
M̂ =

3π2

8G5
M̂ ,

J =
A(Sd−2)

8Gd
Ĵ =

π2

4G5
Ĵ ,

Q =
(d− 3)A(Sd−2)

4Gd
Q̂ =

π2

G5
Q̂ ,

(13)

where d = 5 is the spacetime dimension, Gd is the d-dimensional Newton’s constant, and A(Sd−2) =
A(S3) = 2π2 is the area of the unit 3-sphere. The physical charges M and J are obtained by
integrating the usual Komar forms at spatial infinity.

2.1 Special exact solutions

As we shall see in Section 3, the radial coordinate implied by the ansatz (2) has non-differentiable
behavior (a square root singularity) at the horizon r = rH. This phenomenon is most efficiently
exhibited by matching the ansatz to the known exact solutions without rotation (5-dimensional
charged Schwarzschild–Tangherlini metric) or without charge (5-dimensional Myers–Perry metric),
which we do next. Since we are interested in making the comparison in the region exterior to
the black hole, we restrict ourselves to the subextremal ranges of the charge, mass, and angular
momentum parameters of the exact solutions.

Before moving on, let us introduce a new radial coordinate r = r(r), which will play the role
of the more familiar radial coordinate in these exact solutions that regularly extends through the
horizon. It so happens that in all cases considered in this paper, this new radial coordinate will
obey the relationship

(dr)2

r2
=

r2(dr)2

(r2 − r2+)(r
2 − r2−)

⇐⇒ r = rH

√√√√√
√
r2 − r2− +

√
r2 − r2+√

r2 − r2− −
√
r2 − r2+

, (14)

where r± are some constants and the differential relation has been solved to match r(rH) = r+.
The square root singularity is clearly visible at the horizon in the expansion r = rH +O(

√
r − r+),

while at infinity r = O(r) and has a regular expansion in integer powers of r−1.
The 5-dimensional charged Schwarzschild–Tangherlini (ST) solution (sometimes also called the

5-dimensional Reissner–Nordström solution) is given by

ds2 = −f dt2 + dr2

f
+ r2(dθ2 + sin2 θ dϕ2 + cos2 θ dψ2) ,

A =

(
Q̂

r2
− Ĉ

)
dt , f = 1− M̂

r2
+

4

3

Q̂2

r4
=

(r2 − r2+)(r
2 − r2−)

r4
,

M̂ = r2+ + r2− , with Q̂ =

√
3

2
r+r− ,

(15)

4



where the mass and charge are parametrized by the constants (M̂, Q̂) or (r+, r−), r+ > r−. Matching
the ST solution with the ansatz (2) gives the radial coordinate relation (14) and

f =
(r2 − r2+)(r

2 − r2−)

r4
,

m =
r2

r2
f ,

n =
r2

r2
f ,

ω = 0 ,

a0 =

√
3

2

r+r−
r2

− Ĉ ,

aϕ = 0 .

(16)

The 5-dimensionalMyers–Perry (MP) solution with equal-magnitude angular momenta is given
by

ds2 = −dt2 +
Σr2 dr2

Σ2 − M̂ r2
+Σr2(dθ2 + sin2 θ dϕ2 + cos2 θ dψ2)

+
M̂

Σ

(
dt+ a sin2 θ dϕ+ a cos2 θ dψ

)2
,

A = 0, Σ = r2 + a2, Σ2 − M̂ r2 = (r2 − r2+)(r
2 − r2−) ,

with M̂ = (r+ + r−)
2, a = Ĵ/M̂ =

√
r+r− ,

(17)

where the mass and the angular momentum are parametrized by the constants (M̂, Ĵ) or (r+, r−),
r+ > r−. Matching the MP solution with the ansatz (2) gives

f =
(r2 − r2+)(r

2 − r2−)

(r2 + r−r+)2 + r+r−(r− + r+)2
=

Σ2 − M̂ r2

Σ2 + a2M̂
,

m =
(r2 + r−r+)

r2
f = Σf ,

n =
(r2 − r2+)(r

2 − r2−)

r2(r2 + r+r−)
=

Σ2 − M̂ r2

Σ
,

ω = r

√
r+r−(r+ + r−)

2

(r2 + r−r+)2 + r+r−(r− + r+)2
=

aM̂

Σ2 + a2M̂
,

a0 = 0 ,

aϕ = 0 .

(18)

3 Regularity at infinity and at the horizon

Since the radial coordinate r used in the ansatz (2) has been found to be non-smooth at the horizons
of known exact solutions, we must reparametrize the ansatz using our new regular coordinate r. In
addition, we have found that removing most of the explicit dependence on r in the metric makes
the corresponding Einstein equations (given below) autonomous, which is technically convenient.

Our new regular ansatz for the metric and vector potential is

ds2 = gµν dx
µ dxν = −f dt2 + m

f

(
(r dr)2

N
+ dθ2

)
+

N

m

[
sin2 θ (dϕ−ϖ dt)

2
+ cos2 θ (dψ −ϖ dt)

2
]
+

m2 − fN

mf
sin2 θ cos2 θ (dϕ− dψ)

2
(19)

and
A = Aµ dx

µ = a0 dt+ aϕ
(
sin2 θ dϕ+ cos2 θ dψ

)
. (20)
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The functions f , m, N, a0 and aϕ all depend only on the new radial coordinate r. In matrix form,
ordering the coordinates as (t, r, θ, ϕ, ψ), the metric reads

gµν =



−f + N
mϖ

2 0 0 −N
mϖ sin2 θ −N

mϖ cos2 θ

0 r2m
fN 0 0 0

0 0 m
f 0 0

−N
mϖ sin2 θ 0 0

(m2 cos2 θ+fN sin2 θ)
fm sin2 θ (fN−m2)

fm sin2 θ cos2 θ

−N
mϖ cos2 θ 0 0 (fN−m2)

fm sin2 θ cos2 θ
(m2 sin2 θ+fN cos2 θ)

fm cos2 θ

 . (21)

Obviously, compared to (2), only the metric part has been reparametrized. We are using a new
radial coordinate r and the old parametrization is recovered via the translation formulas

m = mr2 , (22a)

ϖ =
ω

r
, (22b)

N =
mnr4

f
, (22c)

(r dr)2

N
=

(dr)2

r2
. (22d)

Note that the radial coordinate r appears explicitly in the new ansatz (19) only through the
combination r dr = 1

2 dR, where R = r2. Hence, it is possible and useful to write the resulting
Einstein equations as an autonomous system of ODEs with respect to the squared radial coordinate
R. In particular, we will see that the way N appears in the ansatz gives it a very simple equation
of motion. As long as the location of the horizon satisfies r = rH ̸= 0, if r is a regular coordinate
at the horizon, then so is R. Again, we are interested in the interval from infinity r ∼ ∞ to the
horizon f(r = rH) = 0, the root closest to infinity.

Plugging (19) directly into the Einstein equations gives somewhat complicated expressions.
It is unenlightening to present them directly. Instead, inspired by the simplifications that have
already been noted in [19, 24, 9], we will give them in equivalent but more structured form. In
what follows, we use the notation (−)′ = d

dR (−) and all functions are treated as functions of R.
First, we have the set of conservation laws

N′′ = 2 =⇒ N = (R− r2+)(R− r2−) , (23a)(
N

f
(a′0 +ϖa′ϕ)

)′

= 0 =⇒ N

f
(a′0 +ϖa′ϕ) = −Q̂ , (23b)(

N2

fm
ϖ′ + 4Q̂aϕ

)′

= 0 =⇒ N2

fm
ϖ′ + 4Q̂aϕ = −2Ĵ , (23c)

where r+, r−, Q̂, Ĵ have been introduced as integration constants. Then we have the boundary
value problem (BVP)

f2m

(
m

f2
f ′
)′

−mm′
(
m′

m
− 2

N′

N

)
f −

(
4
m2

N
− f

)
f =

8

3

fm

N

(
2m2(a′ϕ)

2 − fa2ϕ
)

− 4Q̂2

3

f2m2

N2
, (24a)

fm

(
N

m
m′
)′

+

(
f2N

m2
− 2f

)
m =

4

3
f
(
2m2(a′ϕ)

2 − fa2ϕ
)

+
4Q̂2

3

f2m

N
+ 4

f2m2

N2
(Ĵ + 2Q̂aϕ)

2 ,

(24b)

m
(
ma′ϕ

)′ − faϕ = 2Q̂
fm2

N2
(Ĵ + 2Q̂aϕ) , (24c)
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and finally we have the constraint

m2(a′ϕ)
2 = fa2ϕ −m+

fN

4m
+ Q̂2 fm

N
+
fm2

N2
(Ĵ + 2Q̂aϕ)

2

+
Nm′

8

(
f ′

f
− 2

m′

m
+ 4

N′

N

)
− Nmf ′

8f

(
2
f ′

f
− m′

m
+ 2

N′

N

)
. (25)

This last constraint is compatible with the BVP system because, letting C be the difference between
the left- and right-hand sides of (25),

(C/f2)′ = 0 mod (24) , (26)

which means that, if the boundary conditions for the BVP system are chosen such that C/f2 → 0
either at infinity or at the horizon, then the constraint C = 0 is guaranteed for any BVP solution.

Direct substitution shows that when our system of equations is satisfied, then so are the un-
simplified Einstein equations. Conversely, starting from the unsimplified Einstein equations and
eliminating all variables except N gives the first conservation law from (23). Using it to eliminate
N′′, as well as every variable and its derivatives that do not appear in the second conservation
law, gives that same conservation law. Repeating this idea once more, gives the third conservation
law. Upon eliminating N, ϖ, a0 and their derivatives from the unsimplified equations, solving for
f ′′,m′′, a′′ϕ gives the BVP system (24). Finally eliminating these and all other second derivatives
leaves the constraint equation (25). The derivation of the unsimplified equations and the above
elimination steps are most easily carried out using computer algebra; we have relied in part on the
xTensor and xCoba packages from [21].

In the following sections, we will check how the geometric conditions of asymptotic flatness and
regularity at the horizon translate to boundary conditions for the BVP system (24). Under these
conditions, both endpoints become regular (or Fuchsian) singular points, where a solution can be
constructed by the Frobenius method (as a power series in R). At each endpoint, we perform
a Fuchsian analysis (see [17] for a brief exposition of the standard methods from [40], together
with references to the larger literature), which counts the free parameters in the space of solutions
compatible with the boundary condition. This analysis will help us confirm that the Einstein
equations restricted to our ansatz are indeed well-posed. Well-posedness is of course a prerequisite
property for trying to construct either numerical or asymptotic approximations to high accuracy.
Unfortunately, the original papers [19, 24] did not report such a well-posedness analysis, nor specify
in what way their numerical methods were compatible with the expected asymptotic structure of
the solution at the horizon and infinity, which in principle may have led to spurious numerical
artifacts near those points.

3.1 Asymptotic flatness

There are different notions of asymptotic flatness both in four and higher dimensions. We will refer
specifically to the existence of a regular null infinity, where both asymptotic Poincaré symmetries
and their charges are well defined. Specifically in five dimensions, this notion was analyzed in [37]
and translated to precise component asymptotics for the metric in Bondi coordinates, which is what
we will refer to below. Later, the same analysis was generalized to arbitrary higher dimension
in [35]. Earlier work treated asymptotic flatness at null infinity in even dimensions [15] and
at spatial infinity [36] using conformal methods. A unified treatment of the higher dimensional
asymptotics of scalar, electromagnetic and gravitational fields at null infinity was given in [34],
which is the main reference that we will follow. Along similar lines, [14] treated higher dimensional
asymptotics for electromagnetic fields at both null and spatial infinities. Independently, various
asymptotic behaviors for electromagnetic fields in higher dimensions were also analyzed in [31].

Effectively summarizing the results of the above references (most clearly presented in [34,
Sec. II B] for electromagnetic and in [34, Sec. II D–E] for gravitational fields), the conditions
of having an asymptotically flat regular (past/future) null infinity, with the absence of (incom-
ing/outgoing) radiation (both gravitational and electromagnetic), but with non-vanishing contri-
butions to total mass and electric charge, is equivalent to the existence of an asymptotic coordinate
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system (u, r, θ, ϕ, ψ) and corresponding electromagnetic gauge where

gµν =


−1 ±1 0 0 0
±1 0 0 0 0
0 0 r2 0 0
0 0 0 r2 sin2 θ 0
0 0 0 0 r2 cos2 θ



+


O
(
r−2
)

O
(
r−2
)

O
(
r−1
)

O
(
r−1
)

O
(
r−1
)

O
(
r−2
)

0 0 0 0
O
(
r−1
)

0 O
(
r0
)

O
(
r0
)

O
(
r0
)

O
(
r−1
)

0 O
(
r0
)

O
(
r0
)

O
(
r0
)

O
(
r−1
)

0 O
(
r0
)

O
(
r0
)

O
(
r0
)

 (27a)

and
Aµ =

(
O
(
r−2
)

0 O
(
r−1
)

O
(
r−1
)

O
(
r−1
))
. (27b)

Some explanation is in order. The ± choice of sign in the metric distinguishes the past and future
null infinities. The exact zero entries in gµν and Aµ are part of the gauge fixing conditions. The
Bondi gauge [37] usually also requires that the angular submatrix gIJ , where I, J run through
θ, ϕ, ψ, has determinant exactly equal to r6 sin2 θ cos2 θ (where sin2 θ cos2 θ is the determinant of
the unit round 3-sphere metric in the same coordinates). However, it is also sufficient that this
subdeterminant has this limit only for r → ∞, with subleading terms given by an asymptotic
expansion in integer powers of r, because then the r coordinate can be redefined to obtain exact
equality, without affecting the structure of the asymptotics. Below, when adapting our ansatz to
the Bondi gauge, we will not perform this extra redefinition, in favor of our more convenient r
coordinate. However, such a redefinition would of course be possible. Note also that the Bondi r
coordinate is logically distinct from the coordinate denoted by the same symbol in the metric (2).
Since the Bondi radial coordinate is only used in this section, there should be no confusion between
the two.

In dimension d = 5, in the absence of gravitational radiation, the leading radial Coulombic
asymptotic for both gravitational and electromagnetic perturbations is O

(
r−d+3

)
= O

(
r−2
)
in

an orthonormal basis [34]4, which explains different decay rates in different coordinate tensor
components above. Coulombic terms are those that can contribute to finite and non-vanishing
mass, angular momentum and electric charges. In the presence of gravitational and electromagnetic
radiation, the perturbations would decay only as O

(
r−d/2+1

)
= O

(
r−3/2

)
in an orthonormal

basis [34]. It should also be mentioned that the leading asymptotic terms will be further constrained
by the Einstein equations themselves, which may lead to faster decay for some components, as we
shall see in our case.

We can define the desired Bondi (which could also be called Eddington–Finkelstein) coordinates
as

du± = dt±
√

m

N

dR

2f
,

r = r ,

θ = θ ,

dϕ± = dϕ±ϖ

√
m

N

dR

2f
,

dψ± = dψ ±ϖ

√
m

N

dR

2f
.

(28)

4Reference [34] uses harmonic instead of Bondi gauge. But from their discussion, it is clear that one can transform
from one gauge to the other without changing the leading asymptotics.
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In the coordinates (u±, r, θ, ϕ±, ψ±), the matrix form of the metric is

gµν =



−f + N
mϖ

2 ±
√

r2m
N 0 −N

mϖ sin2 θ −N
mϖ cos2 θ

±
√

r2m
N 0 0 0 0

0 0 m
f 0 0

−N
mϖ sin2 θ 0 0

(m2 cos2 θ+fN sin2 θ)
fm sin2 θ (fN−m2)

fm sin2 θ cos2 θ

−N
mϖ cos2 θ 0 0 (fN−m2)

fm sin2 θ cos2 θ
(m2 sin2 θ+fN cos2 θ)

fm cos2 θ


, (29a)

while the vector potential takes on the form

Aµ − (dα)µ =
(
a0 0 0 aϕ sin

2 θ aϕ cos
2 θ
)
, (29b)

with the gauge transformation parameter defined by α′(r) = −
√
r2m/N(a0 +ϖaϕ)/f .

Hence, comparing (29) with (27), both the metric and the vector potential are in desired Bondi
form, provided we require the following leading asymptotics (recalling that R = r2)

f = 1 +O
(
R−1

)
,

m = R+O
(
R0
)
,

aϕ = O
(
R−1/2

)
,

N = R2 +O
(
R1
)
,

ϖ = O
(
R−3/2

)
,

a0 = O
(
R−1

)
.

(30)

Note that comparing with (27) has allowed us to determine not only the leading but also the
subleading terms of f , m and N. We have not yet specified the structure of the full asymptotic
expansion in (30), since in principle we can allow subleading terms with arbitrary fractional powers
of R. However, we are also free to restrict the subleading terms as we see fit, with the only
justification necessary the a posteriori well-posedness of the BVP part of the Einstein equations,
(24) and (23).

So we may assume that the asymptotic expansion is in integer powers of R, which is consistent
because we are solving equations that are autonomous with respect to R, and perform a Fuchsian
analysis of the BVP system at the singular point R = ∞. For linear equations, this is the same
as applying the method of Frobenius. For a non-linear equation, the first step is take the leading
terms from (30) and check that they are consistent with the BVP system (24). Namely, the leading
order terms are collected and it is checked that they cancel among themselves. We have specifically
written (24) in a way that all leading terms appear on the left-hand side. The cancellation, which
is verified by direct calculation, could have imposed some conditions on the undetermined leading
coefficient in aϕ, but it turns out that it does not.

The second step is to linearize (24) and apply the method of Frobenius to the linear equation
whose coefficients have asymptotics determined by the leading terms (30). If R = ∞ turns out
to be a regular singular point of this linear equation, we can extract the corresponding indicial
equation and determine the remaining free coefficients in the expansion. For systems of ODEs,
determining whether a singular point is regular is not entirely trivial. The procedure must take
into account that the leading terms in different components of the system of unknowns or of the
system of equations may be of different orders, let alone that the components of the equations and
of the unknowns are allowed to mix.

There is a convenient criterion to check when a system of k equations of order p has a regular
singular point (again, see [17] for a brief exposition). Let E[v] = 0 be such a system of linear
equations, whose coefficients have asymptotic expansions in powers of R. Let S and T be k × k
matrices such that all of S, T , S−1, T−1 have components that are Laurent polynomials in R (for
that, it is necessary and sufficient that detS and detT are non-vanishing monomials). The system
has a regular singular point at R = ∞ if T−1E[Sv] = E0(R ∂R)[v] + lower order terms, where the
components of E0(x) are constant coefficient polynomials in x, detE0(x) ̸= 0, and for the purposes
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of collecting lower order terms Rn(R ∂R)
m has order n (which will typically be negative). We call

matrices S and T leading multipliers. The integer solutions of the indicial equation detE0(n) = 0
are the critical exponents (or indices) of Rn whose coefficients in the expansion of the solution may
be a free parameter. The eigenvectors of E0(n) corresponding to the critical exponents determine
how these free parameters enter the expansion. At a true real regular singular point, the polynomial
degree of detE0(n) should be pk, determined by the size and order of the system. If the degree
is lower, then only a subset of the solutions exhibit a Frobenius expansion in powers of R (with
possible logarithmic contributions) and there will exist other solutions that grow or decay faster
than simple powers of R.

The third and last step counts the number of free parameters in the asymptotic expansion of a
solution. If v = S

[∑
k>n vkR

n + vnR
n +O(R)n−1

]
, then knowing that the vk>n coefficients solve

the ODE system to appropriate order we can solve for the next coefficient, provided that E0(n) is
invertible, via

E0(n)vn = en(vk>n) , (31)

where en(−) collects all the remaining terms of the original non-linear ODE system at order n. The
invertibility of En(n) fails precisely when n is a critical exponent. Then two things happen: because
E0(n) does not have full row rank, the consistency of the equation imposes constraints on en(vk>n)
and hence on any free parameters appearing among the vk>n coefficients; also, because E0(n) does
not have full column rank, new free parameters appear in the solution for the vn coefficients. In
general the number of free parameters gained and lost at a time need not be the same, so at each
critical exponent the total number of free parameters in the expansion may increase, decrease, or
stay the same; it stabilizes after the last critical exponent.

In general, leading multiplier matrices may be quite complicated, but we have specifically
written the BVP system (24) to make them simple. Namely, the resulting E0(R ∂R)[v] operator is(R ∂R)2 + 1 2(R ∂R − 1) 0

1 (R ∂R + 2)(R ∂R − 1) 0
0 0 (R ∂R + 1)(R ∂R − 1)

 δfδm
R
δaϕ

 , (32)

where S multiplies δm by R−1 and T−1 multiplies the middle equation by R, while acting as the
identity on other components. The critical exponents are k = 1 (2), 0 (1),−1 (3), with multiplicities
indicated in parentheses. Because of the constraints on the leading terms from (30), the coefficients
corresponding to the k = 1, 0 exponents must vanish. At k = −1, one free parameter is allowed
in front of the leading term of aϕ and two more free parameters appear in the subleading terms
of f and m, with algebraic multiplicity 2. As is usual in applying the Frobenius method, the
algebraic multiplicity 2 implies that the two independent coefficients appear in front of R−1 and
R−1 logR in the expansions of f and m/R. However, the logarithmic terms are incompatible with
the asymptotics (30) corresponding to a regular null infinity. Thus, only one free coefficient at
order R−1 remains. The remaining two free parameters remain free at all further orders of the
expansion.

Once the asymptotic expansions for f,m, aϕ have been determined, we can also asymptotically
integrate the first order conservation laws (23) for ϖ and a0. For each of them, there is a free
parameter that appears as an additive constant.

In summary, the following leading terms uniquely fix the most general asymptotic expansion
of a solution in powers of R that is compatible with the asymptotic form (30):

f = 1 +
f (−1)

R
+O

(
R−2

)
,

m = R+m(0) +O
(
R−1

)
,

aϕ =
a
(−1)
ϕ

R
+O

(
R−2

)
,

N = R2 − (r2+ + r2−)R+ r2+r
2
− ,

ϖ = ϖ(0) +
Ĵ

R2
+O

(
R−3

)
,

a0 = a
(0)
0 +

Q̂

R
+O

(
R−2

)
,

(33)
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which has exactly two free parameters (a
(−1)
ϕ and a linear combination of f (−1) and m(0)), since

the yet undetermined coefficients are constrained by

f (−1) − 2m(0) − (r2+ + r2−) = 0 ,

ϖ(0) = 0 ,

a
(0)
0 = 0 ,

(34)

after enforcing compatibility with the prescribed asymptotic limits of f,m, ϖ and a0. Comparing
with (12) justifies the notation Ĵ and Q̂ for the coefficients in the expansion of ω and a0 and also
allows us to identify

f (−1) = −M̂ , (35)

with M̂ , Ĵ and Q̂ being proportional to the physical mass, angular momentum and electric charges,
respectively, as specified in (13). Finally, there are no further constraints coming from enforcing
the limit C/f2 → 0, which is needed to ensure that the constraint C = 0 (23) is enforced by the
compatibility equation (26). Recall that r2+, r

2
− are integration constants that appear in (23). Note

that, after we have carefully taken into account the Einstein–Maxwell equations, the final leading
asymptotics aϕ = O

(
R−1

)
and ϖ = O

(
R−2

)
decay faster than strictly required by asymptotic

flatness in (30).
Having shown that at infinity the series expansion for the solution is uniquely fixed as a function

of r±, Ĵ , Q̂, a
(−1)
ϕ and say M̂ , we report here the first few terms of f , m, and aϕ extending (33)
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(defining r2H = r2+ − r2−):

f = 1− M̂

(R− r2−)
+

1
2M̂

(
M̂ − r2H

)
+ 4

3 Q̂
2

(R− r2−)
2

+

4
9

(
a
(−1)
ϕ

)2
− 1

6M̂
(
M̂2 − 3M̂ r2H + 2r4H

)
+ 4

9 Q̂
2
(
−4M̂ + 3r2H

)
+ 2

3 Ĵ
2

(R− r2−)
3

+

2
9

(
a
(−1)
ϕ

)2 (
−2M̂ + 3r2H

)
+ 16

9 a
(−1)
ϕ ĴQ̂+ 1

9 Q̂
2
(
11(M̂ − r2H)

2 − 2M̂ r2H

)
(R− r2−)

4

+

1
24M̂(M̂ − r2H)(M̂ − 2r2H)(M̂ − 3r2H) + Ĵ2

(
− 7

6M̂ + r2H

)
+ 32

27 Q̂
4

(R− r2−)
4

+O
(
R−5

)
,

m = (R− r2−)−
1

2

(
M̂ + r2H

)
+

4
3 Q̂

2

(R− r2−)

+

1
72

(
16
(
a
(−1)
ϕ

)2
+ 3M̂3 − 3M̂ r4H

)
+ 2

9 Q̂
2
(
−4M̂ + 3r2H

)
+ 5

6 Ĵ
2

(R− r2−)
2

+

1
360

(
−M̂ + 5r2H

)(
16
(
a
(−1)
ϕ

)2
+ 3M̂3 − 3M̂ r4H

)
+ 88

45a
(−1)
ϕ ĴQ̂

(R− r2−)
3

+

1
45 Q̂

2
(
9M̂2 − 40M̂ r2H + 23r4H

)
+ Ĵ2

(
− 29

30M̂ + 5
6 r

2
H

)
+ 128

135 Q̂
4

(R− r2−)
3

+O
(
R−4

)
,

aϕ =
a
(−1)
ϕ

(R− r2−)
+

2
3 ĴQ̂+ 1

6a
(−1)
ϕ

(
M̂ + 3r2H

)
(R− r2−)

2

+

1
12a

(−1)
ϕ

(
M̂2 + 2M̂ r2H + 3r4H

)
+ 1

6 ĴQ̂
(
−M̂ + 4r2H

)
(R− r2−)

3

+

− 1
360a

(−1)
ϕ

(
16
(
a
(−1)
ϕ

)2
− 6M̂3 − 45M̂2r2H − 48M̂ r4H − 45r6H

)
(R− r2−)

4

+
− 34

135a
(−1)
ϕ M̂Q̂2 − 7

30a
(−1)
ϕ Ĵ2 + 1

60 ĴQ̂
(
5M̂2 − 15M̂ r2H + 34r4H

)
+ 8

135 ĴQ̂
3

(R− r2−)
4

+O
(
R−5

)
.

(36)

As discussed in more detail in Section 3.3, our reduced Einstein–Maxwell equations possess the
shift symmetry R 7→ R+R0, which also shifts the constants r2± → r2±+R0. The above expansion was
obtained under the simplifying assumption r2− = 0 and then converted to a form that is manifestly
invariant under this shift symmetry. Elsewhere in the text, we will use rH to denote the location of
the outer horizon in general. So, strictly speaking, the numerical value of rH in the above expansion
should only be interpreted as the location of the horizon under the assumption r2− = 0.

This expansion is used several times in Section 4 to test whether some differential constraints
forced by special algebraic types would be satisfied on-shell, that is, satisfying the Einstein–Maxwell
equations and our boundary conditions. For instance, deducing the condition (60) required an
expansion at least to the order given above.
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3.2 Regularity at the horizon

The vanishing f(rH) on the horizon signals a coordinate singularity there, as is expected for coor-
dinates adapted to a timelike Killing vector when it becomes null. The regularity of the metric (2)
and the corresponding vector potential at the horizon must then be checked in other coordinates
that penetrate the horizon, where the only requirement for a tensor field to be regular is for it to
have smooth components in that coordinate system.

Traditionally, the simplest horizon penetrating coordinates on a black hole are of Eddington–
Finkelstein type. The coordinates (28) that we have introduced to play the role of the Bondi frame
at null infinity are actually also of Eddington–Finkelstein type at the horizon. The (u+,R, θ, ϕ+, ψ+)
coordinates regular at the future horizon and (u−,R, θ, ϕ−, ψ−) ones regular at the past horizon.
We will show below the horizon regularity of our improved ansatz (19) with respect to these co-
ordinates. Unfortunately, neither of these coordinate systems is regular at the bifurcation sphere
where the two horizons intersect. Thus we will also introduce Kruskal-like coordinates that cover
a neighborhood of the bifurcation sphere and show that our improved ansatz is regular there as
well.

To reproduce the horizon behavior (9) imposed in the original work [19], we must set f =
m = N = 0 at R = r2H. As a consequence of the integration of the equation of motion (23) for
N, we must set rH = r2+, where we have required r+ ̸= 0 and ordered the integration constants
as r2+ > r2−. Combining these requirements with regularity at the horizon, via smoothness of the
tensor components (29) in Eddington–Finkelstein coordinates, gives the horizon asymptotics

f = O
(
R− r2H

)
, (37a)

m = O
(
R− r2H

)
, (37b)

aϕ = O(1) , (37c)

N = (r2+ − r2−)(R− r2H) +O
(
(R− r2H)

2
)
, (37d)

ϖ = O(1) , (37e)

a0 = O(1) , (37f)

with each function also smooth in R at the horizon and where the leading coefficients of f and m are
non-vanishing. Again, the asymptotics of N, ϖ and a0 are obtained by integrating the conservation
laws (23), which remain consistent with the regularity of the tensor coefficients in (29).

Kruskal (or Kruskal–Szekeres) coordinates for Schwarzschild spacetime are well-known. It is not
as easy to find analogous coordinates constructed for the Kerr and related black holes. The original
construction by Carter [6] was restricted to the (t, r) plane along the rotation axis. Pretorius and
Israel [33] seem to have been the first to construct global double-null coordinates regular on the
Kerr bifurcation sphere. Motivated by applications in the global non-linear stability of Kerr and
related black holes, analogous double-null coordinates have been constructed also for a wider class
of geometries, see [10, 5] and references therein.

For our purposes, since we are interested only in a neighborhood of the bifurcation sphere, it is
easiest to follow the idea from the much simpler construction by Hayward [13]. Namely, consider
a constant κ, which we will choose appropriately, and the coordinates (U, V, θ,Φ,Ψ) defined by

dU

U
− dV

V
= κdt , dt =

1

κ

(
dU

U
− dV

V

)
,

dU

U
+

dV

V
= κ

√
m

N

dR

2f
,

√
m

N

dR

2f
=

1

κ

(
dU

U
+

dV

V

)
,

dΦ = dϕ−ϖ(r2H) dt , dϕ = dΦ +
ϖ(r2H)

κ

(
dU

U
− dV

V

)
,

dΨ = dψ −ϖ(r2H) dt , dψ = dΨ+
ϖ(r2H)

κ

(
dU

U
− dV

V

)
.

(38)
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Integrating the second equation, we find

d ln(UV ) =
κ

2f ′(r2H)

√
m′(r2H)

N′(r2H)

dR

R− r2H
+O

(
(R− r2H)

0
)

⇐⇒ UV = (R/r2H − 1)h(R) , h(R) = 1 +O
(
R− r2H

)
, (39)

provided we choose the overall integration constant appropriately and set

κ = 2f ′(r2H)

√
N′(r2H)

m′(r2H)
. (40)

In these new Kruskal coordinates, denoting ∆ϖ = ϖ −ϖ(r2H), the metric takes the form

gµν =



V 2 (∆ϖ)2N
κ2U2V 2m

2f
κ2UV − UV (∆ϖ)2N

κ2U2V 2m 0 −V (∆ϖ)N
κUVm sin2 θ −V (∆ϖ)N

κUVm cos2 θ
2f

κ2UV − UV (∆ϖ)2N
κ2U2V 2m U2 (∆ϖ)2N

κ2U2V 2m 0 U (∆ϖ)N
κUVm sin2 θ U (∆ϖ)N

κUVm cos2 θ
0 0 m

f 0 0

−V (∆ϖ)N
κUVm sin2 θ U (∆ϖ)N

κUVm sin2 θ 0
(m2 cos2 θ+fN sin2 θ)

fm sin2 θ (fN−m2)
fm sin2 θ cos2 θ

−V (∆ϖ)N
κUVm cos2 θ U (∆ϖ)N

κUVm cos2 θ 0 (fN−m2)
fm sin2 θ cos2 θ

(m2 sin2 θ+fN cos2 θ)
fm cos2 θ


. (41)

Recalling that ∆ϖ, f,m,N = O
(
R− r2H

)
= O(UV ), with the leading terms of f and m non-

vanishing, all the components and also

det g = − 4mN

κ4U2V 2
cos2 θ → −4r4Hm

′(r2H)N
′(r2H)

κ4
cos2 θ (42)

remain finite as R → r2H. Hence, under the conditions already imposed by (37), the metric is regular
in the Kruskal coordinates (U, V, θ,Φ,Ψ) in a neighborhood of the bifurcation sphere U = V = 0,
where the future and past horizons R = r2H intersect. The vector potential transforms to

A =
∆(a0 +ϖaϕ)

κUV
(V dU − U dV ) + aϕ(sin

2 θ dΦ + cos2 θ dΨ)

+ d

[
a0(r

2
H) +ϖ(r2H)aϕ(r

2
H)

κ
ln
U

V

]
, (43)

where we have used the shortcut notation

∆(a0 +ϖaϕ) =
(
a0 +ϖ(r2H)aϕ

)
−
(
a0(r

2
H) +ϖ(r2H)aϕ(r

2
H)
)
. (44)

As discussed in the case of Eddington–Finkelstein-like coordinates, the last term of the vector
potential is singular but pure gauge (it is exact), while the rest of the terms are manifestly regular.

Explicitly solving the coordinate transformation, we find

U =
√
R/r2H − 1 eκt/2

√
h , dU =

κ

2

√
R/r2H − 1 eκt/2

√
h

(√
m

N

dR

2f
+ dt

)
,

V =
√
R/r2H − 1 e−κt/2

√
h , dV =

κ

2

√
R/r2H − 1 e−κt/2

√
h

(√
m

N

dR

2f
− dt

)
,

Φ = ϕ−ϖ(r2H)t , dΦ = dϕ−ϖ(r2H) dt

Ψ = ψ −ϖ(r2H)t , dΨ = dψ −ϖ(r2H) dt .

(45)

Next, we repeat the Fuchsian analysis of R = r2H as a regular singular point of the BVP
part (24) of the Einstein–Maxwell equations restricted to our ansatz, to determine the remaining
free parameters in the Taylor expansion of the solution. Since the steps of the procedure were
already explained in Section 3.1, we merely summarize the results. For convenience, we will denote
ρ ≡ R− r2H.

Plugging the leading terms (37) into the BVP system (24), a direct calculation shows that they
are compatible, without any new restrictions on the undetermined coefficients. Again, we have
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written the BVP system in such a way that all cancelling leading terms appear on the left-hand
side. Upon linearization, we find that the leading multiplier matrices S and T may just be taken
to be identity. The resulting E0(ρ∂ρ)[v] operator is

(ρ∂ρ − 3)(ρ∂ρ − 1) f(1)

m(1) (ρ∂ρ − 1) 0
0 (ρ∂ρ − 1)2 0

− a
(0)
ϕ

(m(1))2
− 2Q̂(Ĵ+2Q̂a

(0)
ϕ )

(r2+−r2−)2
− 4f(1)Q̂(Ĵ+2Q̂a

(0)
ϕ )

m(1)(r2+−r2−)2
(ρ∂ρ)

2


 δfδm
δaϕ

 . (46)

Exchanging the first two rows and columns, we see that the matrix is lower triangular, so that
we can immediately read off its eigenvalues and determinant (the indicial equation). The critical
ρk exponents are k = 0 (2), 1 (3), 3 (1), with multiplicities indicated in parentheses. Note that
regularity at the horizon excludes any logarithmic terms like ρk(log ρ)l in the expansion. Multi-
plicities in the critical exponents that generate the same eigen-vectors do not generate more free
parameters. At k = 0 we already have the free leading coefficient of aϕ. At k = 1, we have the
free leading coefficients of f and m. At k = 3 we have one new free coefficient in the expansion of
f and no restrictions on the other free coefficients. Finally, enforcing the limit C/f2 → 0 needed
to ensure that the constraint C = 0 (25) is enforced by the compatibility equation (26) does not
bring in any new restrictions on the free parameters. Once the Taylor series for f,m, aϕ have been
determined, we can also integrate the first order conservation laws (23) for ϖ and a0. For each of
them, there is a free parameter that appears as an additive constant. In summary, the following
leading terms uniquely fix the Taylor series of a solution in powers of ρ = R − r2H, with all free
parameters explicitly shown:

f = f (1)ρ+ · · ·+ f (3)ρ3 +O
(
ρ4
)
,

m = m(1)ρ+O
(
ρ2
)
,

aϕ = a
(0)
ϕ +O(ρ) ,

N = (r2+ − r2−)ρ+ ρ2 ,

ϖ = ϖ(0) +O(ρ) ,

a0 = a
(0)
0 +O(ρ) .

(47)

The additive constants ϖ(0) and a
(0)
0 are not fixed by the requirements of regularity at the hori-

zon (37). Instead, they must be fixed by enforcing compatibility with the prescribed limits (30)

at infinity, as was discussed at the end of Section 3.1. Thus, the parameters ϖ(0) and a
(0)
0 are

uniquely fixed, but their values cannot be obtained locally at the horizon.

3.3 Well-posedness

In this section we discuss the well-posedness of the BVP system (24) with the boundary conditions
prescribed by asymptotic flatness (Section 3.1) and regularity at the horizon (Section 3.2), as well
as the overall uniqueness of the corresponding charged rotating black hole solution.

The BVP system (24) is a second order ODE system for three unknowns, with external parame-
ters r2+, r

2
−, Ĵ and Q̂. With the external parameters fixed, its solution space is hence 6-dimensional

(counting the free initial data at any regular point, for instance). The conclusion of Section 3.1 is
that there is a 2-dimensional space of solutions compatible with asymptotic flatness (parametrized

by the constants f (−1),m(0), a
(−1)
ϕ (33), with one constraint (34) among them). The conclusion of

Section 3.2 is that there is a 4-dimensional space of solutions compatible with regularity at the

horizon, parametrized by the constants f (1), f (3),m(1), a
(0)
ϕ in Equation (47). Hence, within the

overall 6-dimensional solution space, the intersection of these 2- and 4-dimensional families will
generically be 0-dimensional, meaning that the solution if it exists is expected to be locally unique
(under small perturbations of free parameters at either boundary). In other words, the boundary
conditions prescribed by Sections 3.1 and Section 3.2 define a well-posed BVP for the non-linear
system (24).
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Figure 1: Numerical solution for the black hole with external parameters M̂ = 5, Ĵ = 1, Q̂ = 2.
The horizon radius is dynamically determined to be rH ≈ 1.32464. The horizontal variable is
R̄ = r2H/R, with R̄ = 0 corresponding to infinity and R̄ = 1 to the horizon, indicated by the
dashed vertical line. The barred functions have been rescaled as f̄ = f/(1 − R̄), m̄ = mR̄/r2H and
āϕ = a(1 − R̄). The thick curves show the exterior solution and its extrapolation some distance
inside the horizon. The thin curves show the interior solution.

The BVP system (24) itself depends on 4 external parameters, the integration constants
r2+, r

2
−, Ĵ , Q̂ from the conservation laws (23). Two of them, Ĵ and Q̂, have direct physical interpre-

tations as being proportional to the total angular momentum and total charge, respectively (13).
Because the total Einstein–Maxwell system of equations restricted to the ansatz (19) is autonomous
with respect to R, the coordinate shift R → R+ R0 is a symmetry, since it is also compatible with
both the horizon and asymptotic boundary conditions. However, being a simple coordinate trans-
formation it does not change the isometry class of the solution. Note that this shift affects the
integration constants as r2± → r2± +R0. We can use the shift symmetry to place the horizon at any
convenient location, for example by setting r2− = 0, which we will assume from now on. This choice
places the horizon at rH = r+. Having decided the location of the horizon, by the well-posedness of
the BVP discussed in the previous paragraph, the solution is (locally) uniquely fixed by the three
remaining parameters. In particular, the total mass can be written as M̂ = M̂(r2H, Ĵ , Q̂), where we

can use the relation (35) between f (−1) and M̂ . Physically, it is more convenient to dynamically
invert this relationship to r2H = r2H(M̂, Ĵ , Q̂).

In summary, we see that the isometry class of a charged rotating black hole with ansatz (19)
and satisfying the Einstein–Maxwell equations is (locally) uniquely determined by its total mass
M̂ , total angular momentum Ĵ , and total charge Q̂.

As proof of concept, taking the above well-posedness discussion into account, we have imple-
mented a numerical solver for the BVP system (24) that takes the external M̂ , Ĵ and Q̂ parameters
as input and constructs the corresponding solution of the Einstein–Maxwell equations both outside
and inside the horizon. On the exterior region, we use BVP solver in a basis of Chebyshev poly-
nomials that are weighted at infinity and the horizon by the expected asymptotics and boundary
conditions. Once the solution on the exterior region has converged, its values and derivatives near
the horizon are used to feed into a standard ODE solver for the interior region. Figure 1 illustrates
the resulting solution for generic values of the external parameters. In particular, we see that even
a naive extrapolation of the exterior solution inside the horizon shows rather good agreement with
the interior solution on a sizable neighborhood of the horizon.
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4 Algebraic classification

In this section, we study algebraic types of curvature tensors and of the electromagnetic tensor in
the charged Myers–Perry metric.

Recall that four-dimensional Kerr and Kerr–Newman black holes are of Petrov type D and
both metrics admit a Kerr–Schild form (1) with geodesic k. Furthermore, for the Kerr–Newman
black hole, the null eigenvectors of the electromagnetic tensor F coincide with the principal null
directions of the Weyl tensor [27] (i.e., Weyl tensor and F are aligned).

Although the vacuum Myers–Perry black hole is of type D [32, 12] and admits Kerr–Schild form
with geodesic k, it has been pointed out already in [23], that its charged generalization does not
admit the Kerr–Schild form assuming that the vector potential A coincides (up to normalization)
with k. As a consequence of the algebraically special form of the Ricci tensor in the charged
Myers–Perry black hole, we will also arrive at the incompatibility of the charged Myers–Perry
black hole metric with Kerr–Schild ansatz (1) with geodesic k, but without employing the strong
constraint A ∝ k.

For determining the compatibility of the charged Myers–Perry metric with the Kerr–Schild
form with geodesic k, we will employ the following proposition from [28]:

Proposition 1 (Geodesicity of the Kerr–Schild vector k [28]). The null vector k in the Kerr–
Schild metric (1) is geodesic if, and only if, it is an aligned null direction of the Ricci tensor, i.e.,
if Rabk

akb = 0.

Note (see [28]) that if k in the Kerr–Schild metric (1) is geodesic, then k is also a multiple
aligned Weyl direction (WAND) of the spacetime, and thus the spacetime is algebraically special.
Since we also show in this section that the charged Myers–Perry metric is not algebraically special,
this could be used as another argument against compatibility with the Kerr–Schild form with
geodesic k.

We also discuss the algebraic properties of the test electromagnetic field in the Myers–Perry
background and compare this field with the weak field limit of the charged Myers–Perry metric.

4.1 Algebraic type of Maxwell and Ricci tensors

The Maxwell tensor obtained from the potential (20) reads

Fµν =


0 −a′0 0 0 0
a′0 0 0 a′ϕ sin

2 θ a′ϕ cos
2 θ

0 0 0 aϕ sin(2θ) −aϕ sin(2θ)
0 −a′ϕ sin

2 θ −aϕ sin(2θ) 0 0

0 −a′ϕ cos2 θ aϕ sin(2θ) 0 0

 . (48)

The eigenvalues and eigenvectors of Fµν are given by

1. Eigenvalue 0, eigenvector kµ(0) =
2
α (a

′
ϕ, 0, 0,−a′0,−a′0).

2. Eigenvalues ±α, where

α = 2

√
−fa′2ϕ +

N

m
a′2 , (49)

and a′ = a′0 +ϖa′ϕ, eigenvectors

kµ(±) =

√
2

fmN
α
(
−Na′,∓fNα, 0, fma′ϕ − Nωa′, fma′ϕ − Nωa′

)
. (50)

3. Eigenvalues ±iβ, where β =
2faϕ
m

with eigenvectors

ℓµ(±) =
√
f/2m (0, 0,±i,− cot θ, tan θ) . (51)
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The above eigenvectors can be used to construct a null basis

ℓ = m(0) = k(+) , n = m(1) = −k(−) , m(2) = k(0) ,

m(3) =
√
2ℜℓ(+) , m(4) =

√
2ℑℓ(+) .

(52)

The only non-vanishing scalar products are then ℓ · n = 1 and m(i) · m(j) = δij for i, j = 2, 3, 4
and the metric reads

gµν = 2ℓ(µnν) + δijm
(i)
µ m(j)

ν . (53)

In this basis, the Maxwell tensor reads

Fµν = 2αℓ[µnν] − 2βm
(3)
[µ m

(4)
ν] , (54)

and the stress-energy tensor has the form

Tµν = FµρFν
ρ − 1

4
gµνFρσF

ρσ

=
1

2

(
α2 − β2

)
m(2)
µ m(2)

ν +
(
α2 + β2

) (
m(3)
µ m(3)

ν +m(4)
µ m(4)

ν − 2ℓ(µnν)

)
.

(55)

Since both tensors F and T in (54) and (55) contain only boost weight zero terms, they are
both algebraically special, more precisely of type D in the algebraic classification of tensors [22].
Note that this property holds off-shell (i.e., without imposing the field equations).

The Einstein equations (with 4πG5 = 1)

Rµν −
1

2
Rgµν = 2Tµν , Rµν = 2Tµν −

2

3
gρσTρσgµν , (56)

take the form

Rµν = −4

3

(
2α2 + β2

)
ℓ(µnν) +

2

3

(
α2 − β2

)
m(2)
µ m(2)

ν

+
2

3

(
α2 + 2β2

)
m(3)
µ m(3)

ν +
2

3

(
α2 + 2β2

)
m(4)
µ m(4)

ν .

(57)

The Ricci tensor is thus of type D on-shell (i.e., assuming that the Einstein equations hold).
Consider a general vector v = v0n+v1ℓ+v2m(2)+v3m(3)+v4m(4) in the above null basis. We

want to identify all null vectors v obeying Rabv
avb = 0. Provided α ̸= 0, from the null condition

and Equation (57) it follows that v2 = v3 = v4 = 0 and v0v1 = 0. Up to a factor, ℓ and n are
thus the only null vectors obeying Rabv

avb = 0. The exceptional case α = 0, after using the
conservation laws (23), corresponds to

−fa′2ϕ +
Q̂2f2

Nm
= 0. (58)

This condition looks independent from the reduction of the equations of motion to the constrained
BVP (24) and (25), so it is likely inconsistent with them. Formally, this can be checked by
substituting the leading order asymptotic expansion expansion (33). Setting to zero the resulting
leading O

(
R−3

)
coefficient gives Q̂ = 0, meaning that only the uncharged case allows α = 0.

The null congruence ℓ (and n) is geodesic if and only if

a′ϕa
′′
0 − a′0a

′′
ϕ = 0 . (59)

This condition also looks independent from the reduction of the equations of motion to the con-
strained BVP (24) and (25), so it is likely inconsistent with them. Formally, this can be checked
by continuing the expansion (33) by two more subleading orders (as we have done in (36)) and
plugging it into the desired geodesic condition (59). Setting to zero any non-vanishing terms in
the resulting asymptotic series then imposes non-trivial constraints on the parameters which de-

termine the general solution (namely M̂ , a
(−1)
ϕ and r±, Ĵ , Q̂, as discussed in Section 3.1). The first

non-trivial term in the expansion of (59) appears at order O
(
R−6

)
. Setting to zero the coefficients
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of R−6 and R−7 determines the M̂ and a
(−1)
ϕ parameters, while plugging these values into the

coefficient of R−8 and setting it to zero results in the simple constraint

Ĵ3Q̂5 = 0 . (60)

In other words, the geodesic condition (59) on ℓ cannot hold whenever both Ĵ ̸= 0 and Q̂ ̸= 0.
This result, together with Proposition 1, clearly explains why the metric for a charged rotating

black hole in five dimensions cannot be written in the Kerr–Schild form (1) with a geodesic k,
while the limiting cases with either Q̂ = 0 or Ĵ = 0 are compatible with this form.

4.1.1 Electromagnetic test field

It is of also of interest to compare the results of the previous section with the cases of a test
field and the weak-field limit. It is well known that in a vacuum spacetime, Killing vectors can be
used to construct electromagnetic test fields obeying vacuum Maxwell equations in the background
spacetime [39]. The contribution of the test field to the energy-momentum tensor is neglected and
thus test fields have a physical meaning only in the weak-field limit. Electromagnetic test fields
for the five-dimensional Myers–Perry black hole were analyzed in [3]. Additional properties of test
fields in various five-dimensional black hole/ring spacetimes were studied in [27]. In particular, it
has been shown in [27] that for the Myers–Perry black hole, null eigenvectors of the test field are
aligned with the WANDs of the background vacuum Myers–Perry metric. The Weyl tensor and
the Maxwell tensor are in this case both of type D and aligned.

The Maxwell tensor corresponding to the test field potential Aµ = α̂δµt reads

Fµν =
α̂M̂

(R+ a2)2


0 1 0 0 0
−1 0 0 a sin2 θ a cos2 θ
0 0 0 −a(R+ a2) sin(2θ) a(R+ a2) sin(2θ)
0 −a sin2 θ a(R+ a2) sin(2θ) 0 0
0 −a cos2 θ −a(R+ a2) sin(2θ) 0

 , (61)

and the eigenvalues and corresponding null eigenvectors of Fµν are given by

±αT = ± 2α̂M̂
√
R

(R+ a2)2
, (62)

kµT(±) =

(
a+

R

a
,∓ 2

√
R

a(a2 + R)

(
a4 + 2a2R+ R(R− M̂)

)
, 0, 1, 1

)
, (63)

where the subscript T stands for “test field”.

4.1.2 Behaviour for small charge and comparison with the test field

Let us introduce the function b by
aϕ = Q̂b . (64)

Then the field equations (24) and constraint (25) contain only even powers of Q̂, and for small
charge we can expand the metric and potential functions in terms of Q̂2:

f =
∞∑
k=0

f(k)
Q̂2k

k!
, m =

∞∑
k=0

m(k)
Q̂2k

k!
, b =

∞∑
k=0

b(k)
Q̂2k

k!
. (65)

By neglecting second and higher powers of Q̂, the field equations (24) and constraint (25) for the
leading terms f(0), m(0) and b(0) reduce to the vacuum field equations for the uncharged Myers–
Perry black hole, plus one additional equation for b(0):

m(0)(b
′
(0)m(0))

′ − b(0)f(0) = 2Ĵ
f(0)m

2
(0)

N2
. (66)
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The Functions f(0) and m(0) thus correspond to the vacuum Myers–Perry metric (18), and Equa-
tion (66) is solved by

b(0) =
Ĵ

M̂(a2 +R)
. (67)

Setting α̂ = Q̂/M̂ , the eigenvalue α (49) of the Maxwell tensor reduces to the eigenvalue αT (62)
of the test field and the eigenvectors (50) reduce to the test field eigenvectors (63).

Therefore, in the weak field limit the Maxwell tensor (48) reduces to the test field tensor (61)
and is aligned with the (vacuum) background Weyl tensor. As we will see in the next section,
this alignment of the Weyl and electromagnetic tensors does not survive beyond the weak field
approximation.

4.2 Algebraic type of the Weyl tensor

4.2.1 Weyl type of the metric ansatz

It is well-known that the Kerr–Newman black hole in four dimensions is an algebraically special
solution of Weyl type D. As we will point out below, for the five-dimensional charged rotating
black hole this does not hold anymore. The algebraic classification of the Weyl tensor in higher
dimensions is based on the alignment of a null vector, the so-called Weyl aligned null direction
(WAND), where the definition of the Weyl types is linked with the multiplicity of such a WAND
(see for example [29] for a review). The standard approach to determine the algebraic type of a
given Weyl tensor is to find an aligned null frame in which the vanishing components of the Weyl
tensor then indicate its type. Here, we employ the higher-dimensional extension of the Bel–Debever
criteria [30], another simpler and frame-independent method to answer the question whether the
five-dimensional charged rotating black hole solution is algebraically special. The Bel–Debever
criterion for a specific algebraic type is a polynomial equation involving the Weyl tensor and an
unknown null vector ℓ, which is the respective WAND of given multiplicity. For instance, the Weyl
tensor is of algebraic type II if and only if there exists a null vector ℓ satisfying

CII
µνρστ ≡ ℓ[σCµ]λ[νρℓτ ]ℓ

λ = 0 . (68)

Taking the regular metric ansatz (19) in terms of the radial coordinate R into account, it is
convenient to start with a general ℓ of the form

ℓµ =

(
− ℓ̂

t

f
, 2

√
N

m
ℓ̂R,

ℓ̂θ√
m
,

√
m

fN
ℓ̂ϕ − ℓ̂tϖ

f
,

√
m

fN
ℓ̂ψ − ℓ̂tϖ

f

)
, (69)

which simplifies the condition for ℓ being null:

8
[
(ℓ̂t)2 − (ℓ̂R)2 − (ℓ̂θ)2

]
−
[
3(ℓ̂ϕ)2 + 2ℓ̂ϕℓ̂ψ + 3(ℓ̂ψ)2

]
+ 4

[
(ℓ̂ϕ)2 − (ℓ̂ψ)2

]
cos(2θ)− (ℓ̂ϕ − ℓ̂ψ)2

[
cos(4θ) +

2m2

fN
sin2(2θ)

]
= 0 .

(70)

The Bel–Debever criterion (68) for the Weyl tensor of our ansatz (19) is considerably complicated.
It turns out that the simplest component of the rank-5 tensor CII

Rtϕθψ factorizes and yields the
condition[

(ℓ̂θ)2 + (ℓ̂R)2
] [
ℓ̂t
(
Nf ′ + fN′ − 2

fN

m
m′
)
+

√
fN3

m
(ℓ̂ϕ sin2 θ + ℓ̂ψ cos2 θ)ϖ′

]
= 0 , (71)

where a prime denotes a derivative with respect to R. We thus obtain two branches: either the
first bracket vanishes, which entails ℓθ = ℓR = 0, or the second bracket vanishes. Both conditions
ensure that the component CII

Rtϕθψ vanishes, and for each branch we can simplify the criterion (68)
by substituting back the corresponding condition. We then repeat this procedure: picking up the
remaining simplest component which factorizes, and plugging the condition in each new subbranch
into the criterion (68), until all the components of the criterion are satisfied. In this way, we obtain
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at the end 109 sets of conditions on the metric functions and the components of the WAND ℓ under
which the Bel–Debever criterion for type II (68) is satisfied. However, all these sets are contained
in the following 9 disjunct cases:

1 : (ℓ̂t)2 = (ℓ̂R)2 + (ℓ̂θ)2 + (ℓ̂ϕ)2 sin2 θ + (ℓ̂ψ)2 cos2 θ ,

fN = m2, ϖ′ = 0 , f ′′ =
(f ′)2

4f
+ f

4N(N′′ + 1)− 3(N′)2

12N2
,

(72a)

2 : ℓ̂θ = 0 , ℓ̂ψ = ℓ̂ϕ , (ℓ̂t)2 = (ℓ̂R)2 + (ℓ̂ϕ)2 ,(
fN

m2

)′

= ϖ′ = 0 , f ′′ =
f2

3m2
+

(f ′)2

4f
+ f

4NN′′ − 3(N′)2

12N2
,

(72b)

3 : ℓ̂θ = 0 , ℓ̂ϕ = 0 , ℓ̂ψ = 0 , (ℓ̂t)2 = (ℓ̂R)2 ,(
fN

m2

)′

= ϖ′ = 0 , f ′′ =
5f2

3m2
+

(f ′)2

4f
+ f

4N(N′′ − 4)− 3(N′)2

12N2
,

(72c)

4 : ℓ̂θ = 0 , ℓ̂ϕ = 0 , ℓ̂ψ = 0 , (ℓ̂t)2 = (ℓ̂R)2 ,(
fN

m2

)′

= ϖ′ = 0 , f ′′ = − f2

3m2
+

(f ′)2

4f
+ f

4N(N′′ + 2)− 3(N′)2

12N2
,

(72d)

5 : ℓ̂θ = 0 , ℓ̂ϕ = 0 , ℓ̂ψ = 0 , (ℓ̂t)2 = (ℓ̂R)2 ,(
fN

m2

)′

= 0 , ϖ′′ =
3(Nf ′ − fN′)ϖ′

4fN
,

(72e)

6 : ℓ̂t = ℓ̂ϕ

√
N

fm
ϖ , ℓ̂θ = 0 , ℓ̂ψ = ℓ̂ϕ , (ℓ̂R)2 = (ℓ̂ϕ)2

(
N

fm
ϖ2 − 1

)
,(

fNϖ

m2

)′

= 0 , 4m2f ′′ = f2 +
mf ′(2mf ′ − 3Nϖϖ′)

f
− f((m′)2 − 2mm′′) + 3Nϖm′ϖ′

−m(f ′m′ − 2Nϖϖ′′) ,

(72f)

7 : ℓ̂t = ℓ̂ϕ

√
N

fm
ϖ , ℓ̂θ = 0 , ℓ̂ψ = ℓ̂ϕ , (ℓ̂R)2 = (ℓ̂ϕ)2

(
N

fm
ϖ2 − 1

)
,(

fNϖ

m2

)′

= 0 , (Nϖ2 − fm)ϖ′′ =
8f3ϖ + 3mNϖ2f ′ϖ′

4fm
− fm

2ϖ2 −ϖN′ϖ′ + N(ϖ′)2

Nϖ

−ϖ′ 6mf
′ +ϖ(3ϖN′ − 7Nϖ′)

4
, 12f ′′ =

20f2

m2
+

3(f ′)2

f
− 4ϖ′

(
3f ′

ϖ
− 5Nϖ′

m

)
− 3f(N′)2

N2
+ 2f

5N′ϖ′ − 2ϖ(4− N′′)

Nϖ
− f

11(ϖ′)2 − 12ϖϖ′′

ϖ2
,

(72g)

8 : ℓ̂R = 0 , ℓ̂θ = 0 , ℓ̂ψ = ℓ̂ϕ , (ℓ̂t)2 = (ℓ̂ϕ)2 , ϖ′ =
ℓ̂ϕ

ℓ̂t

√
f3N

m3

(
m2

fN

)′

,

6f ′′ =
f2

m2
+ 3

(f ′)2

f
− f ′N′

N
+

2f(N′)2

N2
− 3f

(m′)2 − 2mm′′

m2
− f

m′N′ + 2mN′′

mN
,

(72h)

21



9 : ℓ̂t = −ℓ̂ϕ
√
fN3

m

ϖ′

Nf ′ + fN′ − 2 fNm m′
, ℓ̂θ = 0 , ℓ̂ψ = ℓ̂ϕ , (ℓ̂R)2 + (ℓ̂ϕ)2 = (ℓ̂t)2 ,

f ′′

2f
=

(m′)2

m2
− 2m′N′

mN
+

m′′

m
+

(
2f ′

f
+
ϖ′′

ϖ′

)(
f ′

2f
+

N′

2N
− m′

m

)
+

(N′)2

N2
− N′′

2N
,

2(2fNm′ −m(Nf ′ + fN′))m′′ =
2m2N(f ′)3

f2
+

2fN(m′)3

m
+ f(Nf ′ − (m′)2N′)

− f2
2Nm′ −mN′

m
−mf ′

−2mf ′N′ − 3N2(ϖ′)2 + N(5f ′m′ + 4mf ′′)

f
−mN′(f ′m′ + 4mf ′′)

+ Nm′(f ′m′ + 8mf ′′)− N2ϖ′(3m′ϖ′ + 2mϖ′′) .

(72i)

In other words, the metric ansatz (19) is of Weyl type II if and only if the conditions of any
of these 9 cases are met. Nevertheless, it is not clear so far whether these conditions could be
satisfied on-shell. First, we recall that the uncharged and non-rotating limits of the charged
rotating solution lead to known exact solutions, namely the 5-dimensional Myers–Perry black hole
and the 5-dimensional charged Schwarzschild–Tangherlini black hole, respectively, which are given
in Section 2.1. Although both special solutions are of Weyl type D, they satisfy the type II
conditions from distinct cases which suggests that the charged rotating solution is of more general
algebraic type. Specifically, the Myers–Perry black hole fulfills the conditions of case 9, whereas
the charged Schwarzschild–Tangherlini black hole meets the conditions of case 5.

Now, let us discuss the compatibility of the conditions (72) with a general charged rotating
solution of the Einstein–Maxwell equations. The conditions of cases 1, 2, 3 and 4 are satisfied only
in the non-rotating limit, since for ϖ′ = 0 we obtain Ĵ = 0 from the conservation law (23c) together
with the BVP (24c). To analyze the remaining cases, we make use of the on-shell asymptotic
expansions (36) of the functions f , m and aϕ, where without loss of generality we set r2− = 0.
In the case 5, plugging the asymptotic expansions into (Nf/m2)′ = 0, the numerator given by
Nf = R2 − (M̂ + r2H)R + 1

2M̂(M̂ + r2H) +
4
3 Q̂

2 + O
(
R−1

)
and the denominator given by m2 =

R2 − (M̂ + r2H)R + 1
4 (M̂ + r2H)

2 + 8
3 Q̂

2 +O
(
R−1

)
differ at order R0. Therefore, Nf/m2 in general

depends on R and the conditions of case 5 are not fulfilled. Analogously, in cases 6 and 7, from
the first terms of the asymptotic expansion of (Nfϖ/m2)′ = 0 it is obvious that the fraction of
Nfϖ = Ĵ + O

(
R−1

)
and m2 = R2 + O(R) is not independent of R, such that also this condition

is not met for a general solution. Substituting the asymptotic expansion (36) in the condition
ϖ′ = ±

√
Nf3/m3[m2/(Nf)]′ of case 8 we obtain 2Ĵ/R3 = ±(16Q̂2−3M̂2+3r4H)/(6R

7/2)+O
(
R−4

)
,

requiring Ĵ = 0. Lastly, in case 9 the leading order term in its condition reads −4ĴR+O
(
R0
)
= 0,

and again requires that Ĵ = 0, such that none of the conditions can be fulfilled for a general
charged rotating solution.

4.2.2 Weyl type on the horizon

We have shown above that in the bulk the charged Myers–Perry metric is algebraically general.
In this section, we determine the algebraic type of the metric on the horizon. The form (41) is
manifestly regular at the horizons and the bifurcation sphere, but it is more cumbersome than
necessary. In Kruskal-like coordinates, an a priori regular ansatz may be parameterized as follows,
where any function with implicit coordinate dependence depends only on the product UV and
have non-vanishing leading terms of order zero, e.g., F = F (UV ) = F (0) +O(UV ):

ds2 = 2F dU dV +N [W (U dV − V dU)− sin2 θ dϕ− cos2 θ dψ]2

+M dθ2 +M sin2 θ cos2 θ(dϕ− dψ)2 , (73)

gµν =


V 2NW 2 F − UV NW 2 0 V NW sin2 θ V NW cos2 θ

F − UV NW 2 U2NW 2 0 −UNW sin2 θ −UNW cos2 θ
0 0 M 0 0

V NW sin2 θ −UNW sin2 θ 0 (N sin2 θ +M cos2 θ) sin2 θ (N −M) sin2 θ cos2 θ
V NW cos2 θ −UNW cos2 θ 0 (N −M) sin2 θ cos2 θ (N cos2 θ +M sin2 θ) cos2 θ

 . (74)
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To determine the type of the Weyl tensor on the horizon, we employ the null coframe ℓ = dU ,
n = dV , m(2) = dθ, m(3) = dϕ− dψ, m(4) =W (V dU − U dV ) + dϕ (up to normalization).

Calculating all boost-weight +2 components of the Weyl tensor Cαβγδℓαm
(i)
βℓγm

(j)
δ, we find

that they all vanish for U = 0. Furthermore, all boost-weight +1 components vanish there as
well. It follows that ℓ is a multiple WAND at U = 0. Similarly, n is a multiple WAND at V = 0.
Therefore, the spacetime is at least of Weyl type II at either of the horizons (V = 0 or U = 0)
and type D at the bifurcation sphere (U = V = 0). The same results also hold for the Riemann
tensor. Note that these observations hold even off-shell, without imposing the Einstein–Maxwell
equations.

5 Discussion

We have studied various mathematical aspects of a charged rotating black hole with two equal-
magnitude angular momenta in five dimensions.

In Section 3, we proposed a metric ansatz (19) which is regular on the horizon. Furthermore, for
this metric ansatz the Einstein–Maxwell system (24) and (25) is autonomous, which is technically
convenient. We studied geometric regularity conditions for the Einstein–Maxwell system (24)
following from asymptotic flatness with the absence of incoming and outgoing radiation, as well
as regularity at the horizon. By comparing the solution at the singular end-points with these
conditions, we showed that the boundary value problem is well-posed.

In Section 4, we performed the algebraic classification of the curvature tensors and the electro-
magnetic tensor F . We found that the Weyl tensor is algebraically general in the bulk, type II on
the horizon, and type D on the bifurcation sphere. The electromagnetic field strength tensor F
and the stress-energy tensor T are both of type D off-shell, while the Ricci tensor is type D on-
shell. These algebraic properties are inconsistent with the Kerr–Schild form (1) of the metric with
geodesic k, such that the charged rotating black hole with two equal-magnitude angular momenta
in five dimensions cannot be described by such a Kerr–Schild metric. On the other hand, changing
to coordinates appropriate for studying the on-horizon properties of the spacetime, the metric (73)
takes a form somewhat reminiscent of the Kerr–Schild form. In this case, however, the background
metric is a four-dimensional type D warped product metric, and the “Kerr–Schild” vector is not
null.
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A Comparison with the work of Fan, Liang, Mei

In [9], Fan et al. looked at the same metric ansatz, introduced by Kunz et al. [19, 24], for a 5-
dimensional charged rotating black hole that we are considering in this work. They claim to have
reduced the corresponding Einstein equations to only two scalar variables (their Z and Aϕ). In
contrast, in Section 3, the most we could reduce our system to is the three scalar variables f , m,
aϕ, in Equations (24) and (25). Unfortunately, a closer comparison reveals some inconsistencies in
their formulas.

In more detail, the parametrization of the ansatz used in [9] is

ds2 = −F dt2 +
dR2

W
+R2

(
dx2

1− x2
+ (1− x2) dϕ2 + x2 dψ2

)
+N

[
(1− x2) dϕ+ x2 dψ

]2 − 2B
[
(1− x2) dϕ+ x2 dψ

]
dt , (75a)
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A = At dt+Aϕ
[
(1− x2) dϕ+ x2 dψ

]
. (75b)

where a comparison with our parametrization (19) reveals the dictionary

x = cos θ , (76a)

r =
√
m/f , (76b)

F = f − N

m
ϖ2 , (76c)

W = N

(
m′

m
− f ′

f

)2

, (76d)

N =
N

m
− m

f
, (76e)

B =
N

m
ϖ , (76f)

At = a0 , (76g)

Aϕ = aϕ , (76h)

where all derivatives on the right-hand side are with respect to our coordinate R = r2. In the two
equations,

W =
16Z(c0 + Z)

r2(∂rZ)2
, Eq. (3) of [9]

N =
Z

r2F
− B2

F
− r2 , Eq. (4) of [9]

the first one introduces a new variable Z = Z(r) and a constant c0, while the second one follows
from this definition in conjunction with the Einstein equations. Using our dictionary and simple
algebraic manipulation, we find that Z and c0 are uniquely determined by the identities

Z = N = (R− r2+)(R− r2−) , c0 + Z = (N′/2)2 =

(
R−

r2+ + r2−
2

)2

, (77)

where we have used the form of N (23) imposed by the Einstein equations. Next, after introducing
the variable Ãϕ in their Equation (7), their formula (6) for F is equivalent to a combination of
our (23c) and (24c). However, their final complicated formula (8) for B turns out to be inconsistent.
We have verified the inconsistency by plugging in our general asymptotic solution (36), for any

non-trivial values of the free parameters M̂ and a
(−1)
ϕ . Unfortunately, the claimed reduction by [9]

of the Einstein equations to just the two variables Z and Aϕ cannot be correct without the validity
of their Equation (8), which we have also verified cannot be saved by undoing possible sign errors
or other minor typos. Finally, the asymptotic solution at infinity (9) for Z and Aϕ in [9] cannot be
matched up to our asymptotic solution (36) by any correspondence between their free parameters

(m, a, s) and ours (M̂, a
(−1)
ϕ ), with an inconsistency appearing already at the next subleading order.
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