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Abstract

We analyze a mathematical model that describes the interaction between an insulating rigid body and
an incompressible electrically conducting fluid, in which the body is located. The model as well as the
mathematical analysis involve the fields of fluid-structure interaction and of magnetohydrodynamics.
Our main result is the proof of the existence of a weak solution to the corresponding system of partial
differential equations. The proof relies on a use of a time discretization via the Rothe method to
decouple the system. This allows us to deal with test functions, depending on the position of the
moving body and therefore on the solution of the system, in the weak formulation of the induction
equation. The proof moreover makes use of the Brinkman penalization in order to cope with the
mechanical part of the problem.

1 Introduction

In this paper, we consider a system of partial differential equations describing the movement of an
insulating rigid body through an electrically conducting incompressible fluid. We prove the existence
of a weak solution to this system. The insulating solid interacts mechanically with the fluid, which
is why the studied problem falls into the broad class of fluid-structure interaction. Since the electri-
cally conducting fluid further interacts with electromagnetic fields, it also constitutes a problem of
magnetohydrodynamics. While a number of mathematical works can be found in both those classes,
a combination of the two seems to be missing. Possible applications we have in mind include the
interaction of both extra- and intracellular fluids with cell membranes in an organism. Even though
membranes of cells are rather deformable than rigid objects, the study of the rigid body case can serve
as a first step towards understanding the real-world situation.
Fluid-structure interaction describes any interaction between a moving fluid and a rigid or deformable
solid contained in the fluid or surrounding it. In our case, we deal with a rigid body moving inside of

1This paper has been uploaded to arXiv, https://arxiv.org/abs/2203.05953.
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a viscous incompressible fluid, a situation, for which the existence theory of weak and strong solutions
has been studied by many authors. For an introduction to the problem of a fluid coupled with a rigid
body see [17, 39]. Let us mention that first results on the existence of weak solutions until the first
collision go back to the works of Conca, Starovoitov and Tucsnak [6], Desjardins and Esteban [9],
Gunzburger, Lee and Seregin [19], Hoffman and Starovoitov [25]. Further, the possibility of collisions
in case of weak solutions has been addressed for example in the work of [37], where the global-in-time
existence of a weak solution in two dimensions is shown, i.e. contacts between the bodies and the
boundary as well as between the bodies themselves are possible subject to the condition of vanishing
relative velocity and acceleration. For a global-in-time existence result for the three dimensional case
we refer to e.g. [14]. The latter result has also counterparts for the compressible situation with the
no-slip boundary condition [13] and with the Navier-slip boundary condition [32]. Finally, we also
want to mention existence results on strong solutions, see e.g. [18, 41, 43].
Magnetohydrodynamics stands for the interaction of electrically conducting fluids with electromagnetic
fields, see e.g. [5, 29]. This interplay is described mathematically by a coupling of the fluid equations
with the Maxwell system [30]. In this coupling, the resulting equations are further simplified subject
to certain physical assumptions, which is referred to as the magnetohydrodynamic approximation, c.f.
[8, 12] and which allows one to reduce the electromagnetic part of the system to a problem for only
the magnetic induction. In contrast to the fluid, in the present work, the rigid body is assumed to be
non-conducting and non-magnetic and hence is not influenced by electromagnetic fields, nonetheless
the electromagnetic trespass it. Thus, it may be viewed as vacuum from the electromagnetic point
of view. For a result giving the existence of weak solutions to the magnetohydrodynamic model for
an incompressible fluid we refer to [20]. A corresponding investigation of the compressible case can
be found in [38]. In [3], in addition to the electric conductivity, the fluid is assumed to be thermally
conductive. The combination of an insulating rigid but also immovable object with an electrically
conducting incompressible fluid has been considered in [22] in two and in [23] in three dimensions.
The model considered in the present work (see Section 1.1) is an extension of the model studied
in the latter two articles. The novelty lies in the fact that the solid in our model is not chosen as
a fixed but as a freely moving rigid object, which causes various mathematical problems outlined
below. In this article, we thus investigate the setting of a rigid solid which is neither electrically
conducting nor magnetic and which is moving in an incompressible electrically conducting fluid. In
particular, the electromagnetic fields influence indirectly the movement of the solid body through the
motion of the surrounding fluid. The setting we study can serve as a basis towards the study of more
sophisticated systems involving for example a compressible fluid, an electrically conducting magnetic
body or different types of boundary conditions.
Our main result is the proof of the existence of weak solutions to the aforementioned model. In the
weak formulation of the system we consider test functions which depend on the position of the solid
body and therefore, since we work on a moving domain, also on the solution of the system itself. While
in problems restricted to the interaction between fluids and solids the choice of such test functions is
standard and the difficulties, which result from this choice, are well-investigated, this is not the case
for magnetohydrodynamical problems in moving domains.
In our specific scenario, for the mechanical part we can rely on the Brinkman penalization method
to overcome the problems arising from the test functions chosen in the momentum equation, c.f. (24)
below. This method, in which the rigid body is approximated by rigidly moving, but permeable objects
with vanishing permeability, has already been analyzed in detail in [4]. However, for the problem
resulting from the solution-dependent test functions in the induction equation, c.f. (25) below, no
such penalization method appears to be available, since it would require to approximate the non-
conducting solid by solids with vanishing conductivity, which does not seem to be possible. In order
to deal with this problem we thus decided to discretize the system in the time variable via the Rothe
method, c.f. [36, Section 8], and regularize it. Thereby the system is decoupled, which allows us
to first determine the position of the body at a specific discrete time and subsequently solve the
induction equation at that time by classical arguments. This procedure constitutes the main novelty
in our proof. Test functions which depend on the position of the non-conducting solid body are also
considered for example in the proofs of [22, Theorem 2.1] and [23, Theorem 2.3], where the solid,
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however, is immovable and hence the test functions do not cause any difficulties, since they are given
a priori. Moreover, our proof adopts various methods from [13], where the existence of weak solutions
for an interaction problem between a rigid body and a compressible fluid is shown. Even though a
different penalization method is applied there, we can still use several of the same arguments for the
limit passage in the approximate system in our proof. A detailed description of the idea of our proof
is given in Section 2.

The outline of the article is the following: In Section 1.1 the model is described. The corresponding
weak formulation together with the main result follows in Section 1.2. The proof of the main re-
sult extends across Sections 2–6: In Section 2 the approximation to the original system is presented,
to which the existence of a solution is shown in Section 3. Sections 4–6 deal with the limit passages
required to return to the original equations. Finally, in Appendix 7 some auxiliary results are discussed.

1.1 Model description

Let Ω Ă R3 be a bounded domain occupied by a viscous nonhomogeneous incompressible fluid and a
rigid body, let T ą 0 and set Q “ QpT q :“ p0, T qˆΩ. We denote the initial position of the rigid body
by S “ Sp0q Ă Ω and we write Sptq Ă Ω for its position at any time t P r0, T s, the movement of which
can be expressed by means of some isometry. We further denote by F ptq :“ ΩzSptq the domain filled
with the fluid at time t, see Figure 1. Correspondingly, we also divide Q into the solid time-space
domain

QS :“ tpt, xq P Q : x P Sptqu .

and its fluid counterpart QF :“ QzQ
S

, where Q
S

denotes the closure of QS . We use this splitting of
the domain to further split also any function f defined on Q into

fpt, xq “

"

fF pt, xq for pt, xq P QF ,
fSpt, xq for pt, xq P QS

in order to distinguish between its fluid part fF and its solid part fS whenever it is necessary to
stress the difference. The motion of both the fluid and the body is then described by the velocity field
u : Q Ñ R3, the density ρ : Q Ñ R and, in case of the fluid, also by the pressure p “ pF : QF Ñ R.
The electromagnetic effects in the system are characterized in by the magnetic induction B : QÑ R3,
the magnetic field H : Q Ñ R3, the electric field E : Q Ñ R3 and the electric current j : Q Ñ R3.
The evolution of the system is described by the following equations:

curlH “ j ` J in QF , (1)

curlH “ 0 in QS , (2)

BtB ` curlE “ 0 in Q, (3)

divE “ 0 in QS , (4)

divB “ 0 in Q, (5)

∇ ¨ u “ 0, Btρ` u ¨∇ρ “ 0 in QF (6)

Btpρuq ` divpρub uq `∇p “ 2νdivD puq ` ρg `
1

µ
curlB ˆB in QF , (7)

m
d

dt
V ptq “

d

dt

ż

Sptq
ρu dx “

ż

BSptq
r2νD puq ´ pIds ¨ n dσ `

ż

Sptq
ρg dx, t P r0, T s (8)

d

dt
pJptqwptqq “

d

dt

ż

Sptq
ρ px´Xq ˆ u dx

“

ż

BSptq
px´Xq ˆ r2νD puq ´ pIds n dσ `

ż

Sptq
ρ px´Xq ˆ g dx, t P r0, T s (9)
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supplemented by the relations

j “ σpE ` uˆBq in Q, σ “

"

σF ą 0 in QF ,
σS “ 0 in QS ,

(10)

B “ µH, µ ą 0 in Q (11)

and completed by the boundary and interface conditions

Bptq ¨ n “ 0 on BΩ, BF ptq ´BSptq “ 0 on BSptq, (12)

Eptq ˆ n “ 0 on BΩ,
`

EF ptq ´ ESptq
˘

ˆ n “ 0 on BSptq, (13)

uptq “ 0 on BΩ, uF ptq ´ uSptq “ 0 on BSptq. (14)

The electromagnetic part (1)–(5) of the system is the reduced Maxwell system, c.f. [22], [23], while
the mechanical part (6)–(9) consists of the balance of mass and momentum for the fluid and solid
respectively, c.f. for example [14]. More precisely, in the Maxwell system we first have Ampère’s law
(1). We remark that, as in [22] and [23], this equation contains an additional source term J , which does
not pose any further mathematical difficulties. On the non-conducting solid Ampère’s law reduces to
the condition (2). The system further contains the Maxwell-Faraday equation (3), Gauss’s law (4)
and Gauss’s law for magnetism (5). We remark that, as in [22] and [23], these equations were here
adjusted to the case that the solid is an insulator and further simplified by the magnetohydrodynamic
approximation under some physical assumptions. A physical reasoning for the simplifications carried
out due to the magnetohydrodynamic approximation can be found for example in [27, 28]. The
reduced Maxwell system is supplemented by the relations (10), (11) and the boundary and interface
conditions (12), (13). The equation (10) is known as Ohm’s law in which the piecewise constant
coefficient σ stands for the electrical conductivity, vanishing inside of insulators. It determines the
effect of the fluid motion on the electromagnetic quantities. The constitutive relation (11) relates the
magnetic induction to the magnetic field, see [26, Section 5.8]. In our case we want to point out that,
in contrast to σ, the magnetic permeability µ is chosen as a constant value on the whole domain Q.
As the magnetic permeability depends on the material, this is in general not physically accurate but a
simplification required for the continuity of B across the interface stated in (12). The latter condition
is needed to ensure that B is an element of some Sobolev space on Q, c.f. (21) below. The remaining
conditions stated in (12) and (13) are standard.
Turning now to the mechanical part of the above system, we can identify the equations (6) and (7) as
the incompressible Navier-Stokes equations made up of the continuity equation and incompressibility
condition (6) and the momentum equation (7). In contrast to the purely mechanical case, (7) contains,
in addition to the given external force g, a forcing term 1

µcurlB ˆ B - a reduced form of the Lorentz
force - resulting from the electromagnetic interaction. Moreover, the operator D denotes the symmetric
part of the gradient,

Dpuq :“
1

2
∇u` 1

2
p∇uqT .

and ν ą 0 is the viscosity coefficient. The relations (8) and (9) represent the balance of linear and
angular momentum of the rigid body respectively. Indeed, since the body is rigid, its movement is
characterized by its translational velocity V and its rotational velocity w; the overall velocity of the
rigid body is determined as

upt, xq “ V ptq ` wptq ˆ px´Xptqq on QS .

The further notation in (8) and (9),

m :“

ż

Sptq
ρpt, xq dx, Xptq :“

1

m

ż

Sptq
ρpt, xqx dx,

Jptqa ¨ b :“

ż

Sptq
ρpt, xq raˆ px´Xptqqs ¨ rbˆ px´Xptqqs dx, a, b P R3,
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represent the mass, the center of mass and the inertia tensor of the rigid body respectively, while n
denotes the outer unit normal vector on BΩ and BSptq. The right-hand sides of (8) and (9) show that
the movement of the rigid body is driven by the volume force g and the Cauchy stress 2νDpuq ´ pId,
acting upon the interface of the body and the fluid via the integral over BSptq in (8) and (9). Moreover,
the fluid-structure interaction is incorporated in the second equation in (14). This relation, known as
no-slip condition, imposes continuity of the velocity field across the interface between fluid and solid.
Together with the no-slip boundary condition on BΩ, i.e. the first equation in (14), this represents a
standard set of boundary and transition conditions assumed commonly for the interaction between
fluids and rigid bodies, c.f. for example [14], [37].

Figure 1: An insulating rigid body with domain Sptq inside of an incompressible electrically conducting
fluid with domain F ptq.

1.2 Weak formulation and main result

In order to define a weak formulation and state the main result, we first introduce some more notation.
We use the standard Lebesgue-, Sobolev- and Bochner spaces and in addition the spaces

V rpΩq :“ Hr,2
div pΩq for r ě 0, V r

0 pΩq :“
!

v P Hr,2
div pΩq : v|BΩ “ 0

)

for r ą
1

2
,

where Hr,2
divpΩq denotes the space of functions in Hr,2pΩq which are in addition divergence-free. By S

we denote a subset of Ω such that

S is open, bounded and connected, S ‰ H, |BS| “ 0 and dist pS, BΩq ą 0. (15)

In the following we will describe the position of the rigid body through the use of a characteristic
function. More precisely, for a function χ : R3 Ñ t0, 1u we write

Spχq :“
 

x P R3 : χpxq “ 1
(

and if χptq “ χpt, ¨q is a characteristic function for all t P r0, T s, we write

QSpχ, T q :“
 

pt, xq P r0, T s ˆ R3 : χpt, xq “ 1
(

“
 

pt, xq P r0, T s ˆ R3 : x P Spχptqq
(

.

We further introduce the space of test functions

T pχ, T q :“
!

φ P D pr0, T q ˆ Ωq : divφ “ 0, Dpφq “ 0 on an open neighbourhood of Q
S
pχ, T q

)

,

meaning that for any φ P T pQSpχ, T qq there is σ ą 0 such that

Dpφq “ 0 in
!

pt, xq P QpT q : dist
´

pt, xq, Q
S
pχ, T q

¯

ă σ
)

. (16)
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Similarly, we define

Y pχ, T q :“
!

b P D pr0, T q ˆ Ωq : curl b “ 0 on an open neighbourhood of Q
S
pχ, T q

)

. (17)

We can now introduce the notion of weak solutions to (6)–(13) in the following way:

Definition 1.1. Let T ą 0, let B0, u0 P L
2pΩ;R3q with div u0 “ divB0 “ 0 and let ρ0 P L

8pΩ;Rq.
Let further S Ă Ω satisfy (15) and let χ0 P L

8pΩ;Rq denote the characteristic function of S. Then
the set of functions tχ, ρ, u,Bu is called a weak solution of the problem (6)–(13) on r0, T s, if

χ P C pr0, T s;Lp pΩ;Rqq @1 ď p ă 8, (18)

ρ P C pr0, T s;Lp pΩ;Rqq @1 ď p ă 8, (19)

u P L8
`

0, T ;L2
`

Ω;R3
˘˘

č

L2p0, T ;V 1
0 pΩqq, Dpuq “ 0 a.e. in QSpχ, T q, (20)

B P L8
`

0, T ;L2
`

Ω;R3
˘˘

č

L2p0, T ;V 1pΩqq, curlB “ 0 a.e. in QSpχ, T q, B ¨ n “ 0 on BΩ,

(21)

and

´

ż T

0

ż

Ω
χBtΘdxdt´

ż

Ω
χ0Θp0, xq dx “

ż T

0

ż

Ω
pχuq ¨∇Θ dxdt, (22)

´

ż T

0

ż

Ω
ρBtψdxdt´

ż

Ω
ρ0ψp0, xq dx “

ż T

0

ż

Ω
pρuq ¨∇ψ dxdt, (23)

´

ż T

0

ż

Ω
ρu ¨ Btφ dxdt´

ż

Ω
ρ0u0 ¨ φp0, xq dx “

ż T

0

ż

Ω
pρub uq : ∇φ´ 2νDpuq : ∇φ

` ρg ¨ φ`
1

µ
pcurlB ˆBq ¨ φ dxdt, (24)

´

ż T

0

ż

Ω
B ¨ Btb dxdt´

ż

Ω
B0 ¨ bp0, xq dx “

ż T

0

ż

Ω

„

´
1

σµ
curlB ` uˆB `

1

σ
J



¨ curl b dxdt (25)

for all Θ, ψ P Dpr0, T q ˆ Ωq, φ P T pχ, T q and b P Y pχ, T q.

We can now state our main result:

Theorem 1.1. Let T ą 0, Ω Ă R3 be a simply connected bounded domain. Let further χ0, ρ0,
u0, B0 and S be as in Definition 1.1 and assume BΩ, BS to be of class C2

Ş

C0,1. Finally, assume
g, J P L8pQ;R3q and assume that σ, µ, ν, ρ, ρ are positive constants with

0 ă ρ ď ρ0 ď ρ ă 8 a.e. on Ω.

Then there exist T 1 ą 0 and a weak solution to the problem (6)–(13) on r0, T 1s in the sense of Definition
1.1, satisfying the energy inequality

ż

Ω

1

2
ρpτq|upτq|2 `

1

2
|Bpτq|2 dx`

ż τ

0

ż

Ω
2ν |∇upt, xq|2 ` 1

σµ2
|curlBpt, xq|2 dxdt

ď

ż

Ω

1

2
ρ0|u0|

2 `
1

2
|B0|

2 dx`

ż τ

0

ż

Ω
ρpt, xqgpt, xq ¨ upt, xq `

1

σ
Jpt, xq ¨ curlBpt, xq dxdt (26)

for almost all τ P r0, T 1s. Moreover, there is an isometry Xps; t, ¨q : R3 Ñ R3 such that

S pχptqq “ X ps; t, S pχpsqqq @s, t P r0, T 1s (27)

and T 1 can be chosen such that

T 1 “ sup
!

τ P r0, T s : dist pSpχptqq, BΩq ą 0 @t ď τ
)

. (28)
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Remark 1.1. Since the solution ρ to the continuity equation (23), given by Theorem 1.1, satisfies
ρ P L2pp0, T q ˆ Ωq, the transport theorem by DiPerna and Lions [10] implies that ρ also solves the
renormalized continuity equation

Btβpρq ` u ¨∇βpρq “ 0 in p0, T q ˆ Ω (29)

in the distributional sense for any bounded β P C1pRq vanishing near 0 and such that also pβ1p1`|¨|qq´1

is bounded.

Remark 1.2. In [14], the existence of a global-in-time solution to a fluid-rigid body system is shown
by extending the solution after a possible collision with the boundary by a solution to a problem in
which the body is now considered as a fixed part of the exterior of the domain. With Theorem 1.1 at
hand, the same method could probably also be applied here to infer global-in-time existence.

The proof of Theorem 1.1 will be accomplished via an approximation method in Sections 3–6 and is
outlined in the following section.

2 Approximate system

We introduce the approximate system to the original system of equations and we show the existence
of a solution to this approximation. The limit of this solution then again is supposed to give us the
solution to the original problem. More precisely, we will use three different levels of approximation,
characterized through 3 parameters ∆t, ε, η ą 0:

• On ∆t-level, we have a time discretization by the Rothe method, c.f. [36, Section 8.2]. To this
end, ∆t ą 0 is chosen in such a way that T

∆t P N and we split up the interval r0, T s into the
discrete times k∆t, k “ 1, ..., T∆t .

• On the ε-level, we add several regularization terms to the system, which help us to solve the
approximate system and pass to the limit as ∆tÑ 0.

• On the η-level we add a penalization term to the momentum equation, which guarantees us that
after passing to the limit in η Ñ 0, the limit velocity will coincide - on the solid part of the
domain - with the rigid velocity of the body.

We now introduce the full approximate system, containing all three levels of the approximation, and
give a more detailed explanation afterwards: Assuming that for some discrete time k∆t, k P t1, ..., T∆tu
the solution at time pk´1q∆t, indexed by k´1, has already been found and defining the test function
space

W kpΩq :“

"

b P H2,2 pΩq : b ¨ n|BΩ “ 0, curl b “ 0 in
!

x P Ω : χk∆tpxq “ 1
)

*

, (30)

we seek functions

ρk∆t : Ω Ñ R, uk∆t, B
k
∆t : Ω Ñ R3, χ∆t,k : rpk ´ 1q∆t, k∆ts ˆ Ω Ñ R,

7



satisfying the discrete system at time k∆t,

´

ż k∆t

pk´1q∆t

ż

R3

χ∆t,kBtΘ dxdt “

ż

R3

χk´1
∆t Θppk ´ 1q∆t, xq dx´

ż

R3

χk∆tΘpk∆t, xq dx

`

ż k∆t

pk´1q∆t

´

χ∆t,kΠ
k´1
∆t

¯

¨∇Θ dxdt, (31)

´

ż

Ω

ρk∆t ´ ρ
k´1
∆t

∆t
ψdx “

ż

Ω
uk´1

∆t ¨∇ρ
k
∆tψ ` ε∇ρk∆t ¨∇ψ dx, (32)

´

ż

Ω

ρk∆tu
k
∆t ´ ρ

k´1
∆t u

k´1
∆t

∆t
¨ φ dx “

ż

Ω

”

div
´

ρk∆tu
k´1
∆t b u

k
∆t

¯

´ 2ν div
´

Duk∆t
¯

` ε∇uk∆t∇ρk∆t
ı

¨ φ dx

`

ż

Ω
ε∆uk∆t∆φ`

„

1

η
ρk´1

∆t χ
k
∆t

´

uk´1
∆t ´Πk´1

∆t

¯

´ ρk´1
∆t g

k
∆t



¨ φ dx

´

ż

Ω

1

µ

´

curlBk´1
∆t ˆB

k´1
∆t

¯

¨ φ dx, (33)

´

ż

Ω

Bk
∆t ´B

k´1
∆t

∆t
¨ b dx “

ż

Ω

„

1

σµ
curlBk

∆t ´ u
k
∆t ˆB

k´1
∆t `

ε

µ2

ˇ

ˇ

ˇ
curlBk

∆t

ˇ

ˇ

ˇ

2
curlBk

∆t



¨ curl b dx

`

ż

Ω
´

1

σ
Jk∆t ¨ curl b` ε curl

´

curlBk
∆t

¯

¨ curl pcurl bq dx (34)

for all Θ P Dprpk´ 1q∆t, k∆ts ˆR3q, ψ P H1,2pΩq, φ P V 2
0 pΩq and b PW kpΩq. Here, the functions χk∆t

and Πk´1
∆t , introduced in the equations (31) and (33), are defined by:

χk∆t :“ χ∆t,kpk∆tq, Πk´1
∆t “ puGq

k´1
∆t ` ω

k´1
∆t ˆ

´

x´ ak´1
∆t

¯

(35)

and

puGq
k´1
∆t :“

ş

R3 ρ
k
∆tχ

k´1
∆t u

k´1
∆t dx

ş

R3 ρk∆tχ
k´1
∆t dx

, (36)

ωk´1
∆t :“

´

Ik´1
∆t

¯´1
ż

R3

ρk∆tχ
k´1
∆t

´

x´ ak´1
∆t

¯

ˆ uk´1
∆t dx, (37)

Ik´1
∆t :“

ż

R3

ρk∆tχ
k´1
∆t

´

|x´ ak´1
∆t |

2id´
´

x´ ak´1
∆t

¯

b

´

x´ ak´1
∆t

¯¯

dx, (38)

ak´1
∆t :“

ş

R3 ρ
k
∆tχ

k´1
∆t x dx

ş

R3 ρk∆tχ
k´1
∆t dx

. (39)

In order to keep the latter terms well-defined, we extend the functions ρl∆t by ρ and ul∆t by 0 outside

of Ω for any l “ 0, ..., k. Moreover, the quantities gk∆t and Jk∆t from (33) and (34) are defined in the
following way: Since the given functions g and J are by assumption only L8-functions and thus not
necessarily defined in the discrete times, we first need to introduce some mollifications. For example,
we can define

gγptq :“

ż T

0
θγ pt` ξγptq ´ sq gpsq ds, Jγptq :“

ż T

0
θγ pt` ξγptq ´ sq Jpsq ds, ξγptq :“ γ

T ´ 2t

T
,

where θγ : RÑ R is a mollifier. Then we choose γ “ pγ∆tq, γp∆tq Ñ 0 for ∆tÑ 0 and set

gk∆t :“ gγp∆tqpk∆tq, Jk∆t :“ Jγp∆tqpk∆tq. (40)

The idea behind the time discretization is to decouple the system, so that we can solve the equations
one after another by using retarded functions in the coupling terms. In particular, it helps us with
solving the induction equation, in which - even on approximation level - the test functions depend
on the characteristic function of the rigid body and therefore on the solution of the overall system
itself, c.f. (17). In our discretization, we will be able to first determine the position of the solid up to
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a certain discrete time and subsequently choose the test functions for the induction equation at this
specific time accordingly. The existence of the magnetic induction on the discrete level then follows
by standard methods.
We also want to point out, that the function χ∆t,k represents an exception in this system: It is the
only function, which is immediately constructed as a time-dependent function. The reason for this
is that we want it to take only the values 0 and 1 so that we are able to determine the position of
the rigid body at any time. Inspired by [21], we can guarantee this by constructing χ∆t,k by solving
a classical transport equation on the small interval rpk ´ 1q∆t, k∆ts, in case of a discrete transport
equation we might lose the property.
Next we note that the mapping Πk´1

∆t is, by definition, a rigid velocity field with the translational
velocity puGq

k´1
∆t and the rotational velocity wk´1

∆t . The constant terms Ik´1
∆t and ak´1

∆t can be considered
as a discrete version of the inertia tensor and the center of mass of the rigid body described by the
characteristic function χ∆t at time k∆t. Once we will have passed to the limit in the time discretization,
we will see that the limit of Π

1

∆t is actually the projection of the velocity onto a rigid velocity field.
This comes into play in the penalization term from the η-level of the approximation mentioned above,
namely the term

1

η
ρk´1

∆t χ
k
∆t

´

uk´1
∆t ´Πk´1

∆t

¯

,

from (33). As mentioned before, we can use this term to infer that after letting η Ñ 0 the limit
velocity coincides, in the solid area, with the velocity of the rigid body, which is what we require
to obtain (22). This penalization method, which is known as Brinkman penalization, is discussed
rigorously in [4]. Physically speaking, it describes an extension of the fluid into the solid region,
i.e. the approximate body, while still moving via a rigid velocity field, is now permeable and the
limit passage η Ñ 0 represents the process of letting the permeability vanish. This technique can be
considered as an extension of the penalty method used in [2] for a fluid-structure interaction problem
in which the movement of the solid is prescribed. It further finds use in [33], where the examined solid
is additionally deformable and self-propelled and it is moreover of interest for finite element approaches
to the problem, c.f. [7], [24]. There are also other penalization methods available as for example in
[37], where an approach is used in which the solids are approximated by a fluid with viscosity rising
to infinity.
Finally, it remains to discuss the various regularization terms from the ε-level of the approximation. In
the continuity equation, the Laplacian of the density is added to the right-hand side, which allows us
to show an upper bound for ρ as well as some bound away from 0. This is needed because such a bound
cannot be guaranteed from the discrete version of the transport equation. In order to compensate for
this term in the energy inequality, the term ε∇uk∆t∇ρk∆t is added to the momentum equation. The
second new term in this equation, ε∆2uk∆t, is needed for passing to the limit in ∆t Ñ 0. Moreover,
we have two regularization terms in the induction equation, the 4-th curl of the magnetic induction
and the term curlp|curlBk

∆t|
2curlBk

∆tq which is also known as the 4-double-curl. The first one is used
for the construction of Bk

∆t via a weakly continuous coercive operator, while we require the latter
one in the energy inequality: in the time-dependent version of the system, the mixed terms from the
momentum and the induction equation cancel each other. On the discrete level this is not the case,
as the involved functions are chosen from distinct discrete times. However, the 4-double-curl enables
us to absorb the problematic terms into the positive left-hand side, so that we can get the uniform
bounds needed for the limit passage as ∆t Ñ 0. We also remark, that the 4-double-curl was chosen
instead of the 4-Laplacian in order to allow us to apply the Helmholtz-decomposition [40, Theorem
4.2]. This is why the test functions b PW kpΩq, which are not divergence-free, can be used in (34). We
complement the equations by the relations

div uk∆t “ divBk
∆t “ 0 in Ω, curlBk

∆t “ 0 in
!

x P Ω : χk∆tpxq “ 1
)

,

uk∆t “ 0 on BΩ, Bk
∆t ¨ n “ 0 on BΩ, (41)

ρ0
∆t “ ρ0, χ∆t,kp0q “ χ0, u0

∆t “ u0, B0
∆t “ B0.
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In Section 3 we will show the existence of a solution to this approximate system. In Section 4 we
will pass to the limit with respect to ∆t Ñ 0, i.e. we will return from the discrete system back to
a system depending on time. Afterwards, in Section 5, we let the regularization terms vanish from
our approximation by letting ε Ñ 0. Finally, in Section 6, we will obtain the desired solution to our
original system by sending also the last parameter η to 0.

3 Existence of the approximate solution

In this section we prove the existence of a solution to the approximate system. To this end, we first
introduce another function space for fixed discrete time indices k:

Y kpΩq :“

"

b P L2
`

Ω;R3
˘

: b ¨ n|BΩ “ 0, div b “ 0 in Ω, curl b “ 0 in
!

x P Ω : χk∆tpxq “ 1
)

,

curl pcurl bq P L2pΩq

*

.

While the more general space W kpΩq in (30), containing also functions which are not divergence-free,
serves as a test function space for the induction equation at the discrete time k∆t, the space Y kpΩq will
be the space in which we construct the magnetic induction at time k∆t. As for functions b P Y kpΩq
it holds curlpcurlbq “ ∆b, both of these spaces can be equipped with the H2,2-norm.
Proposition 3.1. Let all the assumptions of Theorem 1.1 be satisfied and ∆t ą 0. Let further gk∆t
and Jk∆t be given by (40) for any k “ 0, ..., T∆t and assume in addition that

ρ0 P H
1,2pΩq, u0, B0 P H

2,2pΩq.

Then, for all k “ 1, ..., T∆t , there exist functions χ∆t,k P Cprpk ´ 1q∆t, k∆ts;LplocpR
3qq, 1 ď p ă 8 and

ρk∆t P H
1,2pΩq, ρ ď ρk∆t ď ρ, uk∆t P V

2
0 pΩq, Bk

∆t P Y
kpΩq (42)

which satisfy the variational equations (31)–(34) for all test functions Θ P Dprpk ´ 1q∆t, k∆ts ˆ R3q,
ψ P H1,2pΩq, φ P V 2

0 pΩq and b PW kpΩq.

Proof

We consider some discrete time index k P
 

1, ..., T∆t
(

and assume that the proposition is already proved
for all l “ 1, ..., k ´ 1.

Step 1: The existence of a solution ρk∆t P H
1,2pΩq to (32) follows immediately from the Lax-Milgram

Lemma. Further, we may test (32) by max
 

ρk∆t ´ ρ, 0
(

to see

ż

Ω

ˇ

ˇmax
 

ρk∆t ´ ρ, 0
(ˇ

ˇ

2

∆t
dx ď

ż

Ω

´

ρk´1
∆t ´ ρ

¯

max
 

ρk∆t ´ ρ, 0
(

∆t
dx ď 0,

c.f. [34, Section 7.6.5]. Arguing similarly for the lower bound, we arrive at the estimates for ρk∆t in
(42).

Step 2: As in [21], we consider the initial value problem

BX
Πk´1

∆t
∆t ps; t, xq

Bt
“ Πk´1

∆t

ˆ

X
Πk´1

∆t
∆t ps; t, xq

˙

, X
Πk´1

∆t
∆t ps; s, xq “ x, x P R3, s, t P R, (43)

where t represents the time variable and s the initial time. Since Πk´1
∆t is constant in time and a

rigid velocity field by (35), it is in particular Lipschitz-continuous. Then by the theory of ordinary
differential equations, (43) defines a unique mapping

X
Πk´1

∆t
∆t : Rˆ Rˆ R3 Ñ R3. (44)
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We set

χ∆t,kpt, xq :“ χ∆t,k´1

ˆ

pk ´ 1q∆t,X
Πk´1

∆t
∆t pt; pk ´ 1q∆t, xq

˙

for t P rpk ´ 1q∆t, k∆ts (45)

and infer from [10, Theorem III.2] that this is the (unique renormalized) solution to the transport
equation (31).

Step 3: We consider the operator

A : V 2
0 pΩq Ñ

`

V 2
0 pΩq

˘˚
, xAu, vy

pV 2
0 pΩqq

˚
ˆV 2

0 pΩq
:“

ż

Ω

ˆ

ρk∆tu

∆t

˙

¨ v ` div
´

ρk∆tu
k´1
∆t b u

¯

¨ v

`2νDpuq : ∇v ` ε
´

∇u∇ρk∆t
¯

¨ v ` εp∆uq ¨ p∆vq dx

for u, v P V 2
0 pΩq. Because of the regularization term, A is coercive on V 2

0 pΩq. Further, the bilinear
form xA¨, ¨y

pV 2
0 pΩqq

˚
,V 2

0 pΩq
is bounded on V 2

0 pΩq and hence the Lax-Milgram Lemma again implies the

existence of uk∆t P V
2

0 pΩq satisfying (33).

Step 4: We introduce

Ã : Y kpΩq Ñ
´

Y kpΩq
¯˚

,

A

ÃpBq, b
E

pY kpΩqq˚ˆY kpΩq
:“

ż

Ω

B

∆t
¨ b` εcurl pcurlBq ¨ curl pcurlbq

`

„

1

σµ
curlB `

ε

µ2
|curlB|2 curlB



¨ curlb dx.

Clearly, Ã is coercive:

A

ÃpBq, B
E

pY kq˚ˆY k
ě

1

∆t
}B}2L2pΩq ` ε}∆B}

2
L2pΩq ě c}B}2H2,2pΩq “ c}B}2Y k .

Further, if Bn á B in Y kpΩq, then from the Rellich-Kondrachov embedding we know Bn Ñ B in
W 1,4pΩq, which again gives us weak continuity of Ã. Coercivity and weak continuity imply surjectivity
of Ã (see for example [16, Theorem 1.2]) and so we infer the existence of a solution Bk

∆t P Y
kpΩq to

(34) for all b P Y k and by the Helmholtz-decomposition [40, Theorem 4.2] even for all b PW kpΩq.
l

Remark 3.1. For any fixed s, t P R the mapping (44) is an isometry. Indeed, from Πk´1
∆t being a rigid

velocity field and the ordinary differential equation (43), it follows that

B

Bt

ˇ

ˇ

ˇ

ˇ

X
Πk´1

∆t
∆t ps; t, xq ´X

Πk´1
∆t

∆t ps; t, yq

ˇ

ˇ

ˇ

ˇ

2

“ 0 (46)

for any x, y P R3.

In the remainder of this section we derive an energy inequality for our discrete solution. To this end
we extend, without loss of generality,

ul∆tpxq “ 0, ρl∆tpxq “ ρ, @x P R3zΩ, l “ 0, ...,
T

∆t
. (47)

We fix some k P
 

1, ..., T∆t
(

. For arbitrary l ď k we test the continuity equation (32) at the discrete
time l∆t by 1

2 |u
l
∆t|

2 and subtract the result from the momentum equation (33), also at time l∆t,
tested by ul∆t. This yields

ż

Ω

1

2∆t
ρl∆t|u

l
∆t|

2 ´
1

2∆t
ρl´1

∆t |u
l´1
∆t |

2 ` 2ν|∇ul∆t|2 `
1

η
ρl´1

∆t χ
l
∆tpu

l´1
∆t ´Πl´1

∆t q ¨ u
l
∆t ` ε|∆u

l
∆t|

2 dx

ď

ż

Ω
ρl´1

∆t g
l
∆t ¨ u

l
∆t `

1

µ
pcurlBl´1

∆t ˆB
l´1
∆t q ¨ u

l
∆t dx. (48)
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Next, we test the magnetic equation (34) at time l∆t by 1
µB

l
∆t and estimate

1

2µ∆t

”

}Bl
∆t}

2
L2pΩq ´ }B

l´1
∆t }

2
L2pΩq

ı

`
1

µ

ż

Ω

1

σµ
|curlBl

∆t|
2 dx

ď´

ż

Ω

ε

µ3
|curlBl

∆t|
4 `

ε

µ

ˇ

ˇ

ˇ
∆Bl

∆t

ˇ

ˇ

ˇ

2
´

1

µ
pul∆t ˆB

l´1
∆t q ¨ curlBl

∆t ´
1

σµ
J l∆t ¨ curlBl

∆t dx. (49)

Adding this to (48) and summing over all l ď k, we infer

1

2∆t
ρ}uk∆t}

2
L2pΩq ´

1

2∆t
ρ}u0

∆t}
2
L2pΩq `

k
ÿ

l“1

´

2ν}∇ul∆t}2L2pΩq ` ε}∆u
l
∆t}

2
L2pΩq

¯

`
1

2µ∆t

´

}Bk
∆t}

2
L2pΩq ´ }B

0
∆t}

2
L2pΩq

¯

`

k
ÿ

l“1

ˆ

1

σµ
}curlBl

∆t}
2
L2pΩq `

ε

µ3
}curlBl

∆t}
4
L4pΩq `

ε

µ

›

›

›
∆Bl

∆t

›

›

›

2

L2pΩq

˙

ď

k
ÿ

l“1

ż

Ω
´

1

η
ρl´1

∆t χ
l
∆tpu

l´1
∆t ´Πl´1

∆t q ¨ u
l
∆t ` ρ

l´1
∆t g

l
∆t ¨ u

l
∆t `

1

µ
pcurlBl´1

∆t ˆB
l´1
∆t q ¨ u

l
∆t

`
1

µ
pul∆t ˆB

l´1
∆t q ¨ curlBl

∆t `
1

σµ
J l∆t ¨ curlBl

∆tdx. (50)

In order to estimate the right-hand side here, we need

}Πl´1
∆t }L2pΩq ď c}ul´1

∆t }L2pΩq, (51)

which can be proved in the following way: We distinguish between two cases, the first one being
suppχl´1

∆t

Ş

Ω “ H. Then, as ul´1
∆t “ 0 outside of Ω, both sides of (51) are equal to zero and so the

inequality is trivially satisfied. For the second case, suppχl´1
∆t

Ş

Ω ‰ H, we note that from (44) being
an isometry and by (45) it follows the existence of a compact set K independent of l and ∆t such that
in this case suppχl´1

∆t Ă K. This allows us to reduce the integrals over R3 in (36) - (39) to integrals
over K. Moreover, as ρl∆t ě ρ was extended by ρ on R3zΩ, we know

ż

R3

ρl∆tχ
l´1
∆t dx ě ρ|S| ą 0. (52)

Thus we can estimate

ˇ

ˇ

ˇ
al´1

∆t

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

ş

R3 ρ
l
∆tχ

l´1
∆t x dx

ş

R3 ρl∆tχ
l´1
∆t l dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď c

ˇ

ˇ

ˇ

ˇ

ż

K
ρl∆tx dx

ˇ

ˇ

ˇ

ˇ

ď c (53)

with c independent of l and ∆t. By similar computations, c.f. also [4, Section 3.2] and the proof of
[33, Lemma 4], we obtain

ˇ

ˇ

ˇ
puGq

l´1
∆t

ˇ

ˇ

ˇ
ď c

›

›

›
ul´1

∆t

›

›

›

L2pΩq
,

ˇ

ˇ

ˇ
ωl´1

∆t

ˇ

ˇ

ˇ
ď c

›

›

›
ul´1

∆t

›

›

›

L2pΩq
, v ¨

´

I l´1
∆t v

¯

ě c|u|2 @v P R3, (54)

where the last inequality uses that since (44) is an isometry, one can find for any ∆t ą 0, l “ 1, ..., T∆t
some ball Brpl,∆tq Ă R3 with radius r ą 0 independent of l and ∆t such that Brpl,∆tq Ă Spχl´1

∆t q.
Thus, (51) is also satisfied in the second case. Now, exploiting (51) and applying Young’s inequality,
the right-hand side of (50) can be bounded by

k
ÿ

l“1

„

ρ

2η
}ul´1

∆t }
2
L2pΩq `

ρ

2η
}ul∆t}

2
L2pΩq `

c2ρ

2
}g}2L8pΩq `

ρ

2
}ul∆t}

2
L2pΩq

`
1

µ
}curlBl´1

∆t }L4pΩq}B
l´1
∆t }L4pΩq}u

l
∆t}L2pΩq `

c2

2σµ
}curlJ}2L8pΩq `

1

2σµ
}Bl

∆t}
2
L2pΩq

`
1

µ
}curlBl

∆t}L4pΩq}B
l´1
∆t }L4pΩq}u

l
∆t}L2pΩq



. (55)
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Using the Poincaré-type estimate

›

›

›
Bl´1

∆t

›

›

›

L4pΩq
ď c

›

›

›
curlBl´1

∆t

›

›

›

L4pΩq
,

c.f. [1, Corollary 3.4], we further estimate

1

µ
}curlBl

∆t}L4pΩq}B
l´1
∆t }L4pΩq}u

l
∆t}L2pΩq ď

c2µ

ε
}ul∆t}

2
L2pΩq `

ε

8µ3
}curlBl´1

∆t }
4
L4pΩq `

ε

8µ3
}curlBl

∆t}
4
L4pΩq,

1

µ
}curlBl´1

∆t }L4pΩq}B
l´1
∆t }L4pΩq}u

l
∆t}L2pΩq ď

c2µ

ε
}ul∆t}

2
L2pΩq `

ε

4µ3
}curlBl´1

∆t }
4
L4pΩq.

Consequently, we can absorb several quantities from (55), including - for ∆t sufficiently small - the
L2-norm of uk∆t, into the left-hand side of (50) and obtain

ρ

4∆t

›

›

›
uk∆t

›

›

›

2

L2pΩq
`

k
ÿ

l“1

ˆ

2ν
›

›

›
∇ul∆t

›

›

›

2

L2pΩq
` ε

›

›

›
∆ul∆t

›

›

›

2

L2pΩq

˙

`
1

4µ∆t

›

›

›
Bk

∆t

›

›

›

2

L2pΩq

`

k
ÿ

l“1

ˆ

1

σµ

›

›

›
curlBl

∆t

›

›

›

2

L2pΩq
`

ε

2µ3

›

›

›
curlBl

∆t

›

›

›

4

L4pΩq
`
ε

µ

›

›

›
∆Bl

∆t

›

›

›

2

L2pΩq

˙

ď
ρ

2∆t

›

›u0
∆t

›

›

2

L2pΩq
`

1

2µ∆t

›

›B0
∆t

›

›

2

L2pΩq
`
Tc2ρ

2∆t
}g}2L8pΩq `

Tc2

2σµ∆t
}curlJ}2L8pΩq `

ε

8µ3

›

›curlB0
∆t

›

›

4

L4pΩq

`
ε

4µ3

›

›curlB0
∆t

›

›

4

L4pΩq
`

ρ

2η

›

›u0
∆t

›

›

2

L2pΩq
`

k´1
ÿ

l“1

„

ρ

η

›

›

›
ul∆t

›

›

›

2

L2pΩq
`
ρ

2

›

›

›
ul∆t

›

›

›

2

L2pΩq
`

2c2µ

ε

›

›

›
ul∆t

›

›

›

2

L2pΩq

`
1

2σµ

›

›

›
Bl

∆t

›

›

›

2

L2pΩq



. (56)

Hence, from the discrete Gronwall estimate (c.f. [36, (1.67)]), we infer the bound

›

›

›
uk∆t

›

›

›

2

L2pΩq
`∆t

k
ÿ

l“1

ˆ

›

›

›
∇ul∆t

›

›

›

2

L2pΩq
`

›

›

›
∆ul∆t

›

›

›

2

L2pΩq

˙

`

›

›

›
Bk

∆t

›

›

›

2

L2pΩq

`∆t
k
ÿ

l“1

ˆ

›

›

›
curlBl

∆t

›

›

›

2

L2pΩq
`

›

›

›
curlBl

∆t

›

›

›

4

L4pΩq
`

›

›

›
∆Bl

∆t

›

›

›

2

L2pΩq

˙

ď cpu0, B0, ρ, ρ, c, g, J, σ, µ, ν, ε, η, T q @k “ 1, ...,
T

∆t
(57)

uniformly in ∆t and k.

4 Limit passage with respect to ∆t Ñ 0

We now want to pass to the limit in the time discretization, i.e. ∆t Ñ 0. To do so, we introduce
piecewise constant as well as piecewise affine interpolants of our functions defined so far only in the
discrete time points. Namely, for the time-independent quantities fk∆t defined for k “ 0, ..., T∆t we set

f∆tptq :“

ˆ

t

∆t
´ pk ´ 1q

˙

fk∆t `

ˆ

k ´
t

∆t

˙

fk´1
∆t for pk ´ 1q∆t ă t ď k∆t, k “ 1, ...,

T

∆t
, (58)

f∆tptq :“ fk∆t for pk ´ 1q∆t ă t ď k∆t, k “ 0, ...,
T

∆t
, (59)

f
1

∆tptq :“ fk´1
∆t for pk ´ 1q∆t ă t ď k∆t, k “ 1, ...,

T

∆t
. (60)

We will use the same notation also for the interpolation of the discrete momentum function pρuqk∆t :“
ρk∆tu

k
∆t, k “ 0, ..., T∆t . Regarding the solution to the transport equation on r0, T s, we glue together the
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already time-dependent functions χ∆t,k, defined on the intervals rpk ´ 1q∆t, k∆ts. More specifically,
we set

χ∆tptq :“ χ∆t,kptq for pk ´ 1q∆t ă t ď k∆t, k “ 1, ...,
T

∆t
.

By the construction of χ∆t,k in Proposition 3.1 it holds χ∆t P Cpr0, T s;L
p
locpR

3qq, 1 ď p ă 8, and χ∆t

is the solution to

´

ż T

0

ż

R3

χ∆tBtΘdxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

´

χ∆tΠ
1

∆t

¯

¨∇Θ dxdt (61)

for any Θ P Dpr0, T qˆR3q. According to the transport theory by DiPerna and Lions, c.f. [10, Thoerem
III.2], this solution is unique and can be represented by

χ∆tpt, xq :“ χ0

ˆ

X
Π
1

∆t
∆t pt; 0, xq

˙

for t P r0, T s. (62)

Here X
Π
1

∆t
∆t denotes the unique solution to the initial value problem

BX
Π
1

∆t
∆t ps; t, xq

Bt
“ Π

1

∆t

ˆ

t,X
Π
1

∆t
∆t ps; t, xq

˙

, X
Π
1

∆t
∆t ps; s, xq “ x, x P R3, s, t P r0, T s, (63)

given by the Carathéodory theorem [36, Theorem 1.45]. By the uniqueness of this solution, the function

X
Π
1

∆t
∆t can also be written as a composition of the mappings (44). In particular, by the corresponding

property of those functions (c.f. Remark 3.1), the mapping

xÑ X
Π
1

∆t
∆t ps; t, xq, s, t P r0, k∆ts (64)

is an isometry from R3 to R3. The a-priori estimate (57) translates to the following uniform bounds
for the above defined interpolants

}u∆t}L8p0,T ;L2pΩqq ` }u∆t}L8p0,T ;L2pΩqq `
›

›u1∆t
›

›

L8p0,T ;L2pΩqq
ď c, (65)

}u∆t}L2p0,T ;H2,2pΩqq ` }u∆t}L2p0,T ;H2,2pΩqq `
›

›u1∆t
›

›

L2p0,T ;H2,2pΩqq
ď c, (66)

}B∆t}L8p0,T ;L2pΩqq `
›

›B∆t

›

›

L8p0,T ;L2pΩqq
`

›

›

›
B
1

∆t

›

›

›

L8p0,T ;L2pΩqq
ď c, (67)

}B∆t}L2p0,T ;H2,2pΩqq `
›

›B∆t

›

›

L2p0,T ;H2,2pΩqq
`

›

›

›
B
1

∆t

›

›

›

L2p0,T ;H2,2pΩqq
ď c, (68)

}curlB∆t}L4pp0,T qˆΩq `
›

›curlB∆t

›

›

L4pp0,T qˆΩq
`

›

›

›
curlB

1

∆t

›

›

›

L4pp0,T qˆΩq
ď c. (69)

These bounds allow us to find functions

B P

"

b P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 2pΩq
˘

: b ¨ n|BΩ “ 0

*

(70)

u P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 2
0 pΩq

˘

(71)

such that for selected non-relabeled subsequences

B
1

∆t, B∆t, B∆t
˚
á B in L8

`

0, T ;L2 pΩq
˘

, B
1

∆t, B∆t, B∆t á B in L2
`

0, T ;H2,2 pΩq
˘

, (72)

u1∆t, u∆t, u∆t
˚
á u in L8

`

0, T ;L2 pΩq
˘

, u1∆t, u∆t, u∆t á u in L2
`

0, T ;H2,2 pΩq
˘

. (73)

The equality between the weak limits of B
1

∆t, B∆t, B∆t and u1∆t, u∆t, u∆t is given by Lemma 7.1.
The inclusions (70) and (71) follow from the fact that u∆tptq P V

2
0 for any t P r0, T s and B∆tptq P Y

k

for any t P ppk ´ 1q∆t, k∆ts. Moreover, for the discretized external forces J∆t and g∆t it follows

J∆t Ñ J in Lppp0, T q ˆ Ωq, g∆t Ñ g in Lppp0, T q ˆ Ωq @1 ď p ă 8,
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directly from their definition in (40), c.f. [36, Lemma 8.7].

4.1 Characteristic function

The fact that it still holds Π
l´1
∆t “ 0 whenever suppχl∆t

Ş

Ω “ H and (53), (54), (57) in the other
case imply the condition (209) from Lemma 7.2 and in particular we get the existence of a function
Π P L8p0, T ;W 1,8

loc pR
3qq such that

Π
1

∆t
˚
á Π in L8

´

0, T ;W 1,8
loc pR

3q

¯

, Πpt, xq “ vptq ` wptq ˆ x, v, w P L8p0, T q. (74)

In (119) we will characterize the limit function Π more specifically through the density, the velocity
and the characteristic function, similar to (35). By the relations (61) and (63) we also have the
conditions (210) and (211) of Lemma 7.2 which, in combination with Remark 7.1, implies that

χ∆t Ñ χ in C
`

r0, T s;Lp
`

R3
˘˘

@1 ď p ă 8, χpt, xq “ χ0

`

XΠpt; 0, xq
˘

, (75)

X
Π
1

∆t
∆t Ñ XΠ in C

`

r0, T s ˆ r0, T s;Cloc

`

R3
˘˘

, (76)

where χ and XΠ are the unique solutions of

´

ż T

0

ż

R3

χBtΘdxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

pχΠq ¨∇Θ dxdt @Θ P D
`

r0, T q ˆ R3
˘

, (77)

dXΠps; t, xq

dt
“ Π

`

t,XΠps; t, xq
˘

, XΠps; s, xq “ x (78)

respectively. From (75) it also follows that

χ∆t, χ
1
∆t Ñ χ in C

`

r0, T s;Lp
`

R3
˘˘

@1 ď p ă 8, (79)

which is obtained in the same way as the similar statement in [36, Lemma 8.7].

4.2 Induction equation

In the passage to the limit of the induction equation (83) below, we consider test functions from the
space Y pχ, T q which are curl-free in a neighbourhood of the solid region in the limit. To see that this
is possible, let us choose an arbitrary γ ą 0 and denote by Sγpχptqq and Sγpχptqq the γ-neighbourhood
and the “γ-kernel” of Spχptqq respectively, i.e.

Sγpχptqq :“
 

x P R3 : dist px, Spχptqqq ă γ
(

, Sγpχptqq :“ tx P Spχptqq : dist px, BSpχptqqq ą γu .

From the uniform convergence (76) of X
Π
1

∆t
∆t and the relation (62) between X

Π
1

∆t
∆t and the characteristic

functions χ∆t, it follows the existence of some δpγq ą 0 such that

Sγpχptqq Ă S pχ∆tptqq Ă Sγ pχptqq @t P r0, T s, ∆t ă δpγq. (80)

Now we fix an arbitrary function b P Y pχ, T q, hence there exists some γ ą 0 such that b is curl-free in
Sγpχptqq for any t P r0, T s. Then, by the second inclusion in (80), b is also curl-free in S pχ∆tptqq for
any ∆t ă δpγq. In other words,

bptq PW k @t P ppk ´ 1q∆t, k∆ts, k “ 1, ...,
T

∆t
, ∆t ă δpγq, (81)

so we may use bptq as a test function for the discrete induction equation.
Next we take an arbitrary interval I Ă p0, T q and an arbitrary open ball U Ă R3 such that I ˆ U Ă
QSpχ, T q

Ş

Q. The first inclusion in (80) implies

curlB “ lim
∆tÑ0

curlB∆t “ 0 a.e. in I ˆ U and thus in QSpχ, T q
č

Q. (82)
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Now we take b P Y pχ, T q and ∆t ą 0 sufficiently small such that (81) holds true. For fixed k we test
the discrete induction equation (34) by bptq, t P ppk´ 1q∆t, k∆ts, integrate over this interval and then
sum up over all k to see

ż T

0

ż

Ω
BtB∆t ¨ b dxdt “

T
∆t
ÿ

k“1

ż k∆t

pk´1q∆t

ż

Ω

Bk
∆t ´B

k´1
∆t

∆t
¨ b dxdt

“

ż T

0

ż

Ω

ˆ

´
1

σµ
curlB∆t ` u∆t ˆB

1

∆t `
1

σ
J∆t ´

ε

µ2
|curlB∆t|

2curlB∆t

˙

¨ curlb dxdt

´

ż T

0

ż

Ω
εcurl

`

curlB∆t

˘

: curl pcurlbq dxdt. (83)

An interpolation between L8pL2q and L2pL8q together with the estimates (65)–(68) leads to the
bounds

ε
1
4 }u∆t}L4p0,T ;L4pΩqq ď c, ε

1
4

›

›

›
B
1

∆t

›

›

›

L4p0,T ;L4pΩqq
ď c. (84)

Together with the bound (69) this implies the existence of functions z P L
4
3 pp0, T q ˆ Ωq and z1, z2 P

L2pp0, T q ˆ Ωq such that for chosen subsequences

ε
ˇ

ˇcurlB∆t

ˇ

ˇ

2
curlB∆t á εz in L

4
3 pp0, T q ˆ Ωq , (85)

u∆t ˆB
1

∆t á z1 in L2 pp0, T q ˆ Ωq , (86)

curlB
1

∆t ˆB
1

∆t á z2 in L2 pp0, T q ˆ Ωq . (87)

With these convergences at hand we can pass to the limit in (83) and obtain

´

ż T

0

ż

Ω
B ¨ Btb dxdt´

ż

Ω
B0 ¨ bp0, xq dx

“

ż T

0

ż

Ω

„

´
1

σµ
curlB ` z1 `

1

σ
J ´

ε

µ2
z



¨ curlb´ εcurl pcurlBq : curl pcurlbq dxdt (88)

for all b P Y pχ, T q. The main difficulty of this section is now to identify the limit functions z1 and z2.
The limit function z does not need to be identified, as it will vanish from the equation when we pass
to the limit with εÑ 0. We first note that

z1 ¨ curlb “ 0 “ puˆBq ¨ curlb a.e. in QSpχ, T q
č

Q, (89)

z2 “ 0 “ curlB “ curlB ˆB a.e. in QSpχ, T q
č

Q, (90)

where (89) follows directly from b P Y pχ, T q and (90) follows in the same way as (82). Hence it
suffices to identify z1 and z2 in the fluid region. In order to do so, we choose an arbitrary interval

I “ pa, dq Ă p0, T q and an arbitrary open ball U Ă Ω with I ˆ U Ă QF pχ, T q :“ QzQ
S
pχ, T q. In

(81) we have seen that, for any sufficiently small ∆t ą 0, functions from DpI ˆUq are admissible test
functions in (83). By a density argument, (83) may thus also be tested by any b P L4pa, d;H2,2

0 pUqq,
extended by 0 outside of pa, dqˆU . This, together with the L4pp0, T qˆΩq-bound of u∆t in (84), leads
to the dual estimate

›

›

›

›

B∆tp¨q ´B∆tp¨ ´∆tq

∆t

›

›

›

›

L
4
3 pa,d;H´2,2pUqq

“ }BtB∆t}
L

4
3 pa,d;H´2,2pUqq

ď c. (91)

From this estimate, we can now derive a corresponding estimate for the retarded interpolant B
1

∆t.
Indeed, for arbitrary b P L4pa`∆t, d;H2,2

0 pUqq, we infer

ż d

a`∆t

ż

U

B
1

∆tptq ´B
1

∆tpt´∆tq

∆t
¨ bptq dxdt

“

ż d´∆t

a

ż

U

B∆tptq ´B∆tpt´∆tq

∆t
¨ bpt`∆tq dxdt ď c}b}

L4pa`∆t,d;H2,2
0 pUqq

, (92)
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so it holds
›

›

›

›

›

B
1

∆tp¨q ´B
1

∆tp¨ ´∆tq

∆t

›

›

›

›

›

L
4
3 pa`∆t,d;H´2,2pUqq

ď c. (93)

This gives us the conditions for the discrete Aubin-Lions Lemma [11, Theorem 1], which yields

B
1

∆t Ñ B in L2pI;H´1,2pUqq. (94)

By the arbitrary choice of I ˆ U this is sufficient to infer

z1 “ uˆB a.e. in QF pχ, T q, z2 “ curlB ˆB a.e. in QF pχ, T q. (95)

4.3 Continuity equation

We test the discrete continuity equation (32) by ρk∆t, apply Young’s inequality and sum over all
k “ 1, ..., l, l P

 

1, ..., T∆t
(

which leads to

}ρl∆t}
2
L2pΩq ` 2∆t

l
ÿ

k“1

ε}∇ρk∆}2L2pΩq ď }ρ0}
2
L2pΩq @l P

"

1, ...,
T

∆t

*

. (96)

Hence, ρ∆t is bounded in L2p0, T ;H1,2pΩqq and we can find ρ P L2p0, T ;H1,2pΩqq such that for a
chosen subsequence

ρ∆t á ρ in L2
`

0, T ;H1,2pΩq
˘

. (97)

Further, from the continuity equation we derive the dual estimates

›

›

›

›

ρ∆tp¨q ´ ρ∆tp¨ ´∆tq

∆t

›

›

›

›

L2p0,T ;pH1,2pΩqq˚q

ď c,

›

›

›

›

ρ1∆tp¨q ´ ρ
1
∆tp¨ ´∆tq

∆t

›

›

›

›

L2p∆t,T ;pH1,2pΩqq˚q

ď c (98)

by the same arguments as the bounds (91) and (93) for the discrete time derivatives of B∆t and B
1

∆t.
In particular, we can again apply the discrete Aubin-Lions Lemma [11, Theorem 1] to infer

ρ∆t, ρ
1
∆t Ñ ρ in Lq

`

0, T ;Lq
`

R3
˘˘

@1 ď q ă 8, ρ ď ρ ď ρ a.e. in r0, T s ˆ R3, (99)

where the limit function ρ has been extended by ρ outside of Ω. Now, we sum the discrete equation

(32) over all k “ 1, ..., T∆t and pass to the limit by means of (97) and (99). This yields

´

ż T

0

ż

Ω
ρBtψ dxdt´

ż

Ω
ρ0ψp0, xq dx “

ż T

0

ż

Ω
pρuq ¨∇ψ ` ερ∆ψ dxdt @ψ P Dpr0, T q ˆ Ωq. (100)

Our next goal is to show strong convergence of ∇ρ∆t, which is required for the limit passage in the
momentum equation. The first bound in (98) further implies that for a subsequence

Btρ∆t
˚
á Btρ in L2

´

0, T ;
`

H1,2pΩq
˘˚
¯

. (101)

Consequently, the limit of the discrete continuity equation can also be expressed in the form

ż τ

0

ż

Ω
Btρψ ´ pρuq ¨∇ψ ` ε∇ρ ¨∇ψ dxdt “ 0 @ψ P L2p0, T ;H1,2pΩqq, τ P r0, T s. (102)

We now test (102) by ρ and compare it to the corresponding relation (96) on the ∆t–level, which will
yield convergence of }∇ρ∆t}L2pp0,τq;L2pΩqq and thus the desired strong convergence of ∇ρ∆t. Indeed,
testing (102) by ρ we obtain

}ρpτq}2L2pΩq ` 2ε

ż τ

0

ż

Ω
|∇ρ|2 dxdt “ }ρp0q}2L2pΩq . (103)
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Further, the inequality (96) can be rewritten in the form

}ρ∆tpl∆t´ γq}
2
L2pΩq ` 2ε

ż l∆t´γ

0

ż

Ω
|∇ρ∆t|

2 dxdt ď }ρ0}
2
L2pΩq @γ P r0,∆tq, l P

"

1, ...,
T

∆t

*

. (104)

Any τ P p0, T s can be expressed as τ “ l∆t ´ γ for some l P
 

1, ..., T∆t
(

and γ P r0,∆tq. Thus,
subtracting (103) from (104) and making use of the strong convergence (99), we infer that for a
further subsequence

lim
∆tÑ0

ż τ

0

ż

Ω
|∇ρ∆t|

2 dxdt ď

ż τ

0

ż

Ω
|∇ρ|2 dxdt for a.a. τ P p0, T s. (105)

On the other hand, for each such τ the weak lower semicontinuity of norms guarantees us the existence
of z3 “ z3pτq P R such that for another subsequence

}∇ρ∆t}
2
L2p0,τ ;L2pΩqq Ñ z2

3 ě }∇ρ}
2
L2p0,τ ;L2pΩqq . (106)

Combining (105) and (106), we infer that for almost all τ P r0, T s there exists a subsequence for which

}∇ρ∆t}L2p0,τ ;L2pΩqq Ñ }∇ρ}L2p0,τ ;L2pΩqq .

In combination with the weak convergence (97) and a diagonal argument, this implies the desired
relation

∇ρ∆t Ñ ∇ρ in L2
`

0, τ ;L2pΩq
˘

for a.a. τ P r0, T s. (107)

Next, we show that the limit density satisfies a regularized and integrated version of the renormalized
continuity equation (29), which will be significant in the limit passage with respect to εÑ 0. To this
end we take an arbitrary smooth and convex function β on rρ, ρs and test (32) by β1pρk∆tq for any

k “ 1, ..., T∆t . By the convexity of β and the fact that div u1∆t “ 0 this yields

ż τ

0

ż

Ω
Btρ∆tβ

1pρ∆tq dx “∆t

˜

l´1
ÿ

k“1

ż

Ω

ρk∆t ´ ρ
k´1
∆t

∆t
β1pρk∆tq dx

¸

` γ

ż

Ω

ρl∆t ´ ρ
l´1
∆t

∆t
β1pρl∆tq dx

“´

ż τ

0

ż

Ω
u1∆t ¨∇ρ∆tβ

1pρ∆tq dxdt´

ż τ

0

ż

Ω
ε∇ρ∆t∇β1pρ∆tq dxdt

“´

ż τ

0

ż

Ω
ε |∇ρ∆t|

2 β2pρ∆tq dxdt ď 0 (108)

for any τ P p0, T s, and l P
 

1, ..., T∆t
(

, γ P r0,∆tq chosen such that τ “ l∆t´ γ. Since the derivatives
of β are bounded, the strong L2pH1,2q-convergence of ρ∆t (c.f. (99), (107)) implies

β2pρ∆tq
˚
á β2pρq in L8pp0, T q ˆ Ωq,

β1pρ∆tq Ñ β1pρq in L2
`

0, τ ;H1,2pΩq
˘

for a.a. τ P r0, T s.

Using this in combination with (101), we can pass to the limit in (108) and obtain the desired relation
ż

Ω
βpρpτqq dx´

ż

Ω
βpρ0q dx “

ż τ

0

ż

Ω
Btβpρq dxdt “ ´

ż τ

0

ż

Ω
εβ2pρq|∇ρ|2 dxdt ď 0 for a.a. τ P r0, T s.

(109)

4.4 Momentum equation

We test the discrete momentum equation (33) by φptq for φ P L4p0, T ;V 2
0 pΩqq and sum the result over

all k. Using the Hölder inequality and the Gagliardo–Nirenberg interpolation inequality we estimate

ż T

0

ż

Ω
ε p∇u∆t∇ρ∆tq ¨ φ dxdt

ďε}∇u∆t}L4p0,T ;L2pΩqq}∇ρ∆t}L2p0,T ;L2pΩqq}φ}L4p0,T ;L8pΩqq

ďcε }u∆t}
1
2

L2p0,T ;H2,2pR3qq
}u∆t}

1
2

L8p0,T ;L2pR3qq
}∇ρ∆t}L2p0,T ;L2pΩqq}φ}L4p0,T ;L8pΩqq ď c.
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This allows us to infer the dual estimate
›

›

›

›

›

pρuq∆tp¨q ´ pρuq∆tp¨ ´∆tq

∆t

›

›

›

›

›

L
4
3

´

0,T ;pV 2
0 pΩqq

˚
¯

“ }Btpρuq∆t}
L

4
3

´

0,T ;pV 2
0 pΩqq

˚
¯ ď c. (110)

We can now mimick the compactness results for the time-dependent incompressible Navier-Stokes
equations, c.f. [31, Theorem 2.4]. The estimate (110) gives us the conditions for the discrete Aubin-
Lions Lemma [11, Theorem 1], which allows us to deduce

P
´

pρuq∆t

¯

Ñ P pρuq in L2
´

0, T ;
`

V 2
0 pΩq

˘˚
¯

,

where P denotes the orthogonal projection of L2pΩq onto the space V 0pΩq of weakly divergence-free
L2–functions. This, in combination with the L4pp0, T q ˆ Ωq–bound (84) of u∆t, leads to

u∆t Ñ u in Lqpp0, T q ˆ Ωq @1 ď q ă 4. (111)

With this strong convergence at hand, we derive the following limit version of the momentum equation

´

ż T

0

ż

Ω
ρu ¨ Btφ dxdt´

ż

Ω
ρ0u0 ¨ φp0, xq dx

“

ż T

0

ż

Ω
ρpub uq : ∇φ´ 2νDpuq : ∇φ´ 1

η
ρχ pu´Πq ¨ φ

` ρg ¨ φ`
1

µ
pcurlB ˆBq ¨ φ´ ε p∇u∇ρq ¨ φ´ ε∆u ¨∆φ dxdt (112)

for any φ P Dpr0, T qˆΩq with divφ “ 0, where Π was defined in (74). Here we further used the strong
convergence (107) of ∇ρ∆t and the relations (87), (90), (95) which identify the magnetic term in the
limit equation. Now it only remains to identify Π. We start by remarking that

ż

R3

ρptqχptqdx ě ρ|S| ą 0 for a.a. t P r0, T s. (113)

We pick an arbitrary ball BR Ă R3 with radius R ą 0, centered at 0. The weak-˚ convergence (73)
of u1∆t, the uniform convergence (79) of the characteristic function and the strong convergence (99) of
the density yield that

ż

R3

ρ∆tχ
1
∆t u

1
∆t dx

˚
á

ż

R3

ρχ u dx in L8 pp0, T q ˆBRq ,

ż

R3

ρ∆tχ
1
∆t x dxÑ

ż

R3

ρχ x dx in Lp pp0, T q ˆBRq @1 ď p ă 8,

ż

R3

ρ∆tχ
1
∆t dxÑ

ż

R3

ρχ dx in Lp pp0, T q ˆBRq @1 ď p ă 8.

Combining the latter convergence with the bounds (52), (113) away from 0 we further see

1
ş

R3 ρ∆tχ
1
∆t dx

Ñ
1

ş

R3 ρχ dx
in Lp pp0, T q ˆBRq @1 ď p ă 8,

1
ş

R3 ρ∆tχ
1
∆t dx

˚
á

1
ş

R3 ρχ dx
in L8 pp0, T q ˆBRq

and altogether
ş

R3 ρ∆tχ
1
∆tu

1
∆t dx

ş

R3 ρ∆tχ
1
∆t dx

“ puGq
1

∆t
˚
á puGqrχ,ρ,us :“

ş

R3 ρχu dx
ş

R3 ρχ dx
in L8 pp0, T q ˆBRq (114)

as well as
ş

R3 ρ∆tχ
1
∆tx dx

ş

R3 ρ∆tχ
1
∆t dx

“ a1∆t Ñ arχ,ρs :“

ş

R3 ρχx dx
ş

R3 ρχ dx
in Lp pp0, T q ˆBRq @1 ď p ă 8. (115)
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Next, we consider the matrix

I
1

∆t “

ż

R3

ρ∆tχ
1
∆t

`

|x´ a1∆t|
2id´

`

x´ a1∆t
˘

b
`

x´ a1∆t
˘˘

dx,

for which similar arguments together with the already proven convergence (115) lead to

I
1

∆t Ñ Irχ,ρs :“

ż

R3

ρχ
`

|x´ arχ,ρs|
2id´

`

x´ arχ,ρs
˘

b
`

x´ arχ,ρs
˘˘

dx in Lp pp0, T q ˆBRq (116)

for any 1 ď p ă 8. From this and the bound of the eigenvalues of I
1

∆tptq away from 0, c.f. (54), it is
possible to derive

pI
1

∆tq
´1 Ñ

`

Irχ,ρs
˘´1

in Lppp0, T q ˆBRq @1 ď p ă 8. (117)

This, together with arguments similar to the ones used for (114), yields

ω1∆t “
´

I
1

∆t

¯´1
ż

R3

ρ∆tχ
1
∆t

`

x´ a1∆t
˘

ˆ u1∆t dx

á ωrχ,ρ,us :“I´1
rχ,ρs

ż

R3

ρχ
``

x´ arχ,ρs
˘

ˆ u
˘

dx in Lppp0, T q ˆBRq @1 ď p ă 8. (118)

Now (114), (115) and (118) imply

Π “ puGqrχ,ρ,us ` ωrχ,ρ,us ˆ px´ arχ,ρsq “: Πrχ,ρ,us. (119)

4.5 Energy inequality

In order to derive an energy inequality for the limit system, we first derive a slightly modified version
of the discrete energy inequality (50). More precisely, we again add the estimates (48) and (49) and
sum over all l “ 1, ..., k, k P

 

1, ..., T∆t
(

. Since each τ P p0, T s can be written in the form τ “ k∆t´ γ

for some k P
 

1, ..., T∆t
(

and γ P r0,∆tq, this leads to

1

2

›

›

a

ρ∆tpτqu∆tpτq
›

›

2

L2pΩq
`

ż τ

0

ż

Ω
2ν |∇u∆tpt, xq|

2 dxdt`

ż τ

0

ż

Ω
ε |∆u∆tpt, xq|

2 dxdt

`
1

2µ

›

›B∆tpτq
›

›

2

L2pΩq
`

ż τ

0

ż

Ω

ε

µ3

ˇ

ˇcurlB∆tpt, xq
ˇ

ˇ

4
dxdt`

ż τ

0

ż

Ω

ε

µ

ˇ

ˇ∆B∆tpt, xq
ˇ

ˇ

2
dxdt

`

ż τ

0

ż

Ω

1

σµ2

ˇ

ˇcurlB∆tpt, xq
ˇ

ˇ

2
dxdt

ď
1

2

›

›

?
ρ0u0

›

›

2

L2pΩq
`

1

2µ
}B0}

2
L2pΩq `

ż τ

0

ż

Ω
´

1

η
ρ1∆tpt, xqχ∆tpt, xq

´

u1∆tpt, xq ´Π
1

∆tpt, xq
¯

¨ u∆tpt, xq

` ρ1∆tpt, xqg∆tpt, xq ¨ u∆tpt, xq `
1

µ

´

curlB
1

∆tpt, xq ˆB
1

∆tpt, xq
¯

¨ u∆tpt, xq

`
1

µ

´

u∆tpt, xq ˆB
1

∆tpt, xq
¯

¨ curlB∆tpt, xq `
1

σ
J∆tpt, xq ¨ curlB∆tpt, xq dxdt` c

”

∆t` p∆tq
1
2

ı

.

On the right-hand side of this inequality we can pass to the limit by using in particular the strong
convergence (111) of u∆t and the relations (87), (90), (95) which identify the limits of the mixed terms.
Using the weak lower semicontinuity of norms on the left-hand side, we end up with

ż

Ω

1

2
ρpτq|upτq|2 `

1

2µ
|Bpτq|2 dx`

ż τ

0

ż

Ω
2ν |∇upt, xq|2 ` ε|∆upt, xq|2 ` ε

µ3
|zpt, xq|

4
3

`
ε

µ
|∆Bpt, xq|2 `

1

σµ2
|curlBpt, xq|2 `

1

η
ρpt, xqχpt, xq

ˇ

ˇupt, xq ´Πrχ,ρ,uspt, xq
ˇ

ˇ

2
dxdt

ď

ż

Ω

1

2
ρ0|u0|

2 `
1

2
|B0|

2 dx`

ż τ

0

ż

Ω
ρpt, xqgpt, xq ¨ upt, xq `

1

σ
Jpt, xq ¨ curlBpt, xq dxdt (120)
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for almost all τ P r0, T s. Here, the mixed terms canceled each other by the identity

pcurlB ˆBq ¨ u “ ´puˆBq ¨ curlB,

and the term involving u´Πrχ,ρ,us was rewritten by means of the relation

ż τ

0

ż

Ω
ρpt, xqχpt, xq

`

upt, xq ´Πrχ,ρ,uspt, xq
˘

¨Πrχ,ρ,uspt, xq dxdt “ 0, τ P r0, T s,

c.f. [4, Lemma 3.1]. In summary, we have shown

Proposition 4.1. Let all the assumptions of Theorem 1.1 be satisfied and let ε ą 0. Assume in
addition that

ρ0 P H
1,2pΩq, u0, B0 P H

2,2pΩq.

Then, there exist

ρε P
 

ψ P L2
`

0, T ;H1,2pΩq
˘

: ρ ď ψ ď ρ a.e. in Q
(

, (121)

χε P C
`

r0, T s;Lp
`

R3
˘˘

, 1 ď p ă 8, zε P L
4
3 pp0, T q ˆ Ωq, (122)

Bε P

"

b P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;H2,2pΩq
˘

: div b “ 0 in Q,

curl b “ 0 in QSpχε, T q
č

Q, b ¨ n|BΩ “ 0

*

, (123)

uε P L
8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 2
0 pΩq

˘

(124)

such that

´

ż T

0

ż

R3

χεBtΘ dxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

`

χεΠrχε,ρε,uεs
˘

¨∇Θ dxdt, (125)

´

ż T

0

ż

Ω
ρεBtψ dxdt´

ż

Ω
ρ0ψp0, xq dx “

ż T

0

ż

Ω
pρεuεq ¨∇ψ ` ερε∆ψ dxdt, (126)

´

ż T

0

ż

Ω
ρεuε ¨ Btφ dxdt´

ż

Ω
ρ0u0 ¨ φp0, xq dx “

ż T

0

ż

Ω
ρεpuε b uεq : ∇φ´ 2νDpuεq : ∇φ

´
1

η
ρεχε

`

uε ´Πrχε,ρε,uεs
˘

¨ φ` ρεg ¨ φ

`
1

µ
pcurlBε ˆBεq ¨ φ´ ε p∇uε∇ρεq ¨ φ

´ ε∆uε ¨∆φ dxdt, (127)

´

ż T

0

ż

Ω
Bε ¨ Btb dxdt´

ż

Ω
B0 ¨ bp0, xq dx “

ż T

0

ż

Ω

„

´
1

σµ
curlBε ` uε ˆBε `

1

σ
J ´

ε

µ2
zε



¨ curl b

´ ε curl pcurlBεq : curl pcurl bq dxdt (128)

for all Θ P Dpr0, T q ˆR3q, ψ, φ P Dpr0, T q ˆΩq and all b P Y pχ, T q. Moreover, these functions satisfy
the energy inequality

ż

Ω

1

2
ρεpτq|uεpτq|

2 `
1

2µ
|Bεpτq|

2 dx`

ż τ

0

ż

Ω
2ν |∇uεpt, xq|2 ` ε|∆uεpt, xq|2 `

ε

µ3
|zεpt, xq|

4
3

`
ε

µ
|∆Bεpt, xq|

2
`

1

σµ2
|curlBεpt, xq|

2
`

1

η
ρεpt, xqχεpt, xq

ˇ

ˇuεpt, xq ´Πrχε,ρε,uεspt, xq
ˇ

ˇ

2
dxdt

ď

ż

Ω

1

2
ρ0|u0|

2 `
1

2
|B0|

2 dx`

ż τ

0

ż

Ω
ρεpt, xqgpt, xq ¨ uεpt, xq `

1

σ
Jpt, xq ¨ curlBεpt, xq dxdt (129)
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for almost all τ P r0, T s and the characteristic function χε is connected to the solution XΠrχε,ρε,uεs of
the initial value problem

dXΠrχε,ρε,uεsps; t, xq

dt
“ Πrχε,ρε,uεs

`

t,XΠrχε,ρε,uεsps; t, xq
˘

, XΠrχε,ρε,uεsps; s, xq “ x (130)

by

χpt, xq “ χ0

`

XΠrχε,ρε,uεspt; 0, xq
˘

. (131)

5 Limit passage with respect to ε Ñ 0

From the energy inequality (129) we infer the existence of a constant c ą 0, independent of ε, such
that

}uε}L8p0,T ;L2pΩqq ` }Bε}L8p0,T ;L2pΩqq ` }uε}L2p0,T ;H1,2pΩqq ` }Bε}L2p0,T ;H1,2pΩqq ď c, (132)

ε
1
2 }∆uε}L2pp0,T qˆΩq ` ε

3
4 }zε}

L
4
3 pp0,T qˆΩq

` ε
1
2 }∆Bε}L2pp0,T qˆΩq ď c. (133)

The continuity equation on the ε-level tested by ρε, c.f. (103), yields

ε }∇ρε}2L2pp0,T qˆΩq ď c. (134)

Further, from the lower bound (113) for the total mass of the solid we deduce, similarly to (53) and
(54), the estimates

ˇ

ˇarχε,ρεsptq
ˇ

ˇ ď c,
ˇ

ˇ

ˇ
puGqrχε,ρε,uεs ptq

ˇ

ˇ

ˇ
ď c }uεptq}L2pΩq ,

ˇ

ˇωrχε,ρε,uεsptq
ˇ

ˇ ď c }uεptq}L2pΩq , (135)

v ¨
`

Irχε,ρεsptqv
˘

ě c|v|2 @v P R3, (136)

for the quantities arχε,ρεs, puGqrχε,ρε,uεs, ωrχε,ρε,uεs and Irχε,ρεs, introduced in (114)–(118), with c inde-
pendent of t and ε and therefore

}Πrχε,ρε,uεsptq}L8pΩq ď c}uεptq}L2pΩq for a.a. t P r0, T s. (137)

By this, the bounds in (121) for the density and the uniform bounds (132)–(134) we find functions

ρ P L8pp0, T q ˆ Ωq, Π P L8
´

0, T ;W 1,8
loc

`

R3
˘

¯

, (138)

B P

"

b P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 1pΩq
˘

: b ¨ n|BΩ “ 0

*

(139)

u P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 1
0 pΩq

˘

(140)

such that for chosen subsequences

uε
˚
á u in L8

`

0, T ;L2pΩq
˘

, uε á u in L2
`

0, T ;H1,2pΩq
˘

, (141)

Bε
˚
á B in L8

`

0, T ;L2pΩq
˘

, Bε á B in L2
`

0, T ;H1,2pΩq
˘

, (142)

ρε
˚
á ρ in L8 p0, T ;L8pΩqq , Πrχε,ρε,uεs

˚
á Π in L8

´

0, T ;W 1,8
loc

`

R3
˘

¯

(143)

and

ε∇ρε, ε∆uε, ε∆Bε Ñ 0 in L2pp0, T q ˆ Ωq, εzε Ñ 0 in L
4
3 pp0, T q ˆ Ωq. (144)

5.1 Characteristic function

The transport equation (125), the equation (130) for the associated characteristics and the estimates
(135) correspond directly to the conditions for Lemma 7.2 and Remark 7.1, which therefore yield

X
Πrχε,ρε,uεs
ε Ñ XΠ in Cpr0, T s ˆ r0, T s;Cloc

`

R3q
˘

, (145)

χε Ñ χ in C
`

r0, T s;Lp
`

R3
˘˘

@1 ď p ă 8, χpt, xq “ χ0

`

XΠpt; 0, xq
˘

, (146)
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where χ and XΠ are the unique solutions to

´

ż T

0

ż

R3

χBtΘdxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

pχΠq ¨∇Θ dxdt @Θ P D
`

r0, T q ˆ R3
˘

, (147)

dXΠps; t, xq

dt
“ Π

`

t,XΠps; t, xq
˘

, XΠps; s, xq “ x. (148)

5.2 Induction equation

Interpolating the bounds for Bε in L8p0, T ;L2pΩqq and L2p0, T ;L6pΩqq we see that Bε is also bounded

in L3pp0, T q ˆ Ωq. Hence, using the Hölder inequality, we find z4, z5 P L
6
5 pp0, T q ˆ Ωq such that for

selected subsequences

uε ˆBε á z4 in L
6
5 pp0, T q ˆ Ωq , curlBε ˆBε á z5 in L

6
5 pp0, T q ˆ Ωq . (149)

Further, for any γ ą 0 we again find, by (145) and (146), some δpγq ą 0 such that

Sγpχptqq Ă Spχεptqq Ă S
γ
2 pχptqq Ă Sγpχptqq @t P r0, T s, ε ă δpγq. (150)

We fix arbitrary b P Y pχ, T q, so b is curl-free in Sγpχptqq for some γ ą 0 and all t P r0, T s. Now (150)
implies that b is also curl-free in a γ

2 -neighbourhood of the solid region on the ε-level for all sufficiently
small ε ą 0. In particular it holds b P Y pχε, T q for all such ε. Thus, letting εÑ 0 in (128), we obtain

´

ż T

0

ż

Ω
B ¨ Btb dxdt´

ż

Ω
B0 ¨ bp0q dx “

ż T

0

ż

Ω

„

´
1

σµ
curlB ` z4 `

1

σ
J



¨ curlb dxdt (151)

for any b P Y pχ, T q, where the regularization terms vanished as stated in (144). It remains to identify
z4 and z5. On the solid domain, we can argue as in Section 4.2 and see from the fact that Bε is
curl-free in QSpχε, T q

Ş

Q and (150) that

z4 ¨ curlb “ 0 “ puˆBq ¨ curlb, curlB ˆB “ curlB “ 0 “ z5 a.e. in QSpχ, T q
č

Q (152)

for b P Y pχ, T q. In the fluid region we again consider an arbitrary set of the form I ˆ U Ă QF pχ, T q,
where I Ă p0, T q is an interval and U Ă Ω is a ball. For any sufficiently small ε ą 0 the first inclusion
in (150) implies that, for all functions ψ P DpIq and b P DpUq extended by 0 outside of I and U , the
product ψb is an admissible test function in the induction equation (128) on the ε-level. This, together
with the uniform estimates (132), (133) leads to the dual estimate

›

›

›

›

Bt

ż

U
Bε ¨ bdx

›

›

›

›

L
4
3 pIq

ď c. (153)

This allows us to apply the Arzelà-Ascoli theorem and deduce

Bε Ñ B in Cweak

`

I;L2pUq
˘

and thus in Lp
`

I;H´1,2pUq
˘

@1 ď p ă 8. (154)

Hence, writing

ż

I

ż

U
pcurlBε ˆBεq ¨ b dxdt “

ż

I

ż

U
div pBε bBεq ¨ b´∇

ˆ

1

2
|Bε|

2

˙

¨ b dxdt, b P DpI ˆ Uq, (155)

which allows us, after integration by parts, to shift the derivatives to the test function b, we conclude
the desired identities

z4 “ uˆB a.e. in QF pχ, T q, z5 “ curlB ˆB a.e. in QF pχ, T q. (156)
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5.3 Continuity equation

We test the continuity equation (126) by ψΦ, where ψ P Dp0, T q and Φ P DpΩq, to find that

›

›

›

›

Bt

ż

Ω
ρεΦdx

›

›

›

›

L2p0,T q

ď c.

This again gives us the conditions for the Arzelà-Ascoli theorem, from which we obtain

ρε Ñ ρ in Cweak

`

r0, T s;L2pΩq
˘

and thus in Lp
´

0, T ;
`

H1,2pΩq
˘˚
¯

@1 ď p ă 8.

Combining this with the weak convergence (141) of uε and the fact that ε∇ρε converges to 0 in
L2pp0, T q ˆ Ωq according to (144), we may pass to the limit in (126) and obtain

´

ż T

0

ż

Ω
ρBtψdxdt´

ż

Ω
ρ0ψp0, xq dx “

ż T

0

ż

Ω
pρuq ¨∇ψ dxdt @ψ P Dpr0, T q ˆ Ωq. (157)

Since ρ P L2pp0, T qˆΩq, the transport theorem by DiPerna and Lions [10] implies that ρ also satisfies,
in the sense of distributions, the renormalized continuity equation (29) for any bounded β P C1pRq
vanishing near 0 and such that also pβ1p1` | ¨ |qq´1 is bounded. As ρ is bounded from above and away
from 0, we can actually choose βpzq “ zlnpzq. Using the same choice in the corresponding relation
(109) on the ε-level, letting εÑ 0 and comparing the results, we conclude

lim
εÑ0

ż

Ω
ρεlnpρεpτqq dx ď

ż

Ω
ρlnpρpτqq dx for a.a. τ P r0, T s.

Following e.g. [15, Theorem 10.20], this implies, by the strict convexity of z ÞÑ zlnpzq, that

ρε Ñ ρ a.e. in p0, T q ˆ Ω.

In particular it follows

ρε Ñ ρ in Lp
`

p0, T q ˆ R3
˘

@1 ď p ă 8, ρ ď ρ ď ρ a.e. in r0, T s ˆ R3, (158)

where ρ has again been extended by ρ outside of Ω.

5.4 Momentum equation

In order to pass to the limit in the momentum equation we further need strong convergence of the
velocity field. We test the momentum equation (127) on the ε-level by ψΦ, where ψ P Dp0, T q and
Φ P DpΩq with divΦ “ 0. This yields

›

›

›

›

Bt

ż

Ω
P pρεuεq ¨ Φdx

›

›

›

›

L
4
3 p0,T q

ď c, (159)

where P again denotes the orthogonal projection of L2pΩq onto V 0pΩq. The estimate (159) leads,
under exploitation of the Arzelà-Ascoli theorem, to

P pρεuεq Ñ P pρuq in Cweakpr0, T s;L
2pΩqq and thus in L2

´

0, T ;
`

V 1
0 pΩq

˘˚
¯

.

By the same arguments as in the proof of the classical compactness results for the incompressible
Navier-Stokes equations, c.f. [31, Theorem 2.4], this yields strong convergence of uε in L2pp0, T q ˆ Ωq
and in particular

ρεuε b uε á ρub u in L2
´

0, T ;L
3
2 pΩq

¯

. (160)

Moreover, we can use the strong convergence (146) of the characteristic function and the strong
convergence (158) of the density to identify the limit function Π from (143) as Π “ Πrχ,ρ,us just as in
(119). Combining this with (149), (152), (156) for the identification of the magnetic term and (160),
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we can pass to the limit in (127). The regularization terms again vanish as stated in (144) and so we
end up with

´

ż T

0

ż

Ω
ρu ¨ Btφ dxdt´

ż

Ω
ρ0u0 ¨ φp0, xq dx

“

ż T

0

ż

Ω
ρpub uq : ∇φ´ 2νDpuq : ∇φ´ 1

η
ρχ

`

u´Πrχ,ρ,us
˘

¨ φ` ρg ¨ φ`
1

µ
pcurlB ˆBq ¨ φ dxdt

(161)

for any φ P Dpr0, T q ˆ Ωq with divφ “ 0.

5.5 Energy inequality

We drop the (nonnegative) regularization terms from the left-hand side of the energy inequality (129).
Using weak lower semicontinuity of norms, we then let ε tend to 0 and obtain

ż

Ω

1

2
ρpτq|upτq|2 `

1

2
|Bpτq|2 dx`

ż τ

0

ż

Ω
2ν |∇upt, xq|2 ` 1

σµ2
|curlBpt, xq|2

`
1

η
ρpt, xqχpt, xq

ˇ

ˇ

`

upt, xq ´Πrχ,ρ,uspt, xq
˘ˇ

ˇ

2
dxdt

ď

ż

Ω

1

2
ρp0q|up0q|2 `

1

2
|Bp0q|2 dx`

ż τ

0

ż

Ω
ρpt, xqgpt, xq ¨ upt, xq `

1

σ
Jpt, xq ¨ curlBpt, xq dxdt (162)

for almost all τ P r0, T s. Altogether we have shown

Proposition 5.1. Let all the assumptions of Theorem 1.1 be satisfied and let η ą 0. Assume in
addition that

ρ0,η P H
1,2pΩq, u0,η, B0,η P H

2,2pΩq.

Then there exist

ρη P
 

ψ P L8 pp0, T q ˆ Ωq : ρ ď ψ ď ρ a.e. in Q
(

, (163)

χη P C
`

r0, T s;Lp
`

R3
˘˘

, 1 ď p ă 8, (164)

Bη P
!

b P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;H1,2pΩq
˘

: div b “ 0 in Q,

curl b “ 0 in QSpχη, T q
č

Q, b ¨ n|BΩ “ 0
)

, (165)

uη P L
8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 1
0 pΩq

˘

(166)

such that

´

ż T

0

ż

R3

χηBtΘdxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

`

χηΠrχη ,ρη ,uηs
˘

¨∇Θ dxdt, (167)

´

ż T

0

ż

Ω
ρηBtψdxdt´

ż

Ω
ρ0,ηψp0, xq dx “

ż T

0

ż

Ω
pρηuηq ¨∇ψ dxdt, (168)

´

ż T

0

ż

Ω
ρηuη ¨ Btφ dxdt´

ż

Ω
ρ0,ηu0,η ¨ φp0, xq dx “

ż T

0

ż

Ω
ρηpuη b uηq : ∇φ´ 2νDpuηq : ∇φ

´
1

η
ρηχη

`

uη ´Πrχη ,ρη ,uηs
˘

¨ φ` ρηg ¨ φ

`
1

µ
pcurlBη ˆBηq ¨ φ dxdt, (169)

´

ż T

0

ż

Ω
Bη ¨ Btb dxdt´

ż

Ω
B0,η ¨ bp0, xq dx “

ż T

0

ż

Ω

„

´
1

σµ
curlBη ` uη ˆBη `

1

σ
J



¨ curl b dxdt

(170)
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for all Θ P Dpr0, T q ˆR3q, ψ, φ P Dpr0, T q ˆΩq and all b P Y pχ, T q. Moreover, these functions satisfy
the energy inequality

ż

Ω

1

2
ρηpτq|uηpτq|

2 `
1

2µ
|Bηpτq|

2 dx`

ż τ

0

ż

Ω
2ν |∇uηpt, xq|2

`
1

σµ2
|curlBηpt, xq|

2
`

1

η
ρηpt, xqχηpt, xq

ˇ

ˇuηpt, xq ´Πrχη ,ρη ,uηspt, xq
ˇ

ˇ

2
dxdt

ď

ż

Ω

1

2
ρ0,η|u0,η|

2 `
1

2
|B0,η|

2 dx`

ż τ

0

ż

Ω
ρηpt, xqgpt, xq ¨ uηpt, xq `

1

σ
Jpt, xq ¨ curlBηpt, xq dxdt (171)

for almost all τ P r0, T s and the characteristic function χη is connected to the solution XΠrχη,ρη,uηs of
the initial value problem

dXΠrχη,ρη,uηsps; t, xq

dt
“ Πrχη ,ρη ,uηs

´

t,XΠrχη,ρη,uηsps; t, xq
¯

, XΠrχη,ρη,uηsps; s, xq “ x (172)

by

χpt, xq “ χ0

´

XΠrχη,ρη,uηspt; 0, xq
¯

. (173)

6 Limit passage with respect to η Ñ 0

6.1 Uniform bounds and convergent terms

In order to prove Theorem 1.1, we assume in this section further that the regularized initial data we
had chosen on the ∆t-level and the ε-level satisfy

ρ0,η Ñ ρ0 in L2pΩq, u0,η Ñ u0 in L2pΩq, B0,η Ñ B0 in L2pΩq, (174)

where ρ0, u0, B0 denote the initial data in Theorem 1.1. The energy inequality (171) implies the
existence of a constant c ą 0, independent of η, such that

}uη}L8p0,T ;L2pΩqq ` }Bη}L8p0,T ;L2pΩqq ` }uη}L2p0,T ;H1,2pΩqq ` }Bη}L2p0,T ;H1,2pΩqq ďc, (175)

1

η
1
2

›

›χη
`

uη ´Πrχη ,ρη ,uηs
˘›

›

L2p0,T ;L2pΩqq
ďc, (176)

and as in the corresponding estimates (135)–(137) on the ε-level, we deduce that
ˇ

ˇarχη ,ρηsptq
ˇ

ˇ ď c,
ˇ

ˇ

ˇ
puGqrχη ,ρη ,uηs ptq

ˇ

ˇ

ˇ
ď c }uηptq}L2pΩq ,

ˇ

ˇωrχη ,ρη ,uηsptq
ˇ

ˇ ď c }uηptq}L2pΩq , (177)

v ¨
`

Irχη ,ρηsptqv
˘

ě c|v|2 @v P R3, (178)
›

›Πrχη ,ρη ,uηspt, ¨q
›

›

W 1,8pΩq
ď c }uηptq}L2pΩq for a.a. t P r0, T s (179)

with c independent of η and t. The above bounds, together with the uniform bounds for the density
in (163), allow us to find functions

ρ P L8pp0, T q ˆ Ωq, (180)

B P

"

b P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 1pΩq
˘

: b ¨ n|BΩ “ 0

*

, (181)

u P L8
`

0, T ;L2pΩq
˘

č

L2
`

0, T ;V 1
0 pΩq

˘

(182)

such that for extracted subsequences

uη
˚
á u in L8

`

0, T ;L2pΩq
˘

, uη á u in L2
`

0, T ;H1,2pΩq
˘

, (183)

Bη
˚
á B in L8

`

0, T ;L2pΩq
˘

, Bη á B in L2
`

0, T ;H1,2pΩq
˘

, (184)

ρη
˚
á ρ in L8 p0, T ;L8pΩqq , Πrχη ,ρη ,uηs

˚
á Πrχ,ρ,us in L8

´

0, T ;W 1,8
loc

`

R3
˘

¯

. (185)

The identification of the limit function Πrχ,ρ,us “ puGqrχ,ρ,us ` ωrχ,ρ,us ˆ px ´ arχ,ρsq in (185) can be
obtained as in the derivation of (119), under the exploitation of the strong convergence of χη in (187)
and ρη in (190) below.
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6.2 Characteristic function

The transport equation (167), the equation (172) for the corresponding characteristics and the bounds
(177) allow us to once more apply Lemma 7.2 and Remark 7.1, which yield

X
Πrχη,ρη,uηs
η Ñ XΠrχ,ρ,us in Cpr0, T s ˆ r0, T s;Cloc

`

R3q
˘

, (186)

χη Ñ χ in C
`

r0, T s;Lp
`

R3
˘˘

@1 ď p ă 8, χpt, xq “ χ0

`

XΠpt; 0, xq
˘

, (187)

where XΠrχ,ρ,us and χ denote the unique solutions of

´

ż T

0

ż

R3

χBtΘdxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

`

χΠrχ,ρ,us
˘

¨∇Θ dxdt @Θ P D
`

r0, T q ˆ R3
˘

, (188)

dXΠrχ,ρ,usps; t, xq

dt
“Πrχ,ρ,us

`

t,XΠrχ,ρ,usps; t, xq
˘

, XΠrχ,ρ,usps; s, xq “ x.

(189)

6.3 Continuity equation

For the strong convergence of the density we can apply classical compactness results for the incom-
pressible Navier-Stokes equations, c.f. [31, Theorem 2.4, Remark 2.4 3)], and infer that

ρη Ñ ρ in C
`

r0, T s;Lp
`

R3
˘˘

@1 ď p ă 8, (190)

with ρ once again extended by ρ outside of Ω. Passing to the limit in (168), we see that ρ is the
solution to

´

ż T

0

ż

Ω
ρBtψdxdt´

ż

Ω
ρ0ψp0, xq dx “

ż T

0

ż

Ω
pρuq ¨∇ψ dxdt @ψ P Dpr0, T q ˆ Ωq. (191)

6.4 Induction equation

In the induction equation, all the approximation terms already vanished during the last limit passage.
Thus the limit passage with respect to η Ñ 0 works by the same arguments as before. Indeed, we can
first use the uniform convergence (186) to check that for any γ ą 0 there exists δpγq ą 0 such that

Sγpχptqq Ă Spχηptqq Ă S
γ
2 pχptqq Ă Sγpχptqq @t P r0, T s, η ă δpγq. (192)

Then we can argue as in Section 5.2 to conclude

curlB “ 0 a.e. in QSpχ, T q
č

Q, (193)

and

uε ˆBε á uˆB in L
6
5 pp0, T q ˆ Ωq , curlBε ˆBε á curlB ˆB in L

6
5 pp0, T q ˆ Ωq . (194)

Exploiting further the convergence (174) of the initial data, we can pass to the limit in (170) and
obtain

´

ż T

0

ż

Ω
B ¨ Btb dxdt´

ż

Ω
B0 ¨ bp0, xq dx “

ż T

0

ż

Ω

„

´
1

σµ
curlB ` uˆB `

1

σ
J



¨ curlb dxdt (195)

for all b P Y pχ, T q.
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6.5 Momentum equation

Let now T 1 be given by (28), i.e. T 1 denotes the first time at which the rigid body Spχp¨qq collides
with BΩ or, if this never happens in r0, T s, then T 1 “ T . Since the initial distance between the body
and BΩ is positive by (15), the uniform convergence (186) implies T 1 ą 0 and, for any T0 ă T 1, there
is some γ ą 0 such that

dist
´

BΩ, Spχptqq
¯

ą γ @t P r0, T0s. (196)

Our first goal in this section is to show that the limit velocity indeed coincides with a rigid velocity
field in the solid region. To this end we consider an arbitrary compact set I ˆ U Ă QSpχ, T 1q with an
interval I Ă p0, T 1q and some ball U Ă Ω. From the first inclusion in (192) we see that for sufficiently
small η it holds

I ˆ U Ă QSpχη, T
1q
č

Q ô χη “ 1 on I ˆ U.

By the estimate (176) this means

uη ´Πrχη ,ρη ,uηs Ñ 0 in L2pI ˆ Uq,

and as I ˆ U was chosen arbitrarily we get, as desired,

u “ Πrχ,ρ,us a.e. on QSpχ, T 1q. (197)

Next, we show that the projection term vanishes in the limit of the momentum equation (169). We
fix some arbitrary test function φ P T pχ, T 1q, i.e. φ P Dpr0, T q ˆ Ωq, div φ “ 0 and there exists σ ą 0
such that

Dpφq “ 0 in

"

pt, xq P QpT 1q : dist
´

pt, xq, Q
S
pχ, T 1q

¯

ă σ

*

, (198)

c.f. (16). We choose T0 ă T 1 such that

suppφ Ă r0, T0s ˆ Ω (199)

and a corresponding γ ą 0 according to (196). By (198) φ P T pχ, T 1q, there is some 0 ă σ ă γ such
for all t P r0, T0s the function φpt, ¨q coincides with a rigid velocity field φSpt, ¨q on Sσpχptqq Ă Ω. As

χηpt, xq “ 0 for x P ΩzS pχηptqq ,

the inclusion (192) implies that for sufficiently small η ą 0 it holds

ż T 1

0

ż

Ω
´

1

η
ρηχη

`

uη ´Πrχη ,ρη ,uηs
˘

¨ φ dxdt “

ż T 1

0

ż

Ω
´

1

η
ρηχη

`

uη ´Πrχη ,ρη ,uηs
˘

¨ φS dxdt “ 0, (200)

where the second equality is a consequence of the fact that Πrχη ,ρη ,uηspt, ¨q is the orthogonal projection
of uηpt, ¨q onto rigid velocity fields on Spχηptqq, c.f. [4, Lemma 3.1].

We further note that by the uniform bounds for uη in (175) there exists a function z6 P L
2p0, T ;L

3
2 pΩqq

such that for a chosen subsequence it holds

ρηuη b uη á z6 in L2
´

0, T ;L
3
2 pΩq

¯

.

Combining this with the convergence (174) of the initial data, the strong convergence (190) of the
density, the weak convergence (194) of the magnetic term and (200), we can pass to the limit in (169)
and obtain

´

ż T 1

0

ż

Ω
ρu ¨ Btφ dxdt´

ż

Ω
ρ0u0 ¨ φp0, xq dx “

ż T 1

0

ż

Ω
z6 : ∇φ´ 2νDpuq : ∇φ

` ρg ¨ φ`
1

µ
pcurlB ˆBq ¨ φ dxdt (201)
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for any φ P T pχ, T 1q. It remains to identify z6. To this end it is sufficient to show that

ż T0

0

ż

Ω
ρη|uη|

2 dxdtÑ

ż T0

0

ż

Ω
ρ|u|2 dxdt (202)

for arbitrary 0 ă T0 ă T 1. Indeed, as in the proof of the classical compactness result [31, Theorem
2.4], this leads to strong convergence of uη in L2pp0, T0q ˆ Ωq and in particular to

z6 “ ρub u a.e. on p0, T0q ˆ Ω. (203)

Since for any arbitrary but fixed test function φ P T pχ, T 1q we can find T0 ă T 1 such that the inclusion
(199) holds true, (203) suffices to identify z6 in the momentum equation (201). The proof of (202)
is achieved by following mostly [4] and using further arguments from [14]. More precisely, for fixed
0 ă T0 ă T 1, we choose γsup “ γsuppT0q ą 0 as the supremum over all γ which satisfy (196). Then for
any 0 ď γ ď

γsup

4 , t P r0, T0s and r P r0, 1s we define

Kr
t,γpΩq :“

 

vptq P V r
0 pΩq : Dpvptqq “ 0 in D1 pSγpχptqqq

(

(204)

together with the orthogonal projection

P rγ ptq : Hr,2pΩq Ñ Kr
t,γpΩq. (205)

By the triangle inequality we estimate, for arbitrary ψ P Dp0, T0q, r P p0, 1q and γ P p0,
γsup

4 s,

ˇ

ˇ

ˇ

ˇ

ż T0

0

ż

Ω
ψρη|uη|

2 dxdt´

ż T0

0

ż

Ω
ψρ|u|2 dxdt

ˇ

ˇ

ˇ

ˇ

ďρ }ψ}L8p0,T0q
}uη}L2p0,T0;L2pΩq

›

›P rγuη ´ uη
›

›

L2p0,T0;L2pΩq
`

ˇ

ˇ

ˇ

ˇ

ż T0

0

ż

Ω
ψ
`

ρηuη ¨ P
r
γuη ´ ρu ¨ P

r
γu

˘

dxdt

ˇ

ˇ

ˇ

ˇ

` ρ }ψ}L8p0,T0q
}u}L2p0,T0;L2pΩq

›

›P rγu´ u
›

›

L2p0,T0;L2pΩq
. (206)

Keeping r P p0, 1q and γ P p0,
γsup

4 s fixed, we let first η tend to 0. During this procedure, the second
term on the right-hand side of (206) vanishes, c.f. Lemma 7.3 in the Appendix. Subsequently, by
letting γ tend to 0, also the first and the last term on the right-hand side of (206) vanish, c.f. Lemma
7.4 in the Appendix. Finally, replacing ψ by a suitable sequence of cut-off functions on r0, T0s, we
infer the convergence (202) and hence the identity (203).

6.6 Proof of the main result

Summarizing the results from Sections 6.1–6.5, we can now finish the proof of Theorem 1.1. The
regularities of χ and ρ in (18) and (19) follow from the choice of the spaces in (187) and (190). As

D
`

Πrχ,ρ,us
˘

“ 0,

the properties of u in (20) follow from (182) and the relation (197) between u and Πrχ,ρ,us, while
the properties of B in (21) are given by (181) and (193). The transport equations (22) and (23)
were shown in (188) and (191), where in (188) the function Πrχ,ρ,us can indeed be replaced by u

due to the relation (197) between these two functions and the fact that χ “ 0 outside of QSpχ, T 1q.
The momentum equation (24) is satisfied according to (201), where z6 was identified in (203). The
induction equation (25) was shown to hold true in (195). The energy inequality (26) follows by
dropping the nonnegative projection term in the energy inequality (171) on the η-level and exploiting
the weak lower semicontinuity of norms. Finally, by the group property [10, (76)], which is satisfied
by the solution XΠrχ,ρ,us to the initial value problem (189), it holds that

Spχptqq “
 

x P R3 : χpt, xq “ 1
(

“
 

XΠp0; t, xq : x P S
(

“ XΠp0; t, Sq

“ XΠ
`

s; t,
 

XΠp0; s, Sq
(˘

“ XΠps; t, Spχpsqqq

for all s, t P r0, T 1s. By (186), XΠ is the (pointwise) limit of a sequence of isometries and hence an
isometry itself. Thus, the identity (27) follows for the choice X “ XΠ, which concludes the proof.
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7 Appendix

In the limit passage with respect to ∆tÑ 0 the following variant of [36, Theorem 8.9] is used, which
guarantees that the weak limits of different interpolants of the same discrete functions coincide.

Lemma 7.1. Let f∆t, f∆t, f
1

∆t be piecewise affine and, respectively, piecewise constant interpolants of
discrete functions fk∆t, k “ 0, ..., T∆t defined as in (58)–(60). Assume further that

f∆t
˚
á f in L8p0, T ;L2pΩqq, f∆t

˚
á f in L8p0, T ;L2pΩqq f

1

∆t
˚
á f

1
in L8p0, T ;L2pΩqq

Then it holds

f “ f “ f
1
. (207)

Proof
The proof, which is performed by comparing the limit of the functions f∆t, f

1

∆t to the one of f∆t

in the pairing with piecewise constant in time functions respectively, can be found in the proof of
[36, Theorem 8.9]. For the convenience of the reader, we restate the argument here: Without loss
of generality, we only consider the subsequences with indices ∆t “ 2´lT , l P N. We pick L P N,
k1 ă k2 ă 2L and ψ P L2pΩq and consider functions of the form χrτk1,τk2sψ, where τ :“ 2´LT ą 0
and χrτk1,τk2s denotes the characteristic function of the interval rτk1, τk2s. By [36, Proposition 1.36],
linear combinations of such functions are dense in L2p0, T ;L2pΩqq. For ∆t ď τ , i.e. l ě L, we calculate

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

Ω

`

f∆t ´ f∆t

˘

¨ χrτk1,τk2sψ dxdt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

τk2
∆t
ÿ

k“
τk1
∆t
`1

ż k∆t

pk´1q∆t

ż

Ω

„

´

fk∆t ´ f
k´1
∆t

¯ t´ k∆t

∆t



¨ ψ dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´
∆t

2

τk2
∆t
ÿ

k“
τk1
∆t
`1

ż

Ω

´

fk∆t ´ f
k´1
∆t

¯

¨ ψ dx

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´
∆t

2

ż

Ω
pf∆tpτk2q ´ f∆tpτk1qq ¨ ψ dx

ˇ

ˇ

ˇ

ˇ

ď c∆t, (208)

with c independent of ∆t, since f∆t is bounded uniformly in L8p0, T ;L2pΩqq. We conclude

f∆t ´ f∆t á 0 in L2p0, T ;L2pΩqq,

which implies the first identity from (207). Using the same kind of test function again, we also see

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

Ω

´

f∆t ´ f
1

∆t

¯

¨ χrτk1,τk2sψ dxdt

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

Ω

`

f∆t ´ f∆t

˘

¨ χrτk1,τk2sψ dxdt`

ż τk2

τk2´∆t

ż

Ω
f
τk2
∆t

∆t ¨ ψ dxdt´

ż τk1`∆t

τk1

ż

Ω
f
τk1
∆t

∆t ¨ ψ dxdt

ˇ

ˇ

ˇ

ˇ

ďc∆t` 2∆t}f∆t}L8p0,T ;L2pΩqq}ψ}L2pΩq ď c∆t,

exploiting in the first inequality the estimate we already know from (208). This implies f “ f
1

and
hence the second identity in (207).

l

For the limit passage in the transport equation we use the following result, which is a variant of [37,
Lemma 5.2, Corollary 5.2, Corollary 5.3]:

Lemma 7.2. Assume that for any n P N, the function

Πn : r0, T s ˆ R3 Ñ R3, Πnpt, xq :“ vnptq ` wnptq ˆ x, vn, wn P L
8p0, T q,

satisfies

}vn}L8p0,T q , }wn}L8p0,T q ď c (209)
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with c independent of n. Denote further by Xn the Carathéodory solution of

dXnps; t, xq

dt
“ Πn pt,Xnps; t, xqq , Xnps; s, xq “ x, x P R3, (210)

and by χnpt, xq “ χ0pXnpt; 0, xqq the corresponding solution to

´

ż T

0

ż

R3

χnBtΘdxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

pχnΠnq ¨∇Θ dxdt @Θ P Dpr0, T q ˆ R3q. (211)

Then, passing to subsequences if necessary, it holds that

Xn Ñ X in C
`

r0, T s ˆ r0, T s;Cloc

`

R3
˘˘

, (212)

χn Ñ χ in Cpr0, T s;LplocpR
3qq @1 ď p ă 8 (213)

with X denoting the unique solution of

dXps; t, xq

dt
“ Π pt,Xps; t, xqq , Xps; s, xq “ x, (214)

χ the one of

´

ż T

0

ż

R3

χBtΘdxdt´

ż

R3

χ0Θp0, xq dx “

ż T

0

ż

R3

pχΠq ¨∇Θ dxdt @Θ P Dpr0, T q ˆ R3q (215)

and with Π given by

Πn
˚
á Π in L8p0, T ;W 1,8

loc pR
3qq, Πpt, xq “ vptq ` wptq ˆ x, v, w P L8p0, T q. (216)

Moreover,
χpt, xq “ χ0 pXpt; 0, xqq . (217)

Proof
First we note that the existence of the solution Xn to (210) and the fact that χn is the solution to
(211) are guaranteed by [10, Theorem 3.2]. The relation (216) is clear by (209). The convergence
(213) and (215) then immediately follow from [31, Theorem 2.5]. From the Gronwall inequality, (209)
and (210) it is possible to check that for each compact K Ă R3

tXnps; t, ¨qu is relatively compact in CpKq for all fixed ps, tq P r0, T s ˆ r0, T s

and further to show equicontinuity of the mapping

ps, tq ÞÑ Xnps; t, ¨q

from r0, T sˆr0, T s to CpKq. This gives us the conditions for a generalized version of the Arzelà-Ascoli
theorem, [44, A1(24i)], which allows us to infer (212). The fact that Xps; ¨, xq is the Carathéodory
solution to the initial value problem (214) then follows by writing (210) in a variational form and
passing to the limit with the help of (212) and (216). Since this solution is unique, it follows that the
solution of (215) is given by the right-hand side of (217). But since we already determined the unique
solution of (215) as the function χ given by (213), the equation (217) holds true, which concludes the
proof.

l

Remark 7.1. If χ0 has compact support in R3, the relation χnpt, xq “ χ0pXnpt; 0, xqq allows us to
improve the local convergence (213) to

χn Ñ χ in Cpr0, T s;LppR3qq @1 ď p ă 8.
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In the limit passage with respect to η Ñ 0, we exploit the following two results, Lemma 7.3 and
Lemma 7.4, which are versions of [14, Lemma 3.4] (c.f. [4, Lemma 3.8] for a related result) and [4,
Lemma 3.6, Lemma 3.7] respectively. For the convenience of the reader we outline the proofs of these
lemmata below.

Lemma 7.3. Let 0 ă T0 ă T 1 be fixed, where T 1 is defined by (28). Let further γsup “ γsuppT0q ą 0
be the supremum of all γ which satisfy (196). Then, for any γ P p0,

γsup
4 s and any 0 ă r ă 1, it holds

ˇ

ˇ

ˇ

ˇ

ż T0

0

ż

Ω
ψ
`

ρηuη ¨ P
r
γuη ´ ρu ¨ P

r
γu

˘

dxdt

ˇ

ˇ

ˇ

ˇ

Ñ 0 for η Ñ 0

Proof
The argument of the proof is the same as in [14, Lemma 3.4]. Then we test the momentum equation
(169) on the η-level by test functions ψ̃φ, where φ P DpΩq satisfies Dpφq “ 0 in S

γ
4 pχpτqq and

ψ̃ P DpJpτqq for an open neighbourhood Jpτq of τ in r0, T0s, which, by the inclusion (192) and the
fact that XΠrχ,ρ,us P Cpr0, T s ˆ r0, T s;ClocpR3qq (c.f. (186)), can be chosen sufficiently small such that

S
γ
8 pχηptqq Ă S

γ
4 pχpτqq and thus Dpφq “ 0 in S

γ
8 pχηptqq

for all t P Jpτq and all sufficiently small η ą 0. By the same arguments as in (200) it then follows that,
for all such η, the term 1

ηρηχηpuη´Πrχη ,ρη ,uηsq vanishes from the momentum equation (169) tested by

any ψ̃φ as chosen above. This leads to the dual estimate

›

›

›

›

Bt

ż

Ω
ρηuη ¨ φ dx

›

›

›

›

L
4
3 pJpτqq

ď c,

which implies, since K0
τ, γ

4
pΩq

Ş

DpΩq is dense in K0
τ, γ

2
pΩq, that

ρηuη Ñ ρu in Cweak

´

Jpτq;
´

K0
τ, γ

2
pΩq

¯˚¯

and thus in L2
´

Jpτq;
´

Kr
τ, γ

2
pΩq

¯˚¯

. (218)

From this it is easy to see that the assertion holds on Jpτq and, by the compactness of r0, T0s, also on
r0, T0s.

l

Lemma 7.4. Let T0 be as in Lemma 7.3. For any fixed r P p0, 1q it holds

piq lim
γÑ0

lim
ηÑ0

›

›P rγuη ´ uη
›

›

L2p0,T0;L2pΩqq
“ 0,

piiq lim
γÑ0

›

›P rγu´ u
›

›

L2p0,T0;L2pΩqq
“ 0.

For the proof of Lemma 7.4 we introduce some additional notation: To this end we remark that by
the second inclusion in (192), we find some ηsup “ ηsuppγsupq ą 0 such that

dist
´

BΩ, Spχηptqq
¯

ą
γsup

2
@η P p0, ηsups, t P r0, T0s,

where γsup “ γsuppT0q is as in Lemma 7.3. For any 0 ď γ ď
γsup

4 , 0 ă η ď ηsup, t P r0, T0s and r P r0, 1s
we define, corresponding to (204) and (205), the space

Kr
t,γ,ηpΩq :“

 

vptq P V r
0 pΩq : Dpvptqq “ 0 in D1 pSγpχηptqqq

(

and the associated orthogonal projection

P rγ,ηptq : Hr,2pΩq Ñ Kr
t,γ,ηpΩq.

We further need the following two auxiliary results:
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Lemma 7.5. There are constants
γsup

4 ą γ0 ą 0 and c ą 0 such that for all t P r0, T0s, γ P r0, γ0s and
η P p0, ηsups the trace inequality

}fpt, ¨q}2L2pBSγpχηptqqq
ď c }fpt, ¨q}

1
2

L2pSγpχηptqqq
}fpt, ¨q}

3
2

H1,2pSγpχηptqqq
(219)

holds true for functions fpt, ¨q P H1,2pSγpχηptqqq and the Poincaré-type estimate

}fpt, ¨q}2L2pSγpχηptqqzSpχηptqqq
ď c

´

γ }fpt, ¨q}2L2pBSpχηptqqq
` γ2 }∇fpt, ¨q}2L2pSγpχηptqqzSpχηptqqq

¯

(220)

holds true for functions fpt, ¨q P H1,2pSγpχηptqqzSpχηptqqq.

Proof
We first sketch the proof of (219). The idea is to consider, for γ0 ą 0 sufficiently small, a mapping
Φt,η on BSpχηptqq ˆ r´γ0, γ0s such that Φt,ηp¨, 0q “ id and

Φt,η pBS pχηptqq , γq “

"

tx P S pχηptqq : dist px, BS pχηptqqq “ ´γu for γ ă 0,
tx P ΩzS pχηptqq : dist px, BS pχηptqqq “ γu for γ ą 0.

We further choose Φt,η to be bi-Lipschitz continuous uniformly with respect to t and η, i.e. both Φt,η

and its inverse are Lipschitz-continuous with Lipschitz-constants independent of t and η. Such a map-
ping exists, since Spχηptqq is a Lipschitz domain by the assumptions of Theorem 1.1. For a, b P r´γ0, γ0s

we denote by St,η,ra,bs the set Φt,ηpBSpχηptqq, ra, bsq. By means of some integral transformations, we
can now transfer the problem to Spχηptqq, where we can make use of the trace inequality

}¨}L2pBSpχηptqqq
ď }¨}

L2
´

BSt,η,r´γ0,0s

¯ ď c }¨}
H

3
4 ,2

´

St,η,r´γ0,0s

¯ , (221)

c.f. [35, Theorem 2.3], with a constant c independent of t, γ and η. The estimate (221) leads to

}fpt, ¨q}2L2pBSγpχηptqqq
ď c }fpt,Φt,ηp¨, γqq}

2
L2pBSpχηptqqq

ď c }fpt, ¨q}2
H

3
4 ,2pSγpχηptqqq

@γ P r0, γ0s ,

where the constants c are independent of t, γ and η due to the uniform bi-Lipschitz continuity of Φt,η.

The inequality (219) then follows by an interpolation between L2, H
3
4
,2 and H1,2. For the proof of

(220) we also exploit the uniform bi-Lipschitz continuity of Φt,η, which implies that
ż

BSpχηptqq

ż γ

0
|fpt,Φt,ηp¨, 0qq|

2|detDΦt,ηp¨, sq|dsdS ď cγ }fpt, ¨q}2L2pBSpχηptqqq
(222)

with a constant c uniform in t, γ and η. Using Young’s inequality we can therefore estimate

}fpt, ¨q}2L2pSt,η,r0,γsq
´ cγ }fpt, ¨q}2L2pBSpχηptqqq

ď

ż

BSpχηptqq

ż γ

0
|fpt,Φt,ηp¨, sqq|

2
|detDΦt,ηp¨, sq| dsdS ´

ż

BSpχηptqq

ż γ

0
|fpt,Φt,ηp¨, 0qq|

2|detDΦt,ηp¨, sq|dsdS

ď2

ż

BSpχηptqq

ż γ

0
p|fpt,Φt,ηp¨, sqq| ´ |fpt,Φt,ηp¨, 0qq|q

2
|detDΦt,ηp¨, sq| dsdS ` cγ }fpt, ¨q}

2
L2pBSpχηptqqq

.

(223)

Making use of the uniform bi-Lipschitz continuity of Φt,η once more and applying Jensen’s inequality,
we may further estimate

ż

BSpχηptqq

ż γ

0
p|fpt,Φt,ηp¨, sqq| ´ |fpt,Φt,ηp¨, 0qq|q

2
|detDΦt,ηp¨, sq| dsdS

ďc

ż

BSpχηptqq

ż γ

0

ˆ
ż s

0
|∇fpt,Φt,ηp¨, s̃qq| ds̃

˙2

|detDΦt,ηp¨, sq| dsdS ď cγ2

ż

St,η,r0,γs

|∇fpt, yq|2dy.

Applying this to the first term on the right-hand side of (223), we infer (220).
l

The second auxiliary result we require for the proof of Lemma 7.4 is the following variant of [4, Lemma
3.3]:
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Lemma 7.6. Let γ0 denote the constant from Lemma 7.5. Let further, for t P r0, T0s, γ P r0, γ0s and
η P p0, ηsups, the functions wptq P H1,2pΩzS

γ
pχηptqqq, pptq P L

2pΩzS
γ
pχηptqqq denote the solution to

the Stokes problem

´∆wpt, ¨q `∇ppt, ¨q “ 0 on ΩzS
γ
pχηptqq, (224)

divwpt, ¨q “ 0 on ΩzS
γ
pχηptqq,

wpt, ¨q “

"

vpt, ¨q on BSγpχηptqq,
0 on BΩ,

for vptq P H1,2pSγpχηptqqq. Then there exists a constant c ą 0, independent of t, γ and η, such that

}wptq}L2pΩzS
γ
pχηptqqq

ď c }vptq}
1
4

L2pSγpχηptqqq
}vptq}

3
4

H1,2pSγpχηptqqq
.

The same estimate also holds true for the corresponding solution to the Stokes problem in the limit
η Ñ 0, i.e. with χηptq replaced by χptq.

Proof
The proof essentially follows [4, Lemma 3.3]. The idea is to consider the Stokes problem on ΩzS

γ
pχηptqq

with no-slip boundary condition and arbitrary right-hand side φptq P L2pΩzS
γ
pχηptqqq. The unique

solution w̃ptq P H2,2pΩzS
γ
pχηptqqq, p̃ptq P H

1,2pΩzS
γ
pχηptqqq to this problem can be seen to satisfy

ż

ΩzS
γ
pχηptqq

wpt, xq ¨ φpt, xq dx “ ´

ż

BpΩzS
γ
pχηptqqq

p∇w̃ptqwptqq ¨ n dx`

ż

BpΩzS
γ
pχηptqqq

p̃ptqwptq ¨ n dx,

(225)

where n denotes the outer unit normal vector on BpΩzS
γ
pχηptqqq. The arbitrary choice of φptq then

yields a dual estimate for wpt, ¨q from which, together with the trace inequality (219) and the standard
estimates for the Stokes problem (c.f. [42, Proposition 2.2]), the assertion follows.

l

Proof of Lemma 7.4
First we sketch the idea of the proof of piq, which follows [4, Lemma 3.7]. For almost all t P r0, T0s we
define vγηpt, ¨q, pγηpt, ¨q as the solution to the Stokes problem

´∆vγηpt, ¨q `∇pγηpt, ¨q “ ´∆uηpt, ¨q on ΩzS
γ
pχηptqq

divvγηpt, ¨q “ 0 on ΩzS
γ
pχηptqq

vγηpt, ¨q “

"

Πrχη ,ρη ,uηspt, ¨q on BSγpχηptqq,

0 on BΩ.

We extend vγηpt, ¨q by Πrχη ,ρη ,uηspt, ¨q in Sγpχηptqq and note that eγηpt, ¨q :“ vγηpt, ¨q ´ uηpt, ¨q solves

a Stokes problem on ΩzS
γ
pχηptqq with 0-right-hand side to which we can apply Lemma 7.6. This,

together with the estimate (176) for uη ´Πrχη ,ρη ,uηs, the trace inequality (219) and the Poincaré-type
estimate (220) leads to

lim
γÑ0

lim
ηÑ0

}eγη}L2p0,T0;Hr,2pΩqq “ 0. (226)

Since vγηpt, ¨q coincides with a rigid velocity field in Sγpχηptqq for almost all t P r0, T0s, i.e. vγηpt, ¨q P
Kr
t,γ,ηpΩq, the equation (226) implies

lim
γÑ0

lim
ηÑ0

›

›P rγ,ηuη ´ uη
›

›

L2p0,T0;Hr,2pΩqq
ď lim
γÑ0

lim
ηÑ0

}vγη ´ uη}L2p0,T0;Hr,2pΩqq “ 0.

Moreover, by the first inclusion in (192) we have Spχptqq Ă Sγpχηptqq for all sufficiently small η ą 0.
Hence, for such η, we obtain P r2γ,ηptquηpt, ¨q P K

r
t,γpΩq, which then yields

lim
γÑ0

lim
ηÑ0

›

›P rγuη ´ uη
›

›

L2p0,T0;L2pΩqq

ď lim
γÑ0

lim
ηÑ0

›

›P rγuη ´ uη
›

›

L2p0,T0;Hr,2pΩqq
ď lim

γÑ0
lim
ηÑ0

›

›P r2γ,ηuη ´ uη
›

›

L2p0,T0;Hr,2pΩqq
“ 0,

i.e. piq. The assertion piiq follows by similar arguments, c.f. also [4, Lemma 3.6].
l

34



Acknowledgements

This work has been supported by the Czech Science Foundation (GAČR) through projects 22-08633J
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