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ALGEBRA BUNDLES ON FOLIATIONS
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Abstract. For a foliation F defined on a smooth complex manifold M we intro-

duce the category of vertex operator algebra V bundles with sections provided
by vectors of elements of the space of algebraically extended V -module W -valued

differentials. An intrinsic coordinate-independent formulation for such bundles

is given. Finally, we identify the cohomology of the spaces of sections for a ver-
tex operator algebra V bundle with vertex operator algebra cohomology of the

holonomy groupoid HolpM,Fq.

AMS Classification: 53C12, 57R20, 17B69

1. Introduction: results of the paper

The theory of foliated manifolds incorporates a few main approaches [7, 8, 6, 11, 17,
18, 33]. The idea of studies of foliations cohomology, cohomology of related bundles,
and connections to to cohomology of foliated manifolds themselves was proposed in [8].
Let V ectpMq be the Lie algebra of vector fields on M . In [8] is was proven that the
Gelfand-Fuks cohomologyH˚pV ectpMqq [17] is isomorphic to the singular cohomology
H˚pEq of the space E of continuous cross sections of a certain fiber bundle E over M .
In [36, 39] they continued to use advanced topological methods of [8] for cases of more
general cosimplicial spaces of maps. In [41] it was demonstrated that the ordinary
theory of vector fields on a complex manifold M was not always the most effective
way to study cohomology of M . One has to M consider more complicated algebraic
and geometrical structures to arrive at non-trivial cohomology theories associated
to such structures. One of possible candidate for such structures is given by vertex
operator algebras with formal parameters considered as local coordinates on complex
manifolds. Vertex operator algebras [5, 12, 30] represent generalizations of ordinary
Lie algebras and constitute an essential part of conformal field theory [14, 16, 29].

The main motivation for studies of this paper is to develop a vertex operator al-
gebra approach to cohomology of auxiliary bundle defined on leaf spaces M{F and
transversal sections of foliations. The ground idea it to use well-developed and power-
ful machinery and structural and computation properties of vertex operator algebras
to cohomology of non-commutative objects attached to M{F to describe its leaves in
terms of corresponding invariants. By taking into account the standard methods of

Key words and phrases. Holonomy groupoids, fiber bundles, vertex operator algebras,

cohomology.
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2 A. ZUEVSKY

defining canonical cosimplicial object [13, 41] as well as the Čech-de Rham cohomol-
ogy construction [11], we construct in this paper in intrinsic coordinate-independent
way canonical fiber bundles associated to F on M . Our main purpose then is to
demonstrate in Lemma 2 that there exist a computational vertex operator algebra
based way to determine the cohomology of the holonomy groupoid HolpM,Fq for a
foliation F on M . Developing [8], the cohomology of foliations for a complex smooth
manifold M is expressed in terms of cohomology of a canonical complex for an aux-
iliary bundle with intrinsic action of the coboundary operator. The construction of
bundles with canonical sections defined over abstract discs on a smooth complex man-
ifold M is grounded on the structure of admissible vertex operator algebra V modules
W . Corresponding cohomology is considerd in terms of spaces of rational functions
provided by values of non-degenerate bilinear pairings on W with specified analytic
behavior, and satisfying certain symmetry properties.

The content and main results of this article are as follows. In order to give a
local description of leaves of a foliation F of an n-dimensional smooth manifold M
we use the classical approach of transversal sections as well as algebraic and analytic
properties of vertex operator algebras. We chose two sets of points on M and on a
basis U of transversal sections with corresponding domains of local coordinates. Points
on M and U are then endowed with sets of a V vertex operator algebra elements.
By taking algebraic completions W of elements W of the category W of V -modules,

we formulate the definition of spaces xW q
r , q, r ě 0, of special vectors X (exlicitely

defined in (1.1)) of W -valued rational forms combined with sets of vertex operators.

For a set of formal complex variables pz1, . . . , zsq we introduce the space xWpz1,...,zsq

of algebraic completion of the graded (with respect to Virasoro algebra LW p0q-mode)
space of differential form-valued vectors

Xpv1, z1; . . . ; vs, zsq “
“

X
`

v1, z1dzip1q; . . . ; vs, zs dzipsq
˘‰

, (1.1)

where ipjq, j “ 1, . . . , s, are cycling permutations of p1, . . . , sq starting with j, and
we denote by r.s the vector with elements given by mappings X. In cases where it
is clear which set of formal variables is used we skip pz1, . . . , zsq from notations and

denote xWpz1,...,zsq as xW . Assuming that there exists a non-degenerate bilinear pairing

p., .q on xWpz1,...,zsq, we denote by xW˚
pz1,...,zsq

the dual to xWpz1,...,zsq with respect to

p., .q. In case when elements pz1, . . . , zsq are associated to certain local coordinates of

l points pp1, . . . , plq on M , we denote xWpz1,...,zsq by xWpp1,...,plq, and when pz1, . . . , zsq
are substituted by local coordinates ptp1 , . . . , tpsq in vicinities of pp1, . . . , plq, we re-

place xWpz1,...,zsq by by xWptp1 ,...,tps q
. For fixed θ P xW˚

pz1,...,zsq
, and varying elements of

xWpz1,...,zsq we consider a vector of matrix elements of the form

ΩpXpv1, z1; . . . ; vs, zsqq “ pθ,Xpv1, z1; . . . ; vs, zsqq P Cppzqq, (1.2)

where Xpv1, z1; . . . ; vs, zsq r depends implicitly on vi P V , 1 ď i ď s. We may view

the vector Xpv1, z1; . . . ; vs, zsq of the space xW as a section of a fiber bundle over
a collection of non-intersecting punctured discs pDˆz1 , . . . , D

ˆ
zsq “ pSpeczj Cppzjqq,

1 ď j ď s, with an End
´

xWpz1,...,zsq

¯

-valued fiber Xpv1, z1; . . . ; vs, zsq P xWpz1,...,zsq. In
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this paper we explain how to construct the vertex operator algebra V -bundle men-
tioned above in the case when it carries an action of the group Autl Opnq of local
coordinates changes in vicinities of l points on M . This means that the action of
the group Autl Opnq “ Aut1 Opnq ˆ . . . ˆ Autl Opnq comes about by exponentiation
of the action of vertex operator algebra

`

Der j Opnq
˘

, 1 ď j ď l, via the action on
xWpz1,...,zsq. The representation in term of formal series in ptp1 , . . . , tplq allows us to

find the precise transformation formula for all elements of xWpp1,...,plq under the action

of Autl Opnq. We then use this formula to give an intrinsic geometric meaning to
sections Xpp1, . . . , psq of the fiber bundle in coordinate-free formulation. Namely, we
attach to each admissible vertex operator algebra module V -module W (i.e., satisfy-
ing certain properties) a fiber bundle WM on an arbitrary smooth manifold M . In
Section 4 we show that the bundle WM{F constructed is canonical, i.e., its sections

do not depend on changes ptp1 , . . . , tplq ÞÑ prtp1 , . . . ,rtplq of coordinates around points

pp1, . . . , plq on M . To keep elements of xW q
r coherent with respect to actions of the

coboundary operators ∆q
r shifting indexes q and r, we apply certain analytic restric-

tion on their characteristics provided by values of non-degenerate bilinear forms of

entries in xW q
r -vectors. The spaces xW q

r are defined on cosimplicial domains chosen
on transversal sections of F . Then we formulate definition of the category of vertex

operator algebra bundles defined on M{F . The spaces xW q
r associated to the cate-

gory W of admissible V -modules defined in Section 5. The spaces Cqr of vectors of
characteristics rΩXs of entries of vectors X form [28] a double chain-cochain com-
plex pCqr , δ

q
rq where δqrX “ rΩp∆q

rXqs. The standard definition of cohomology of this
complex is taken as cohomology of HolpM,Fq. We show that elements of the spaces
xW are invariant torsors with respect to the group of foliation preserving changes of
transversal basis and local coordinates. Though the construction of WM{F -bundle
does not depend neither on the choice of transversal basis nor on the choice of co-
ordinates on M , it does depend on the choice of vertex operator algebra elements
as well as on a particular element of the category W of admissible V -modules. The
construction involves torsors and twists of a vertex operator algebra modules by the
group of automorphisms of local coordinates transformations (independent for each
chosen point on leaves of a foliation F) of non-intersecting domains of a number of
points on M .

The plan of the paper is the following. Section 2 contains information on vertex
operator algebras, their modules and properties. In Section 3 we recall, following [16],
the standard definitions of differentials and rational functions considered on abstract
and standard discs. In Section 4 we consider the general notion of a vertex operator
algebra bundle WM{F defined on the leaf space of a foliated smooth complex manifold
M . In Section 5 the category of vertex operator algebra bundles on leafs of M{F and
transversal sections for a foliation F on M is considered.

There exists a bunch of ways to apply the construction of this paper of a vertex
operator algebra bundle on the space of leaves for a foliation defined on a smooth
manifold. The first obvious aim is to apply this study to techniques of codimen-
sion one foliations discussions reflected in [24, 9, 2, 19]. The problem of finding
non-vanishing cohomological invariants for the space of a foliation leaves, and the
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problem of distinguishing kinds of compact and non-compact leaves examples of foli-
ations (such as the Reeb foliation of the full torus), are among important questions
in the theory of foliations. The category WM{F introduced in this paper for vertex
operator algebra bundles WM{F defined on leaf spaces of foliations will be used in
establishing corresponding characteristic classes theory. One would be interested in
finding possible relations of the cohomology theory of this paper with the chiral de-
Rham complex on a smooth manifold introduced in [34]. We are also able to provide
applications of vertex operator algebra V -bundles WM{F for foliations of complex
manifolds [7, 13, 41, 14, 40] in deformation theory [35, 9, 27, 23, 31], and algebraic
topology in general. Constructions introduced in this paper will be useful for pur-
poses of cosimplitial cohomology [41] of manifolds. Vertex operator algebra bundles
on complex manifolds can be used in construction of various generalizations of the
Bott–Segal theorem [8]. Finally, we would like to mention possible connections to the
Losik’s theory of foliated manifolds. In [32] Losik has introduced a smooth structure
on the leaf space M{F of a foliation F of codimension p on a smooth manifold M
that allows to apply to M{F the same techniques as to smooth manifolds. Charac-
teristic classes for foliations as elements of the cohomology of certain bundles over the
leaf space M{F were defined. We hope to develop this approach by applying vertex
operator algebra techniques and constructions provided in this paper.

2. Vertex operator algebras and their modules

In this Section we recall definitions and basic properties of vertex operator alge-
bras and their generalized modules [5, 16, 12, 15, 16, 29, 30]. A vertex operator
algebra pV, YV ,1V , cq, of Virasoro algebra central charge c, consists of a Z-graded
complex vector space V “

À

sPZ Vpsq, with finite-dimensional grading subspaces Vpsq
dimVpsq ă 8 for each s P Z, equipped with a linear map YV : V Ñ EndpV qrrz, z´1ss,
for a formal complex parameter z and a distinguished vector 1V P V . The ver-
tex operator for v P V is given by YV pv, zq “

ř

sPZ vpsqz
´s´1, with components

pYV pvqqs “ vpsq P End pV q, with the property YV pv, zq1V “ v ` Opzq. In this paper
we apply the following restrictions on the grading of a vertex operator algebra V or
its module W . A vertex operator algebra V -module W is a vector space W equipped
with a vertex operator map YW : V bW Ñ W rrz, z´1ss, and v b w ÞÑ YW pv, zqw “
ř

sPZpYW qspv, wqz
´s´1. W is also subject of actions of and linear operators LW p0q and

LW p´1q (0 and ´1 Virasoro modes) satisfying the following conditions. One assumes
that Vpsq “ 0 for s ! 0. The vector space W is C-graded, that is, W “

À

αPCWpαq,
such that Wpαq “ 0, when the real part of α is sufficiently negative. The result of a ver-
tex operator YV,W pu, zqpv, wq, u, v P V , w P W , contains only finitely many negative
power terms, that is YV,W pu, zqpv, wq P pV,W qppzqq, i.e., belongs to the space of formal
Laurent series in z with coefficients in pV,W q. Here pV,W q and subscript V,W mean
corresponding expression either for vertex operator algebra V elements or its module
W . Let IdV,W be the identity operator on pV,W q. Then YV,W p1V , zq “ IdV,W . For
v P V , YV pv, zq1V P V rrzss and limzÑ0 YV pv, zq1V “ v. We assume that for W there
exist non-degenerate bilinear pairing p., .q, W 1 bW Ñ C, where W 1 denotes the dual
V -module toW . For s P Z`, denote by FsC the configuration space of s ordered points
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in C, FsC “ tpz1, . . . , zsq P Cs, zi ‰ zj , i ‰ ju. For a space A and arbitrary θ P A˚, for
A˚ dual to A, a meromorphic function of several complex variables pz1, . . . , zsq defined
by a map f : FsCÑ A, pz1, . . . , zsq ÞÑ Rpfpz1, . . . , zsqq, is called an A-valued rational
function if its characteristic Ωpfpz1, . . . , zsqq “ pθ, fpz1, . . . , zsqq, extends to a rational
function denoted Rpfpz1, . . . , zsqq in pz1, . . . , zrq on a larger domain and admits poles

at zi “ zj , i ‰ j, only. In particular, in this paper we consider the cases A “W , xW .
We assume that for u, u1, u2 P V , the characteristics Ω pYV,W pv1, z1qYV,W pv2, z2qvq,
Ω pYV,W pv2, z2qYV,W pv1, z1qpv, wqq, and Ω pYV,W pYV pv1, z1 ´ z2qv2, z2qpv, wqq, converge
absolutely in the regions |z1| ą |z2| ą 0, |z2| ą |z1| ą 0, |z2| ą |z1 ´ z2| ą 0, corre-
spondingly to a common rational function in z1, z2. Poles of these characteristics are
only allowed at z1 “ 0 “ z2, and z1 “ z2. The role of a grading operator for V is
played by the zero Virasoro mode with LV p0qv “ rv for v P Vprq. Then for v P V one
has

rLV,W p0q, YV,W pv, zqs “ YV,wpLV p0qv, zq ` z
d

dz
YV,W pv, zq.

For w P Wpαq, there exists n0 P Z` such that pLW p0q ´ αqn0w “ 0. For v P V the
operator LV p´1q is given by

LV p´1qv “ Reszz
´2YV pv, zq1V “ Yp´2qpvq1V ,

d

dz
YV pv, zq “ YV,W pLV p´1qv, zq “ rLV,W p´1q, YV pv, zqs.

We denote wtpvq “ k the weight for v P Vpkq. For v P V , the translation property for
vertex operators can be written as

YW pv, zq “ e´z
1LW p´1qYW pv, z ` z

1qez
1LW p´1q,

z1 P C. For v P V , it follows

d

dz
Y pv, zq “ Y pLV p´1qv, zq.

For a P C, the conjugation property with respect to the grading operator LW p0q is
given by

aLW p0q YW pv, zq a
´LW p0q “ YW

´

aLW p0qv, az
¯

.

A vertex operator algebra V satisfying conditions above is called conformal of central
charge c P C, if there exists a non-zero conformal vector ω P V2 such that the Fourier
coefficients LV prq of the corresponding vertex operator Y pω, zq “

ř

sPZ LV pkqz
´s´2,

is determined by Virasoro modes LV prq : V Ñ V subject to the commutation relations

rLV psq, LV prqs “ ps´ rqLV ps` rq `
c

12
ps3 ´ sqδs,´r IdV .

In [16], v P V , the following formula was derived

rLW prq, YW pv, zqs “
ÿ

rě´1

1

pr ` 1q!
Br`1
z zr`1 YW pLV prqv, zq.

For a vector field βpzqBz “
ř

rě´1 βrz
r`1Bz, βpzqBz P DerOp1q, which belongs to

the local Lie algebra of the group Aut Opnq, let us introduce the operator β “
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´
ř

rě´1 βrLW prq. In [16] they prove the following formula:

“

β, YW pv, zq
‰

“
ÿ

rě´1

1

pr ` 1q!

`

Br`1
z βpzq

˘

YW pLV prqv, zq.

A vertex operator algebra V -module W is called quasi-conformal if it carries an action
of Der Opnq on an n-dimensional smooth manifold M such that commutation formula
above holds for any v P V , and z “ zj , 1 ď j ď n, the element LW p´1q “ ´Bz acts as
the translation operator LW p0q “ ´zBz, acts semi-simply with integral eigenvalues,
and the Lie subalgebra Der` Opnq acts locally nilpotently on M . A vector w PW of a
quasi-conformal vertex operator algebra V is called primary of conformal dimension
ν P Z` if LW pkqw “ 0, k ą 0, LW p0q ¨ w “ νw. In addition to that, we assume
that V -module W admits an action of Derj Opnq. The element

`

´Btp

˘

plays a role
of the translation operator on Wtp with integral eigenvalues, and the Lie subalgebra

pDer`qj Opnq acts locally nilpotently. The C-grading operator is provided by the

mode LW p0q, i.e., LW p0q “
`

´tp Btp
˘

. Finally, let us assume that the action of the

Lie algebra Derj Opnq on xWptp1 ,...,tpl q
can be exponentiated to an action of the group

Autj Opnq.
Denote by W the category of V -vertex operator algebra admissible modules W

that satisfy these properties in addition to all related properties of Section 2. Let W
denote the algebraic completion of W , W “

ś

rPCWprq “ pW
1q˚. We assume that

the space W is endowed with a grading W “
Ť

sPZ,sąs0 W psq bounded from below

with respect to the grading operator LW p0q.

3. Differentials and rational functions on abstract discs

In this Section we partially follow [16] and describe the setup needed for formulation
of further results. Let p be a point on M , and tp be a local coordinate in a vicinity of
p. We replace the field of Laurent series Cpptpqq by any complete topological algebra
non-canonically isomorphic to Cpptpqq.

3.1. Abstract discs. To introduce abstract discs on M{F it is possible to consider
the scheme underlying the C-algebra Crrtpss. Crrtpss is the ring of complex-valued
functions on the affine scheme Dtp “ Spec Crrtpss which we call the standard disc Dtp .
As a topological space, Dp can be described by the origin corresponding to the max-
imal ideal tp Crrtpss and the generic point. A morphism from D to an affine scheme
Z “ Spec R, where R is a C-algebra, is a homomorphism of algebras R Ñ Crrtpss.
Such a homomorphism can be constructed by realizing Crrtpss as a completion of R.
Geometrically, this is an identification of the disc Dp with the formal neighborhood
of a point on M . An abstract disc is an affine scheme Spec R, where R is a C-algebra
isomorphic to Crrtpss. On the abstract disc, the maximal ideal tpCrrtpss has a pre-
ferred generator tp. In contrast to that, on an abstract disc there is no preferred
generator in the maximal ideal of R, and there is no preferred coordinate. Denote
by Op the completion of the local ring of M . Then Op is non-canonically isomorphic
to O “ Crrtpss. To specify such an isomorphism, or equivalently, an isomorphism be-
tween Dp “ Spec Op, and Dtp “ Spec Crrtpss, we need to choose a formal coordinate
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tp at p P M , i.e., a topological generator of the maximal ideal mp of Op. In general
there is no preferred formal coordinate at p PM , and Dp is an abstract disc.

3.2. Rational functions attached to discs. To construct a xW -valued vertex op-

erator algebra bundle on M{F we would like to attach elements of xW to the both
standard Dtp “ Spec Crrtpss and abstract discs Dp, where p is a point on M{F . For a

cohomology theory purposes we attach also characteristics of xW -elements represented
in terms of rational functions on discs. Let Kx be the field of fractions of the ring
of integers Z is the rational field Q. We denote also by Krptp1 , . . . , tpsqs the field
of fractions of the polynomial ring over a field K as the field of rational functions
Kpptp1 , . . . , tpsqq “ tpR1ptp1 , . . . , tpsqq{pR2ptp1 , . . . , tpsqq : R1, R2 P Krptp1 , . . . , tpsqsu.
For a coordinate tp on Dp, there exist isomorphisms Op “ Crrtpss and Kp “ Cpptpqq.
We denote by Dp and Dˆp at p the disc and punctured disc defined as Spec Opnqp and
Spec Kp) correspondingly.

3.3. Rational power differentials. In this Subsection we recall basic definitions
related to differentials [16, 37]. Let k be a rational number. A k-differential defined
on a manifold M is a section of the k-th tensor power of the canonical line bundle
ω. Choosing a local coordinate tp arround a point p P M we may trivialize ωbk

by the non-vanishing section pdtpq
bk. Any section of ωbk may then be written as

fptpqpdtpq
bk. For another coordinate rtp “ ρptpq, the same section will be written as

gprtpqpdrtpq
bk, where fptpq “ gpρptpqqpρ

1ptpqq
bk. Now let us suppose that we have a

section of ωbk whose representation by a function does not depend on the choice of
local coordinate, i.e., gprtpq “ fprtpq, and fptpq “ fpρptpqqpρ

1ptpqq
bk for any change of

variable ρptpq. We call fptpqpdtpq
bk a canonical k-differential. Let us denote by ωp the

space of differentials on Dˆp . Given a linear map ρ : Kp Ñ End
´

xWtp

¯

, such that for

any x P xWtp and large enough l, we have ρpmpq
l ¨x “ 0, where mp is the maximal ideal

of Op at p. Then, according to [16], the vertex operator Y pρ, tpq “
ř

sPZ
ρptspq t

´s´1
p dtp,

is a canonical End
´

xWtp

¯

-valued differential on Dˆtp , i.e., it is independent of the choice

of coordinate tp.

4. The vertex operator algebra bundle on M{F

In this Section we provide the construction of xW -valued vector bundle WM{F on
M{F .

4.1. Torsors and twists under groups of automorphisms. For an admissible

V -module W we have the filtration Wtpj ,ďm
“

m
À

iěRepκq

Wtpj ,i
, of Wtpj

by finite-

dimensional Autpj Opnq-submodules, j ě 1. Suppose W is an admissible vertex
operator algebra V -module as in the definition given in Section 2. We now explain

how to collect elements of the space xW into an intrinsic object on a collection of
abstract discs on M{F . We consider a configuration of l-points pp1, . . . , plq on M{F
lying in non-intersecting local discs, and we assume that at each point of pp1, . . . , plq
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a coordinate changes independently of changing of coordinates on other discs. There-
fore, the general element of the group of independent automorphisms of coordinates of

l points on M{F Autl Opnqp1,...,pl has the form ptp1 , . . . , tplq ÞÑ pρ1, . . . , ρlqptp1 , . . . , tplq.
Let us remind the definition of a torsor [16]. Let G be a group, and S a non-empty

set. Then S is called a G-torsor if it is equipped with a simply transitive right action
of G. For s1, s2 P S, there exists a unique µ P G such that s1 ¨ µ “ s2, where the
right action is given by s1 ¨ pµµ

1q “ ps1 ¨ µq ¨ µ
1. The choice of any s1 P S allows us to

identify S with G by sending s1 ¨µ to µ. Applying the definition of a group twist [16]

to the group Autl Opnq and its module xW we obtain following the definition. Given

a Autl Opnq-module xWpz1,...,zlq and a Autl Opnq-torsor X , one defines the X -twist of
xWpz1,...,zlq as the set

VX “ xWpz1,...,zlq
ˆ

Autl Opnq X “ xWpz1,...,zlq ˆ X { tpw, a ¨ ξq „ paw, ξqu .

for ξ P X , a P Autl Opnq, and w P xWpz1,...,zlq. Given ξ P X , we may identify xWpz1,...,zlq

with VX , by w ÞÑ pξ, wq. This identification depends on the choice of ξ. Since

Autl Opnq acts on xWpz1,...,zlq by linear operators, the vector space structure induced
by the above identification does not depend on the choice of ξ, and VX is canonically
a vector space. If one thinks of X as a principal Autl Opnq-bundle over a set of

points, then VX is simply the associated vector bundle corresponding to xWpz1,...,zlq.

Any structure on xWpz1,...,zlq (e.g., a bilinear pairing or multiplicative structure) that

is preserved by Autl Opnq will be inherited by VX .

Now we wish to attach to any disc a certain twist Vptp1 ,...,tpl q of xWptp1 ,...,tpl q
, so

that xWptp1 ,...,tpl q
is attached to the standard discs, and for any set of coordinates

ptp1 , . . . , tplq on pDp1 , . . . , Dplq we have an isomorphism

iptp1 ,p1;...;tpl ,plq
: xWptp1 ,...,tp1 q

ĂÑ Vptp1 ,...,tpl q. (4.1)

We then associate sections of some bundles on pDˆtp1 , . . . , D
ˆ
tpl
q to elements of xWptp1 ,...,tpl q

.

The system of isomorphisms iptp1 ,p1;...;tpl ,plq
should satisfy certain compatibility con-

dition. Namely, if ptp1 , . . . , tplq and prtp1 , . . . ,rtplq are two sets of coordinates on pDp1 ,

. . ., Dplq such that prtp1 ; . . . ;rtplq “ pρ1, . . . , ρlqptp1 , . . . , tplq, then we obtain an auto-

morphism pi´1
prtp1 ,p1,...,

rtpl ,plq
˝ iptp1 ,p1;...;tp1 ,p1q

of xWptp1 ,...,tpl q
. The condition is that the

assignment pρ1, . . . , ρlqpz1, . . . , zlq ÞÑ i´1
prtp1 ,p1;...;rtpl ,plq

˝ iptp1 ,p1;...,tpl ,plq
, defines a repre-

sentation of the group Autl Opnq of independent changes of coordinates on xWptp1 ,...,tpl q
.

If this condition is satisfied, then Vptp1 ,...,tpl q is canonically identified with the twist

of xWptp1 ,...,tpl q
by the Autl Opnq-torsor of formal coordinates at pp1, . . . , plq.

In the next Subsection we will show that given the space xW one can attach to
it a vector bundle WM{F on the space of leaves M{F for a foliation F defined on

any smooth complex manifold M . I.e., the elements of xW give rise to a collection
of coordinate-independent sections Xpp1, . . . , plq of the bundle W˚

M{F in the neigh-

borhoods of a collection of points pp1, . . . , plq P M{F . The construction is based on
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the principal bundle for the group Autl Opnq, which naturally exists on an arbitrary
smooth curve and on any collection pDp1 , . . . , Dplq of non-intersecting discs. We de-
note by Aut pp1,...,plq the set of all coordinates ptp1 , . . . , tplq on discs pDp1 , . . . , Dplq, cen-
tered at points pp1, . . . , plq. It comes equipped with a natural right action of the group
of automorphisms Autl Opnq. If tpi P Autpi , 1 ď i ď l, and ρpziq P Auti Opnq, then
ρiptpiq P Autpi . Furthermore, as it was shown in [16] that pρi ˚ µiqptpiq “ µipρiptpiqq,

for 1 ď i ď l, it defines a right simply transitive action of Auti Opnq on Autpi . Thus

we see that the group Autl Opnq acts naturally on Aut pp1,...,plq, and is a Autl Opnq-
torsor. Thus, we can define the following twist. We can introduce the Autl Opnq-twist
of W pp1,...,plq Vpp1,...,plq “W pp1,...,plq

ˆ

Autl Opnq Aut pp1,...,plq. The original definition was

given in [3, 42]. For each set of formal coordinates ptp1 , . . . , tplq at points pp1, . . . , plq,

pw1, . . . , wlq P xWpp1,...,plq, any element of the twist Vpp1,...,psq may be written uniquely
as a pair ppw1, . . . , wlq , ptp1 , . . . , tplqq.

4.2. Definition of WM{F -bundle of xW -elements. Now let us formulate the defini-

tion of fiber bundle associated through vectors of elements X P xW defined on any set
of standard discs U “ pDtp1

, . . . , Dtpl
q around points pp1, . . . , plq on M{F with local

coordinates ptp1 , . . . , tplq. We construct an analog of a principal Autl Opnq-bundle for
M{F . The fiber space is provided by vectors X of elements Xptp1 , . . . , tplq, given by a
fiber bundle WM{F |pDtp1

,...,Dtpl
q defined by trivializations iptp1 ,...,tpl q : Xpp1, . . . , plq “

rXpp1, . . . , plqs Ñ pDtp1
, . . . , Dtpl

q, with a continuous Xpp1, . . . , plq-preserving right

action Xpp1, . . . , plq ˆ Autl Opnq Ñ Xpp1, . . . , plq. Namely, for two sections ζ, ζ.a of
WM{F |pDtp1

,...,Dtpl
q, the map a ÞÑ ζ.a is a homeomorphism for all a P Autl Opnq.

Then, according to the definition of a torsor, the fiber of such bundle at points
pp1, . . . , plq is the Autl Opnq-torsor Aut pp1,...,plq.

Denote by Aut l the set of l-tuples of local coordinates Aut pp1,...,plq all over leaves of

F . Given a finite-dimensional Autl Opnq-module xWi,pp1,...,plq, let WM{F |pDtp1
,...,Dtpl

q “

xWi,ptp1 ,...,tpl q
ˆ

Autl Opnq Aut l, be the fiber bundle associated to xWi,ptp1 ,...,tpl q
and Aut l.

Then, WM{F |pDtp1
,...,Dtp1

q is a finite-rank bundle over M{F |pDtp1
,...,Dtp1

q whose fiber

at a collection of points pp1, . . . , plq PM{F is given by the vector rXpp1, . . . , plqs. In a
vicinity of every point of pp1, . . . , plq on M{F we can choose discs pDp1 , . . . , Dplq such
that the bundle WM{F over pDp1 , . . . , Dplq is pDp1 , . . . , Dplq ˆ Xpp1, . . . , plq, where
Xpp1, . . . , plq is a section of WM{F . The fiber bundle WM{F with fiber rXpp1, . . . , plqs

is a map WM{F : xW Ñ M{F where M{F is WM{F -bundle base space. For ev-

ery set of points pp1, . . . , plq P M{F with local discs pDtp1
, . . . , Dtpl

q i´1
ptp1 ,...,tpl q

is homeomorphic to pDtp1
, . . . , Dtpl

q ˆ xW . Namely, we have for rXpp1, . . . , plqs :

i´1
ptp1 ,...,tpl q

Ñ pDtp1
, . . . , Dtp1

q ˆ xWtp1 ,...,tpl
, that P ˝ rXpp1, . . . , plqs = iptp1 ,...,tpl q

|i´1
ptp1 ,...,tpl

q

pDtp1
, . . . , Dtpl

q, where P is the projection map on pDtp1
, . . . , Dtpl

q. For

an Autl Opnq-module xWptp1 ,...,tpl q
which has a filtration by finite-dimensional submod-

ules xWs,ptp1 ,...,tpl q
, s ě 0, we consider the directed inductive limit WM{F of a system
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of finite rank bundles Ws,M{F on M{F defined by embeddings Ws,M{F Ñ Ws1,M{F ,
for s ď s1, i.e., WM{F it as a fiber bundle of infinite rank over M{F .

4.3. Explicit construction of canonical intrinsic setup for WM . Let W be a
quasi-conformal vertex operator algebra V -module W defined in Section 2. In order
to be able to introduce a section Xpp1, . . . , plq of the vertex operator algebra bundle
WM{F defined on abstract discs pDˆp1 , . . . , D

ˆ
pl
q in the coordinate independent descrip-

tion, we associate Xpp1, . . . , plq to coordinate independent vector Xpv1, z1; . . . ; vl, zlq.
Now let us give the following definition. For each set of points pp1, . . . , plq and ele-

ments pw1, . . . , wlq P W
bl

z1,...,zl
, we define an intrinsic xW -valued meromorphic section

Xpp1, . . . , plq on the punctured discs pDˆp1 , . . . , D
ˆ
pl
q by an operation pw1, . . . , wlq,

pp1, . . . , plq ÞÑ Xpp1, . . . , plq, assigning to a vector Xpp1, . . . , plq of W
pDˆp1 ,...,D

ˆ
pl
q

an element of Kpp1,...,plq (i.e., rational xW -valued functions on pDˆp1 , . . . , D
ˆ
pl
q), de-

fined by the W˚

pDˆp1 ,...,D
ˆ
pl
q
-fiber Xiptp1 ,...,tpl

q
P xWpp1,...,plq. Consider the operator

Rpρ1, . . . , ρsq “
”

pBJρipIq

ı

“

”

pBJρi1pIq,
pBJρi2pIq, ¨ ¨ ¨ ,

pBJρispIq

ıT

. The index operator J

takes the value of index zj of arguments in the vector (4.2), while the index operator I
takes values of index of differentials dzi in each entry of the vector X (1.1). Thus, the
index operator ipIq “ piI , . . . , ispIqq is given by consequent cycling permutations of

I. We define the operator pBJρa “ expp´
ř

rn,
n
ř

i“1

riě1
rJ β

paq
rs ζr11 . . . ζrJJ . . . ζrss BzJ q,

which contains index operators J as index of a dummy variable ζJ turning into zj ,

j “ 1, . . . , s. In the last formula pBJ acts on each argument of maps X in the vector X.
In [16] it was shown that the mappings pρ1, . . . , ρlqpz1, . . . , zjq ÞÑ R pρ1, . . . , ρlq, for 1 ď

j ď l, define a representation of Autl Opnq on xWpz1,...,zlq by R pρ ˝ rρq “ R pρq R prρq,

for ρ, rρ P Autl Opnq. Then we see that for generic elements X pv1, z1; . . . ; vs, zsq P xWU ,
for an admissible vertex operator algebra V -module W , Xpv1, z1; . . . ; vs, zsq are inde-
pendent on changes pz1, . . . , zs`s1q ÞÑ prz1, . . . , rzs`s1q “ ppρ1, . . . , ρs`s1qpz1, . . . , zs`s1qq,
for 1 ď i ď s ` s1, of local coordinates of pz1, . . . , zsq and prz1, . . . , rzs1q, at points
pp1, . . . , psq and prp1, . . . , rps1q.

Indeed, consider the vector Xpv1, pz1; . . . ; vs, pzsq=
“

X
`

v1, pz1 dpzip1q; . . . ; vs, pzs dpzipsq
˘‰

.

Note that dpzj “
n
ř

i“1

dzi Bziρj , Bziρj “
Bρj
Bzi

. By the definition of the action of

Auts Opnq, when rewriting dpzi, we have

Xpv1, pz1 dpz1; . . . ; gs, pzs dpzsq “ Rpρ1, . . . , ρsq
“

X
`

v1, z1 dpzip1q; . . . ; vs, zs dpzipsq
˘‰

“ Rpρ1, . . . , ρsq

«

X

˜

vi, zi

s
ÿ

j“1

Bjρipsq dzj

¸ff

.

By linearity of the mapping X, we obtain from the last equation

Xppv1, pz1; . . . ; pvs, pzsq “ Xpv1, pz1 dpz1; . . . ; v2, pzs dpzsq “
“

X
`

v1, z1 dzip1q; . . . ; vs, zs dzipsq
˘‰

,
(4.2)
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Due to properties of a vertex operator algebra V admissible module W , the action of
operators R pρ1, . . . , ρsq on pv1, . . . , vsq P V

bs results in a sum of finitely many terms.
We then conclude that the vector X is invariant, i.e.,

Xppv1, pz1; . . . ; pvs, pzsq “ X pv1, pz1 dpz1; . . . ; vs, pzs dpzsq

“ X pv1, z1 dz1; . . . ; vs, zs dzsq “ Xpv1, z1; . . . ; vs, zsq.

The insertions of k vertex operators pvk, tpk dtpkq, k ě 0, which are present in the
definition of sections of a vertex operator algebra bundle WM{F , keep elements X

invariant with respect to coordinate changes. Thus, the construction of spaces xW are
invariant under the action of the group Auts Opnq.

We now formulate the following Lemma used later for the main result Lemma 2 of
this paper for the category of vertex operator algebra bundles WM{F on M{F .

Lemma 1. A xW -valued, independent of the choice of coordinates pti,pj q, 1 ď i ď n,

1 ď j ď l, on a set of non-intersecting discs pDˆi,pj q, section Xpp1, . . . , pnq of the

bundle W˚
M{F |pDˆi,pj q

on the W pp1,...,plq-valued fibers Xiptp1 ,...,tpl
q

defined by (4.1) on

pDˆi,pj q dual to WM{F |pDˆi,pj q
is given by the formula

Xpp1, . . . , plq “
”

Xiptp1 ,...,tpl
q
pw1, . . . , wlq

ı

“ rXpv1, z1; . . . ; vl, zlqs “ Xpv1, z1; . . . ; vl, zlq,

(4.3)

rXpv1, z1; . . . ; vl, zlqs P xWptp1 ,...,tpl q
, where ptp1 , . . . , tplq are coordinates on the discs

pDˆp1 , . . . , D
ˆ
pl
q, and pw1, . . . , wlq PW pz1,...,zlq.

Proof. Now let us proceed with the explicit construction of Xiptp1 ,...,tpl
q
. By choosing

coordinates ptp1 , . . . , tplq on a collection of discs pDˆp1 , . . . , D
ˆ
pl
q, we obtain a trivial-

ization iptp1 ,...,tpl q : X
´

xW rrptp1 , . . . , tplqss
¯

r

Ñ
Γ
´

WM{F |pDˆp1 ,...,D
ˆ
pl
q

¯

, of the bundle

W
pDˆp1 ,...,D

ˆ
pl
q

which we call the ptp1 , . . . , tplq-trivialization.

We also obtain trivializations of the fiber xWpp1,...,plq
r

Ñ
γ
´

WM |pDˆp1 ,...,D
ˆ
pl
q

¯

, and

its dual xW˚
pp1,...,plq

r

Ñ
γ
´

W˚
M{F |pDˆp1 ,...,D

ˆ
pl
q

¯

. Let us denote by pw1, tp1 ; . . . ;w1, tplq

the image of pw1, . . . , wlq P xWz1,...,zl in WM{F |pDˆp1 ,...,D
ˆ
pl
q

and by ptp1 ; . . . ; tplq of

W˚
M{F |pDˆtp1 ,...,D

ˆ
tpl
q

under ptp1 , . . . , tplq-trivialization. In order to define the required

section Xpp1, . . . , plq with respect to these trivializations we need to attach an ele-

ment of pxWptp1 ,...,tpl q
to each pv1, tp1 ; . . . ; vl, tplq P WM{F |pDˆtp1 ,...,D

ˆ
tpl
q
, and a section

iptp1 ,...,tpl qpx1, . . . , xlq of W|
pDˆtp1

,...,Dˆtpl
q

for px1, . . . , xlq P xWptp1 ,...,tpl q
. It is suffi-

cient to assign a function to the sets pv1, z1; . . . ; vl, zlq, pw1, . . . , wlq P xWpz1,...,zlq in

the ptp1 , . . . , tplq-trivialization. Thus, we identify a xW -valued section rXpp1, . . . , plq
of W˚

pDˆp1 ,...,D
ˆ
pl
q
, with the section Xpv1, z1; . . . ; vl, zlq of W

pDˆp1 ,...,D
ˆ
pl
q

by means of

formula (4.3).
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Let prtp1 , . . . ,rtplq “ pρ1, . . . , ρlqptp1 , . . . , tplq be another set of coordinates. Then,

using the above arguments, we construct analogously a section rXpp1, . . . , plq by the
formula

rXpp1, . . . , plq “
”

rXiprtp1 ,...,rtpl
q
pw1, . . . , wlq

ı

“ rXprv1, rz1; . . . ; rvl, rzlqs “ Xprv1, rz1; . . . ; rvl, rzlq.

Since
´

i´1
ptp1 ,...,tpl q

˝ iptp1 ,...,tpl q

¯

is an automorphism of xWpp1,...,plq, we represent a

change of variables rtpj “ ρjpzjq, 1 ď j ď l, in terms of composition of trivializa-
tions

ρjpzjq ÞÑ i´1
rtj,p
˝ itj,p , (4.4)

and, therefore, relate Xiprtp1 ,...,rtpl
q
p rw1, . . . , rwlq with Xpiptp1 ,...,tpl qpw1, . . . , wlq. Since

(4.4) defines a representation on xW of the group Autl Opnq of changes of coordinates,

then xWpp1,...,plq is canonically identified with the twist of W by the Autl Opnq-torsor of
formal coordinates at pp1, . . . , plq. Using definition of a torsor one sees that elements of

the space xW q
r |U can be treated as Autl Opnq-torsor of the product of groups of a coor-

dinate transformation, namely, that pv1, z1; . . . ; vl, zlq “
`

Rpρlq
´1.pv1,rtp1 ; . . . ; vl,rtpl

˘

,
Thus, we relate the l.h.s and r.h.s. of (4.3). Since the element Xpv1, z1; . . . ; vl, zlq is
invariant with respect to changes of coordinates, Lemma follows. �

5. Category of vertex algebra bundles on leaves of M{F and
transversal sections

In this Section we construct canonical twisted vertex algebra V -module bundle
WM{F on leaves and transversal sections of a codimension p foliation F defined on a
smooth n-dimensional manifold M .

5.1. Holonomy and transversal basis for a foliation. Let us first recall [11] def-
initions of transversal basis and holonomy embeddings for a foliation F . Transversal
sections Ui of a foliation F passing through points pi, i ě 0, are neighborhoods of
the leaves through pi in the leaf space M{F . Suppose we are given a path α between
two points p1 and p2 which belong to the same leaf of F . For two transversal sec-
tions U1 and U2 passing through p1 and p2 one defines a transport α along the leaves
from a neighborhood of p1 P U1 to a neighborhood of p2 P U2. Then it is assumed
that there exists a germ of a diffeomorphism holpαq : pU1, p1q ÝÑ pU2, p2q called the
holonomy of α. When the transport α is defined in all of U1 and embeds into U2

then h : U1 ãÑ U2 is denoted by holpαq : U1 ãÑ U2 and it is called a holonomy em-
bedding. A composition of paths induces a composition of corresponding holonomy
embeddings. Two homotopic paths always define the same holonomy. The holonomy
groupoid [10, 26, 42] is the groupoid HolpM,Fq over M where arrows p1 ÝÑ p2 are
such germs holpαq. A transversal basis U for F is a set of transversal sections Ui ĂM
such that for a section Ui passing through a point pi, and for any transversal section
Uj passing through pj P M , one can find a holonomy embedding h : Ui ãÑ Uj with
Ui P U and pj P hpUiq.
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5.2. Spaces of sections of V -bundles. Let M be endowed with a coordinate chart
V “ tVr, r P Zu. Consider a (possibly infinite) arbitrary set pl, l ě 0, of l distinct
points and corresponding domains Vl Ă M . Let U “ tUku, k ě 0, be a transversal
basis of F . We chose a (possibly infinite) set ppl`1, . . . , pl`mq of arbitrary distinct
m ě 0 points on a set of sections Ui1,b, 1 ď i1 ď m, 1 ď b ď k of U . Let us associate
to each point of pp1, . . . , plq and ppl`1, . . . , pl`mq vertex operator algebra elements
pvi,1, . . . , vi,nq, 1 ď i ď l, and pvj,1, . . . , vj,pq, l ` 1 ď j ď l `m correspondingly. For
the set of all choices of ln`mp vertex operator algebra V elements and rn “ ln`mp,
it is convenient to renotate the vertex operator algebra elements as

prv1, . . . , rvrnq “ pv1,1, . . . , vl,1, . . . , v1,n, . . . , vl,n, vl`1,, . . . , vl`1,p, . . . , vl`m,1, . . . , vl`m,pq.

Endow each of points among pp1, . . . , plq and ppl`1, . . . , pl`mq with sets pzi,1, . . . , zi,nq,
1 ď i ď l and pzj,1, . . . , zj,pq, l ` 1 ď j ď l `m, of local coordinates on domains Vl
and Vl`m. Denote also

prz1, . . . , rzrnq “ pz1,1, . . . , zl,1, . . . , z1,n, . . . , zl,n, zl`1,, . . . , zl`1,p, . . . , zl`m,1, . . . , zl`m,pq.

Now, taking into account the content of Section 4, and, in particular, Lemma 1,
we are on a position to introduce the spaces of sections of vertex operator algebra
V bundle WM{F over leaves and transversal sections of a codimension p foliation
F defined on M . Note that the space of F-leaves is not in general a manifold.
Nevertheless, one can always consider local coordinates in appropriate domains on
leaves of M{F induced by local coordinates on a chart defined on M . In this Section
we provide the specific form of canonical sections X of a vertex operator algebra
bundle WM{F as elements of the spaces W considered on specific domains on M{F
and U . In order to work with objects having coordinate invariant formulation, we
consider elements of W with local coordinates z multiplied by powers of corresponding
differentials dz. For all choices of l points and all choices of vertex operator algebra
elements for ln ě 0 complex variables prz1, . . . , rzlnq defined in domains Vk, 1 ď k ď ln
of the coordinate chart V on M , let us consider the vector of the form (1.1) with
variables prv1, rz1; . . . ; rvln, rzlnq, containing W -rational functions X. In [16], in the case
n “ 1, they proved for primary u that the vertex operator YW pu, zq dz

wtpuq is an
invariant object with respect to changes of the local coordinate. In previous Section
we proved that the vectors X introduced above as well as vertex operators Ypu, ziq “
YW pu, ziq dz

wtpuq
i , i ě 0, for primary u P V , are invariant with respect to changes

of coordinates, i.e., to the group of coordinate transformations Auts Opnq on M{F
pw1, . . . , wsq ÞÑ pz1, . . . , zsq, and corresponding differentials.

In [20] the classical approach to cohomology of vector fields of manifolds was ini-
tiated. In [13, 41] we find an alternative way to describe cohomology of Lie algebra
of vector fields on a manifold in the cosimplicial setup. Taking into account the stan-
dard methods of defining canonical (i.e., independent of the choice of covering U and
coordinates) cosimplicial object [13, 41] as well as the Čech-de Rham cohomology con-
struction [11], we formulate here the vertex operator algebra approach to cohomology
of a foliation. Let Iq “ tzis,jsu, 1 ď s ď q, be a subset (with no repetitions) of the
set pzi,1, . . . , zi,nq, 1 ď i ď l of local variables corresponding to of l points pp1, . . . , plq
taken on the same leaf f of M{F . Similarly, let Jr “

 

zis1 ,js1
(

, 1 ď s1 ď r, be a subset
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(with no repetitions) of the set pzi,1, . . . , zi,pq, l ` 1 ď i ď l ` m, of local variables
corresponding to of m points ppl`1, . . . , pl`mq on sections of a transversal basis U of
F .

Assume that all points pp1, . . . , pl`mq belong to the same leaf f of M{F . Consider

a subspace xW qpV,W,U,Fq of vectors Xpvi1,j1 , zi1,j1 ; . . . ; viq,jq , ziq,jq q associated to Iq
for all sets of vertex operator algebra elements pvi1,j1 , . . . , viq,jq q with local coordinates
defined on a domain U of M . A vertex operator algebra V bundle WM{F consists

of the union of the spaces xW q
r “

xW q
r pV,W,Fq, q, r ě 0. The spaces xW q

r consist of

of sections of WM{F defined as the space xW qpV,W,Fq of vectors X on each leaf f
of F , and any subset Jr of r vertex operators for all sets of vertex operator algebra
elements vi1a,j1a YW pvi1a,j1a , zi1a,j1aq, 1 ď a ď r, with local coordinates zi1a,j1a defined in r
subdomains Ui1a,b Ă Ub, 1 ď b ď k of k transversal sections Ub of a transversal basis U .
Here the domain U is defined as U “

Ş

Ui11,1

h
i11,1
ÝÑ ...

h
i1r,k
ÝÑ Ui1r,k,1ďaďr, 1ďbďk,

Ui1a,b, where

the intersection ranges over r subdomains Ui1a,b Ă Ub Ă U of r local coordinates for
any choice of l points pp1, . . . , plq on the same leaf f of M{F related by the holonomy
embeddings hi1a,b, 1 ď a ď r, 1 ď b ď k. In the case k “ 0 the sequence of holonomy

embeddings is empty. It is easy to see that the definition of xW q
r does not depend on

the choice of U .
The spaces xW q

r are related by the shift operators ∆q
r : xW q

r Ñ
xW q`1
r´1 , increasing the

upper index and decreasing the lower index in elements of xW q
r . For Iq`1 “ pik, jkq,

1 ď k ď q ` 1, and Jr “ pi
1
k1 , j

1
k1q, 1 ď k1 ď r, and X P xW q

r let us define the operator
in the standard way [11, 28]

∆q
rXpvi1,j1 , zi1,j1 ; . . . ; viq,jq , ziq,jq q

“ YW pvi1,j1 , zi1,j1qX
`

vi2,j2 , zi2,j2 ; . . . ; viq,jq , ziq,jq
˘

`

q
ÿ

s“1

p´1qsX
`

vi1,j1 , zi1,j1 ; . . . ;YW pvis´1,js´1 , zis´1,js´1 ´ ζsq

YW pvis`1,js`1
, zis`1,js`1

´ ζsq1V ; . . . ; viq,jq , ziq,jq
˘

`p´1qq`1YW pviq`1,jq`1
, ziq`1,jq`1

qX
`

vi1,j1 , zi1,j1 ; . . . ; viq,jq , ziq,jq
˘

.(5.1)

The shift operator ∆q
r is chosen in such a way that its characteristics of would have

nice analytic and cohomological properties. Note that, after application of ∆q
r on an

element X containing local coordinates and corresponding vertex operator algebra el-
ements associated to all n dimensions, of M , the result is of such action is then related
to submanifold with less number of local coordinates describing points pp1, . . . , plq.

For q “ 2, there exists a subspace xW 2
ϑ of xW 2

0 containing xW 2
r for all r ě 1 such that ∆2

r

is defined on this subspace. For J3 “ pik, jkq, 1 ď k ď 3, the operator ∆2
ϑ is defined

for X P xW 2
ϑ by a particular case of (5.1). With the shift operator ∆q

r we obtain the

sequences: xW 0
r

∆0
r

ÝÑ xW 1
r´1

∆1
r´1
ÝÑ pxW 2

r´2, δr,3
xW 2
ϑq

p∆r´2
2 , δr,3 ∆2

ϑq
ÝÑ ¨ ¨ ¨

∆r´1
1
ÝÑ xW r

0 .
The construction of the vertex operator algebra V -bundle WM{F provides a de-

scription of the holonomy groupoid HompM,Fq introduced in Subsection 5.1 in terms
of holonomy embeddings. We consider the spaces of vectors Xphi1,1, . . . , hir,kq “ X|U
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taken on all leaves f of M{F . In terms of holonomy embedding, the shift operator
(c.f. [11]) in this case is given by the standard differentials. The vertical differential
xW q
r ÝÑ

xW q
r`1 is p´1qqd´1 where d is the usual De Rham differential. The horizontal

differential ∆ : xW q
r ÝÑ

xW q`1
r is ∆ “

ř

p´1qi∆i, where

∆iXph1, . . . , hq`1q “ δi,0 h1
˚ Xph2, . . . , hq`1q ` δi,q`1Xph1, . . . , hqq

` p1´ δi,0qp1´ δi,q`1qXph1, . . . , hi`1hi, . . . , hk`1q. (5.2)

The category WM{F of vertex operator algebra admissible V -bundles WM{F for a
foliation F consists of objects WM{F with morphisms provided by intertwining oper-
ators [12].

5.3. Characteristics of bundle WM{F -sections. In the definition of spaces xW
sequences of holonomy embeddings hi, i ě 0 were involved. For germs holpαq of the

groupoid HolpM,Fq over M we define the spaces rX of vectors X defined in previous
subsections. The holonomy groupoid is the groupoid HolpM,Fq over M where arrows
p1 ÝÑ p2 are such germs holpαq. In this Section we prove the main result of this
paper for the category of V -bundles for foliations defined on a complex manifold.
Recall that the cohomology of HolpV,Fq determines the cohomology of a foliation
F [11]. The main advantage of Lemma 2 provided at the end of this Section, is that
by using vertex operator algebra properties we are able to compute explicitly the
cohomology of the holonomy groupoid HolpM,Fq in terms of special functions. For
meromorphic functions of several complex variables defined on sets of open domains of
M with local coordinates zi,j which are extendable rational functions fpzi,jq on larger

domains on M we denote such extensions by Rpfpzi,jqq. For a set of W pzi,jq-defining

elements pvi,jq we consider the converging rational functions fpvi,j , zi,jq P W pzi,jq of
zi,j P FlnC.

By involving the definition of xW q
r it is possible to introduce a vertex operator

algebra V cohomology of the leaves space M{F of a foliation F . Let us consider the
spaces Cqr “ Cqr pV,W,Fq containing vectors of rational functions provided by vectors

of characteristics rΩpXqs of X-entries. For any X P xW q
r , the map ∆q

r induces the
map δqr by rΩpXqs. The coboundary operator δqr exhibits the chain-cochain property
if characteristics of entries X of X satisfy the following conditions.

For sets pj , 1 ď j ď l of l points on the same leaf of M{F , we consider a map

Xpvi,1, zi,1; . . . ; vi,n, zi,nq : V bln P W rrz1, . . . , zrss, 1 ď i ď l, combined with a set of
mp vertex operators at points pl`k, 1 ď k ď m, such that its characteristic ΩpXq
satisfy the following properties. We imply certain conditions on the characteristics
Ωpv1, z1; . . . ; vs, zsq “ ΩpXpv1, z1; . . . ; vs, zsqq for elements Xpv1, z1; . . . ; vs, zsq by to
the relations mentioned below to be coherent with definitions for W given in [28]. We
require that for i “ 1, . . . , s,

BziΩpv1, z1; . . . ; vs, zsq “ Ωpv1, z1; . . . ; vi´1, zi´1;LV p´1qvi, zi; vi`1, zi`1; . . . ; vs, zsq,

pBz1 ` ¨ ¨ ¨ ` BzsqΩpv1, z1; . . . ; vs, zsq “ LW p´1qΩpv1, z1; . . . ; vs, zsq.

Since LW p´1q is a weight-one operator on W , ezLW p´1q is a linear operator on W for
any z P C. For a linear map X with pv1, . . . , vsq P V

bs, pz1, . . . , zsq P FsC, z P C such
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that pz1 ` z, . . . , zs ` zq P FsC, the characteristics

ezLW p´1qΩpv1, z1; . . . ; vs, zsq “ Ωpv1, z1 ` z; . . . ; vs, zs ` zq,

and for pv1, . . . , vsq P V bs, pz1, . . . , zsq P FsC, z P C and 1 ď i ď s such that
pz1, . . . , zi´1, zi` z, zi`1, . . . , zsq P FsC, the power series expansion of the characteris-
tic of the element Ωpv1, z1; . . . ; vi´1, zi´1; vi, zi`z; vi`1, zi`1; . . . ; vs, zsq, in z are equal
to the power series expansion of the characteristic Ωpv1, z1; . . . ; vi´1, zi´1; ezLV p´1qvi, zi;
vi`1, zi`1; . . . ; vs, zsq, in z. In particular, the power series in z is absolutely convergent
on the open disc |z| ă mini‰jt|zi ´ zj |u. In addition to that, for pv1, . . . , vsq P V

bs,
pz1, . . . , zsq P FsC and z P Cˆ so that pzz1, . . . , zzsq P FsC, a linear map X : V bs Ñ
W the characteristics

zLW p0qΩpv1, z1; . . . ; vs, zsq “ ΩpzLV p0qv1, zz1; . . . ; zLV p0qvs, zzsq.

should coincide.
Recall now the definition of shuffles. For l ą 0 and 1 ď s ď l´ 1, let Jl;s be the set

of elements of Sl which preserve the order of the first s and the last l ´ s numbers,
i. e., Jl,s “ tσ P Sl | σp1q ă . . . ă σpsq, σps ` 1q ă . . . ă σplqu. The elements of

Jl;s are then called shuffles. We will use the notation J´1
l;s “ tσ | σ P Jl;su for them.

Finally, define the left action of the permutation group Sr on W by σpfqpz1, . . . , zrq “
fpzσp1q, . . . , zσprqq, for f PW . We require that

ÿ

σPJ´1
l;s

p´1q|σ|σpΩpvσp1,1q, zσp1,1q; . . . ; vσpl,1q, . . . , vσp1,nq, . . . , vσpl,nqqq “ 0.

Denote by Ps : W Ñ W psq, the projection of W on W psq. Denote by pli, . . . , lrnq
a partition of rn of rn “

ř

iě1 li, ki “ l1 ` ¨ ¨ ¨ ` li´1, and ζi P C. Consider the
local coordinates przln`1, . . . , rzrnq of points ppl`1, . . . , pl`mq bounded in the domains
|rzki`k1 ´ ζi| ` |rzkj`k2 ´ ζj | ă |ζi´ ζj |, for i, j “ 1, . . . , n, i ‰ j, and for k1 “ 1, . . . , li,

k2 “ 1, . . . , lj . For rki “ ki ` li, define fi “ Ω
´

YW prv1, rz1 ´ ζiq . . .YW prvrki , rzrki ´ ζiq
¯

,

for i “ 1, . . . , ln.
Assume that there exist positive integers βprvl1,i, rvl”,jq depending only on rvl1,i and

rvl2,j for i, j “ 1, . . . , rn, i ‰ j, 1 ď l1, l2 ď rn, such that the characteristic

Ω

˜

ÿ

r1,...,r
rnPZ

X pPr1f1, ζ1; . . . ;Pr
rn
f
rn, ζrnq

¸

, (5.3)

is absolutely convergent in the domains defined above to an analytic extension in
prz1, . . . , rzrnq independently of complex parameters pζ1, . . . , ζrnq, with poles of order less
than or equal to βprvl1,i, rvl2,jq allowed only on the diagonal of prz1, . . . , rzrnq. We assume
that for prv1, . . . , rvrnq, the characteristic

Ω

˜

ÿ

qPC
YW pvl`1,1, zl`1,1q . . .YW pvl`m,1, zl`m,pqPqX pv1,1, z1,1; . . . ; vl,1, zl,nq

¸

,

(5.4)
(incorporating local coordinates on M and transversal sections) is absolutely conver-
gent on the domains |rzi| ą |rzs| ą 0, for i “ 1, . . . ,m, and s “ m ` 1, . . . ,m ` l,
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when rzi ‰ rzj , i ‰ j and the sum is analytically extendable to a rational function in
prz1, . . . , zrnq with poles of orders less than or equal to βprvl1,i, rvl2,jq allowed rzi “ rzj .

For q “ 2, for rv1, rv2, rv3 P V , the characteristics
ř

sPC ΩpYW prv1, rz1qYW pPspXprv2, rz2´

ζ; rv3, rz3 ´ ζqq, ζqq `Ωprv1, rz1;PspYV prv2, rz2 ´ ζqYV prv3; rz3 ´ ζq1V q, ζq, and
ř

sPC Ωp
PspYV prv1, rz1´ζqYV prv2; rz2´ζq1V q, ζqYV prv3, rz3q `YW prv3, rz3qYW pPspXprv1, rz1´ζ; rv2, rz2´

ζqq, ζq, defined on the domains |rz1 ´ ζ| ą |rz2 ´ ζ|, |rz2 ´ ζ| ą 0, and |ζ ´ rz3| ą

|rz1 ´ ζ|, |rz2 ´ ζ| ą 0, respectively, are absolutely convergent and analytically extend-
able to rational functions in rz1 and rz2 with poles allowed only at rz1, rz2 “ 0, and
rz1 “ rz2.

5.4. The bundle dual to WM{F on M{F . The conditions on characteristics de-
scribed in the previous Subsection allow to define a fiber bundle on the transversal
sections of M{F in the dual formulation. This gives us an idea how to use the no-
tion of a dual vertex operator algebra bundle associated to transversal sections of a
foliation. For many purposes it is useful when the conditions on grading subspaces of
W pp1,...,plq are relaxed in the definition of admissible V -module W . The advantage of

the dual (defined with respect to an appropriate form) fiber bundle W:

U is that we do

not need to assume that the C-grading on W pp1,...,plq is bounded from below or that
the graded components are finite-dimensional. The condition (5.3) for the grading
together with conditions on orders of poles, and then the canonical pairing (5.4) give

rise to a pairing γ
´

W:

U |pDˆi,p1 ,...,D
ˆ
i,pl
q

¯

ˆ γ
´

WM{F |pDˆi,p1 ,...,D
ˆ
i,pl
q

¯

Ñ Cl, for corre-

sponding space of fibers. For each fiber µ of WM{F |pDˆi,p1 ,...,D
ˆ
i,pl
q

we obtain a linear

operator on W:

U |pDˆi,p1 ,...,D
ˆ
i,pl
q

given by this pairing. Thus, we obtain a well-defined

linear map

W:

U pDˆi,p1 ,...,D
ˆ
i,pl
q

: γ
´

WM{F |pDˆi,p1 ,...,D
ˆ
i,pl
q

¯

Ñ End
´

γ
´

WM{F |pDˆi,p1 ,...,D
ˆ
i,pl
q

¯¯

,

(5.5)
i.e., the fibers expressed in terms of vertex operators defined on transversal sections.
For formal coordinates pti,pj q, 1 ď i ď n ´ p, 1 ď j ď l, on pDˆi,p1 , . . . , D

ˆ
i,pl
q, a fiber

Xpvi,j , zi,jq of WM{F |pDˆi,p1 ,...,D
ˆ
i,pl
q

with elements of W pp1,...,plq with respect to the pti,pj q-trivialization, the map (5.5)
is given by pvi,j , zi,jq. Starting from an admissible vertex operator algebra V -module
W , and applying Lemma1 we construct explicitly a fiber bundle WM{F over M{F ,
with canonical sections Xpp1, . . . , pnq of WM{F |pDˆi,p1 ,...,D

ˆ
i,pl
q

and fibers with values in

End
`

W pp1,...,pnq

˘

for any set of non-intersecting discs pDˆi,p1 , . . . , D
ˆ
i,pl
q, 1 ď i ď n´p

on M{F .

5.5. A relation for WM and HolpM,Fq cohomologies. In this Subsection we
provide Lemma 2 relating the vertex operator algebra V cohomology of the holonomy

groupoid Hol( M , Fq and V -bundle WM{F . Note that the spaces xW q
r containing non-

commutative elements X, as well as their cohomology are described here in terms of
their characteristics. In [28] it was proven that the operator δqrX “ ∆q

rΩpXq possesses
the chain-cochain property. For the holonomy groupoid HolpM,Fq we obtain the
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linear maps δnr : Cnr Ñ Cn`1
r´1 , for each pair l, r ě 0, and δ2

ϑ : C2
ϑ Ñ C3

0 . Since
Cq8 Ă Cqr for any r ě 0, and Cqr2 Ă Cqr1 , for r1, r2 Pě 0 with r1 ď r2, δqr .C

q
8 is

independent of r. Let δq8 “ δqr .C
q
8 : Cq8 Ñ Cl`1

8 . Thus, we obtain a double complex

pCqr , δ
q
rq, pC

2
ϑq, δ

2
ϑq q, r ě 0, in particular, with r “ 8, 0 ÝÑ C0

r

δ0r
ÝÑ C1

r´1

δ1r´1
ÝÑ

pC2
r´2, δr,3 C

2
ϑq

pδ2r´2, δr,3 δ
2
ϑq

ÝÑ ¨ ¨ ¨
δr´1
1
ÝÑ Cr0 ÝÑ 0, with δq`1

r´1 ˝ δ
q
r “ 0, δ2

ϑ ˝ δ
1
2 “ 0. Using

the above chain complex one is able to introduce a cohomology of M{F . For q, r ě 0
we define the q, r-th vertex operator algebra cohomology Hq

r “ Hq
r pV,W,Fq of M{F

with coefficients in W and depending on mp vertex operators introduced on U to

be Hq
r “ Ker

"

δqr
δq,1 δ

2
ϑ
{Im δq´1

r`1 , including q, r “ 8. Note that in general q ď l,

m ď p. Thus the cohomology Hq
r describes subdomains of lower dimensions on leaves

of M{F . Taking into account the content of this and previous Sections we obtain the
following

Lemma 2. The vertex operator algebra cohomology of the holonomy groupoid HolpM,Fq
is equivalent to the cohomology of section spaces for V -twisted vertex algebra bundles
WM{F .

References

[1] Ya. V. Bazaikin, A. S. Galaev. Losik classes for codimension one foliations, Mathematics of

Jussieu (2021) doi:10.1017/S1474748020000596.
[2] Ya. V. Bazaikin, A. S. Galaev, and P. Gumenyuk. Non-diffeomorphic Reeb foliations and mod-

ified Godbillon-Vey class, arXiv:1912.01267. Math. Z. (2021). https://doi.org/10.1007/s00209-
021-02828-1

[3] A. Beilinson and V. Drinfeld, Chiral algebras, Preprint.

[4] J.N. Bernstein and B.I. Rosenfeld, Homogeneous spaces of infinite-dimensional Lie algebras and
the characteristic classes of foliations, Russ. Math. Surv. 28 (1973) no. 4, 107–142.

[5] R. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci.

USA 83 (1986), 3068–3071.
[6] R. Bott and A. Haefliger, On characteristic classes of Γ-foliations, Bull. Amer. Math. Soc. 78

(1972), 1039–1044.

[7] R. Bott, Lectures on characteristic classes and foliations. Springer LNM 279 (1972), 1–94.
[8] R. Bott, G.Segal, The cohomology of the vector fields on a manifold, Topology Volume 16, Issue

4, 1977, Pages 285–298.

[9] Braverman, A., Gaitsgory, D. Deformations of local systems and Eisenstein series. Geom. Funct.
Anal. 17 (2008), no. 6, 1788–1850.

[10] A. Connes, A survey of foliations and operator algebras, Proc. Sympos. Pure Math., AMS
Providence, 32 (1982), 521-628
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