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K-THEORY COHOMOLOGY OF ASSOCIATIVE ALGEBRA

TWISTED BUNDLES

A. ZUEVSKY

Abstract. We introduce and study a K-theory of twisted bundles for associative

algebras Apgq of formal series with an infinite-Lie algebra coefficients over arbi-
trary compact topological spaces. Fibers of such bundles are given by elements

of algebraic completion of the space of all formal series in complex parameters,

sections are provided by rational functions with prescribed analytic properties. In
this paper we introduce and study K-groups KpApgq, Xq of twisted Apgq-bundles

as equivalence classes rEs of Apgq-bundle E. We show that for any twisted Apgq-

bundle E there exist another bundle rE such that an element of KpApgq, Xq for E
can be represented in the form rEs{rrEs. The group KpApgq, Xq homomorphism

properties with respect to tensor product, and splitting properties with respect

to reductions of X into base points. We determine also cohomology of cells of
K-groups for the factor X{Y of two compact spaces X and Y .

1. Data availability statement

The author confirms that:
1.) All data generated or analysed during this study are included in this published

article.
2.) Data sharing not applicable to this article as no datasets were generated or

analysed during the current study.

2. Introduction

The equivalence classes of bundles [1, 6, 12] associated to various algebraic struc-
tures defined on topological spaces allow to use combinations of algebraic and topolog-
ical properties of non-commutative objects in terms of abelian groups. It is natural to
consider bundles using modules of associative algebras. Such bundles are important
for computations in cohomology theory on smooth manifolds, [21, 20, 19]. In [23] we
introduced and studied fiber twisted bundles related to modules of associative algebras
for infinite-dimensional Lie algebras in the form of group of automorphisms torsors
originating from local geometry. Our original motivation for this work was to under-
stand continuous cohomology [3, 4, 7, 9, 10, 17, 19] of non-commutatieve structrues
over compact topological spaces. In particular [4], one hopes to relate cohomology of
infinite-dimensional Lie algebras-valued series considered on complex manifolds with
fiber bundles on auxiliary topological spaces [17]. Let g be an infinite-dimensional Lie

Key words and phrases. Associative algebras, fiber bundles, rational functions with prescribed

properties, K-groups.
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2 A. ZUEVSKY

algebra [14]. Starting from algebraic completion Gpz1,...,znq of the space of g-valued
series in a few formal complex parameters pz1, . . . , znq, we introduce the category
OApgq of associative algebra modules for the associative algebra Apgq originating from
Gpz1,...,znq by means of factorization with respect to two natural multiplications [22].
Local parts of twisted bundles are constructed as principal bundles of products of
Autpgq-modules and spaces of all sets of local parameters of a X-covering. As in the
untwisted case [6], this result is crucial in defining Apgq K-groups and studying the co-
homology their properties. In [6] they explored the vertex operator algebra approach
to K-theory of compact topological spaces. Vertex operator algebra V bundles and
associative algebra bundles related to V gave rise to a series of exact sequences ot
K-groups for a compact topological space. An alternative approach to vertex operator
algebra bundles was given in [2].

In this paper we introduce and determine properties of K-groups KpApgq, Xq de-
fined for twisted Apgq-bundles for the associative algebras Apgq for g on compact
topological space X. In order to formulate the K-theory, we use the axiomatics of
prescribed rational functions. We show, in particular, that all elements of KpApgq, Xq

for a twisted Apgq-bundle E can be represented in the form rEs{rrEs with another bun-

dle rE . The group KpApgq, Xq exhibits natural homomorphism properties with respect
to tensor product of associative algebras, and possesses splitting properties with re-
spect to reductions of X into a point. We study also cohomology of cells of K-groups
for the factor X{Y of two compact spaces X and Y . The cells as short exact sequences
of K-groups of X{Y , X and Y . The cohomology of K-cells is determined explicitly.
K-groups of twisted associative algebra bundles possess non-vanishing cohomology
in contrast to K-groups for vertex operator algebras. Studies of K-groups of bun-
dles considered in this paper find their applications in conformal field theory [2, 18],
deformation theory [11, 15, 16], vertex algebras [8, 13], and algebraic topology [3, 7].

3. Prescribed rational functions originating from matrix elements

In this Section the space of prescribed rational functions is defined as functions with
certain analytical and symmetry properties [13]. They depend on an infinite number
of non-commutative parameters. Let Xpαq “ tXα, α P Zą0u be an open covering of
a compact topological space X which gives a local trivialization of the Apgq fiber
bundle. Let g, be an infinite-dimensional Lie algebra. Denote by G “ Gpz1,...,znq be
the graded (with respect to a grading operator KG) algebraic completion of the space
of all formal series in each of complex formal parameters pz1, . . . , znq individually, with
expansion coefficients as elements g P G, and satisfying certain properties described
below. We denote by px1, . . . , xnq “ pg1, z1; . . . ; gn, znq for pg1, . . . , gnq P G

bn. It is
assumed that on G there exists a non-degenerate bilinear pairing p., .q. G1 “

š

λPCG
˚
λ

denotes the gaded dual for G “
À

λPCGpλq with respect to p., .q. For a fixed θ P G˚,
and varying px1, . . . , xnq consider the matrix elements

F px1, . . . , xnq “ pθ, fpx1, . . . , xnqq , (3.1)

where F px1, . . . , xnq P Cpz1, . . . , znq depends implicitly on pg1, . . . , gnq. In this paper
we consider meromorphic functions of defined on a compact topological space which
are extendable to rational functions Rpfpz1, . . . , znqq on larger domains of several
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complex formal parameters pz1, . . . , znq. Denote by FnC the configuration space of
n ě 1 ordered coordinates in Cn, FnC “ tpz1, . . . , znq P Cn | zi ‰ zj , i ‰ ju. In
order to work with G-elements pg1, . . . , gnq objects on X, we consider converging
rational functions fpx1, . . . , xnq P G of pz1, . . . , znq P FnC. For an arbitrary fixed
θ P G˚, we call a map linear in pg1, . . . , gnq and pz1, . . . , znq, F : px1, . . . , xnq ÞÑ
Rppθ, fpx1, . . . , xnqq, a rational function in pz1, . . . , znq. The poses are only allowed at
at zi “ zj , i ‰ j. We define left action of the permutation group Sn on F pz1, . . . , znq
by σpF qpx1, . . . , xnq “ F

`

g1, zσp1q; . . . ; gn, zσpnq
˘

.
We assume [13] that Gpλq “ tw P G|K0w “ λw λ “ wtpwqu, such that Gpλq “ 0

when the real part of α is sufficiently negative, Moreover we require that dimGpλq ă
8, i.e., it is finite, and for fixed λ, Gpn`λq “ 0, for all small enough integers n.
An admissible G is a C-graded vector space with Gp0q ‰ 0. which satisfies the fol-
lowing conditions. Assume that G is equipped with a map ωg : Grpz1, . . . , znq Ñ

Grrpz1, . . . , znq, pz
´1
1 , . . . , z´1

n qss, g ÞÑ ωgpz1, . . . , znq ”
ř

lPC gl z
l. For each element

g P G, and pz1, . . . , znq P Cbn let us associate a formal series ωgpxq “ ωgpz1, . . . , znq “
ř

ps1,...,snqPCbn
gps1,...,snq zs11 . . . zsnn . For g P G, w P, n P C, gnw “ 0, n " 0,

ω1pz1, . . . , znq “ Id, For g P G, ωgpz1, . . . , znqw contains only finitely many nega-
tive power terms, that is, ωgpz1, . . . , znqw P G. The locality and associativity prop-
erties are assumed for matrix elements (3.1), for g1, g2 P g, w P G, θ P G1, the

series pθ, ωg1pz1q ωg2pz2qwq, pθ, ωg2pz2q ωg1pz1qwq,
´

θ, ωωg1 pz1´z2qg2pz2qw
¯

, are abso-

lutely convergent in the regions |z1| ą |z2| ą 0, |z2| ą |z1| ą 0, |z2| ą |z1 ´ z2| ą 0,
respectively, to a common rational function in z1 and z2. The poles are only allowed
at z1 “ 0 “ z2, z1 “ z2. If g is homogeneous then gmGpnq Ă Gpwtu´m´1`nq. For

a subgroup G Ă Aut G, G acts on G as automorphisms if g ωhpz1, . . . , znq g
´1 “

ωghpz1, . . . , znq, for all g, h P G. For an admissible G the operator KG satisfies the

derivation property ωKGgpz1, . . . , znq “
d
dzωgpz1, . . . , znq. An admissible C-graded

G “
À

λPCGpλq, Gpλq “ tw P G|K0w “ λwu is called an ordinary. We require that
dimGpλq is finite and for fixed λ, Gps`λq “ 0, for all small enough integers s. Let
us assume that Gp0q “ C1. G is called rational if it is a direct sum of irreducible

admissible Gi. From [5, 22] we know that, all of finite number (up to isomorphisms)
irreducible admissible Gi of a rational G, are ordinary modules. For each λ P C de-
note Dpλq “ tλ`n|0 ď n P Zu. The category Og of ordinary G is that for there exist
finitely many complex weights pλ1, ..., λpq such that with P pGq “ tλ P C|Gλ ‰ 0u,
P pGq Ă

Ťp
i“1Dpλiq. Any irreducible module is in Og. If G is rational then Og is ex-

actly the category of ordinary modules. For two g and g1 the functor OgˆOg1 Ñ Ogbg1

such that G1ˆG2 Ñ G1bG2. Next recall the notion of a contragredient module [8].
We denote the natural bilinear pairing on G1ˆG by pw1, wq for w1 P G1 and w P G. It is

called invariant if pw1, ωgpz1, . . . , znqwq “ pωg1w
1, wq, where g1 “ ez

3
Bz p´z´2qK0z´1g,

for ωg1w
1
i P G

1, and g P G. Then [8, 6] G1 with ωgGq is also a module. It is irreducible
if and only if G is irreducible. For any G, G1 ‘G has a natural non-degenerate sym-
metric invariant bilinear pairing defined by pu`u1, w`w1q “ pu,w1q` pw, u1q for any
u, w P G and u1, w1 P G1. In particular, any G can be embedded into a module with
a nondegenerate symmetric invariant bilinear pairing.
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Let pz1, . . . , znq P FnC. Denote by TG the translation operator [13]. Denote by
pTGqi the operator acting on the i-th entry. We then define the action of partial
derivatives on an element F px1, . . . , xnq

BziF px1, . . . , xnq “ F ppTGqi px1, . . . , xnqq,
ÿ

iě1

BziF px1, . . . , xnq “ TGF px1, . . . , xnq, (3.2)

and call it TG-derivative property. For z P C, let

ezTGF px1, . . . , xnq “ F pg1, z1 ` z; . . . ; gn, zn ` zq. (3.3)

Let us denote by InsipAq the operator of multiplication by A P C at the i-th position.
Then we assume that both sides of the expression F ppg1, . . . , gnq, Insipz1, . . . , znq pz1, . . . , znqq “
F
`

Insipe
zTGq px1, . . . , xnq

˘

, are absolutely convergent on the open disk |z| ă mini‰jt|zi´
zj |u, and equal as power series expansions in z. A rational function has KG-property
if for z P Cˆ satisfies pzz1, . . . , zznq P FnC,

zKGF px1, . . . , xnq “ F
`

zKGpg1, zz1; . . . ; gn, zznq
˘

. (3.4)

Now we recall the definition of rational functions with prescribed analytical be-
havior on a domain of X. We denote by Pk : G Ñ Gpkq, k P C, the projec-
tion of G on Gpkq. Following [13], we formulate the following definition. For i,
j “ 1, . . . , pl ` kqn, k ě 0, i ‰ j, 1 ď l1, l2 ď n, let pl1, . . . , lnq be a partition of
pl ` kqn “

ř

iě1

li, and ki “ l1 ` ¨ ¨ ¨ ` li´1. For ζi P C, define hi “ F pωgk1`l1 pzk1`l1 ´

ζ1q . . . ωgkl`ll pzkl`ll´ζlqq, for i “ 1, . . . , l. A rational function F is a rational function

with prescribed analytical behavior if it satisfies properties (3.2)–(3.4). In addition
to that, it is assumed that the function

ř

pr1,...,rlqPZl
F pPr1h1, ζ1; . . . ;Prlhl, ζlq, is ab-

solutely convergent to an analytically extension in pz1, . . . , znql`k in the domains
|zki`p ´ ζi| ` |zkj`q ´ ζj | ă |ζi ´ ζj |, for i, j “ 1, . . . , k, i ‰ j, and for p “ 1, . . . ,
li, q “ 1, . . . , lj . The convergence and analytic extention do not depend on complex
parameters pζql. On the diagonal of pz1, . . . , znql`k the order of poles is bounded
from above by escribed ppositive numbers βpgl1,i, gl2,jq. For pg1, . . . , gl`kq P G

bpl`kq,
zi ‰ zj , i ‰ j |zi| ą |zs| ą 0, for i “ 1, . . . , k, s “ k ` 1, . . . , l ` k the sum
ř

qPC F pωg1px1q . . . ωgkpxkqPqpωg1`kpz1`kq . . . ωgl`kpxl`kqqq, is absolutely convergent

and analytically extendable to a rational function in variables pz1, . . . , znql`k. The
order of pole that is allowed at zi “ zj is bounded from above by the numbers
βpgl1,i, gl2,jq.

For m ě 1 and 1 ď p ď m ´ 1, let Jm;p be the set of elements of the group
Sm which preserve the order of the first p numbers and the order of the last m ´ p
numbers, i.e., Jm,p “ tσ P Sm | σp1q ă ¨ ¨ ¨ ă σppq, σpp ` 1q ă ¨ ¨ ¨ ă σpmqu. Denote
by J´1

m;p “ tσ | σ P Jm;pu. In what follows, we apply the condition
ÿ

σPJ´1
n;p

p´1q|σ|σpF pgσp1q, z1; . . . ; gσpnq, znqq “ 0. (3.5)

on certain rational functions. The space Θ
`

n, k,Gpz1,...,znq, U
˘

of n formal complex
parameters matrix elements F px1, . . . , xnq as the space of restricted rational functions



K-THEORY COHOMOLOGY OF ASSOCIATIVE ALGEBRA TWISTED BUNDLES 5

with prescribed analytical behavior on a FnC-domain U Ă X, and satisfying TG- and
KG-properties (3.2)–(3.4), (3.5).

4. The associative algebra Apgq

In this Section we remind [5, 22] the definition and properties of the associative

algebra Apgq for g. For any homogeneous vectors h, rh P G, one defines the bilinear

extention to GˆG of the multiplications h ˚κ rh “ Resz

ˆ

p1` zqwtphq
ř

lPC
hnz

l´κ

˙

.rh,

for κ “ 1, 2. Here Resz denotes the coefficient in front of z´1. For h, rh P G, define

Apgq “ Gpz1,...,znq{pspanph ˚2 rhqq
θ, θ “ 0, 1. For θ “ 0 we get back to Gpz1,...,znq with

associativity property GˆG and expressed via matrix elements. For θ “ 1 we obtain
an associative algebra associated with ordinary associativity. In [22, 6] we find the
following

Theorem 1. The bilinear operation ˚1 turns Apgq into an associative algebra with the
linear map φ : g ÞÑ exp

`

´z2Bz
˘

p´1q´zBzg, inducing an anti-involution ν on Apgq.

In what follows, let us denote by W “ Wpz1,...,znq Ă Gpz1,...,znq an Apgq-module.
The space of lowest weight vectors of G is then defined as LpW q “ tg P G,w P

W |gwtphq`mw “ 0, h P W,m ě 0u. With W “
À

λPCWpλq, each homogeneous sub-
space LpW qpλq “ LpW qXWpλq of the natural grading LpW q “

À

λPC LpW qpλq is finite
dimensional [6, 22]. It is easy to see the following

Lemma 1. Let W , ĂW be two Apgq-modules with an Apgq-module homomorphism

ϕ : W Ñ ĂW . Then ϕpLpW qq Ă LpĂW q. In particular, if ϕ is an isomorphism then

ϕpLpW qq “ LpĂW q.

An associative algebra Apgq is called semisimple if it is a direct sum of full matrix
algebras. Let Apgq and Aprgq be two associative algebras with anti-involutions νApgq
and νAprgq respectively. Then one has

Lemma 2. ApgqbCAprgq is an associative algebra with anti-involution νApgqb νAprgq.

We denote by W 1 the dual space to W with respect to the form p., .q. The following
lemma is obvious.

Lemma 3. W 1 is an Apgq-module such that pa m1,mq “ pm1, νpaq mq, for a P Apgq,
m1 PW 1, m PW , and ν is an anti-involution.

For wi P W , i “ 1, 2, and a P Apgq, a form p., .q defined on W is called invariant
if pa w1, w2q “ pw1, νpaq w2q. The category OApgq consists of Apgq-modules W with

λi P C, 1 ď i ď p, such that W “
Àp

i“1,
ně0

Wpλiq, is a direct sum of finite dimensional

Apgq-modules, and HomApgq

`

Wpλq,Wpµq

˘

“ 0, if µ ‰ λ. From [6] we have

Theorem 2. For homogeneous g P G extended linearly to all G and Wp0q ‰ 0, LpW q
is a left Apgq-module, and the linear map g ÞÑ gpwtpgq´1q|LpW q: W Ñ EndpLpW qq,
induces a homomorphism from W to EndpLpW qq. For all λ P C, LpW qpλq is an
finite-dimensional Apgq-module.
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5. Twisted Apgq-bundles

In this Section we recall [23] the construction of associative algebra Apgq twisted
bundles. Here we show how to organize elements of the space Θ

`

n, k,Wpz1,...,znq,λ, Xα

˘

of prescribed rational functions into sections of a twisted Apgq-bundle on X. Let H
be a subgroup of the group Autpz1,...,znq OX of n independent formal parameters
pz1, . . . , znq automorphisms on X. A non-empty set X is called a group H-torsor [2] if

it is endowed with a simply transitive right action of H. This means that for ξ, rξ P X ,

there exists a unique h P H such that ξ ¨ h “ rξ, where for h, rh P H the right action is

given by ξ ¨ ph ¨ rhq “ pξ ¨ hq ¨ rh. This construction allows us to identify X with H by
sending ξ ¨ h to h.

Similar to [2], one sees that certain subspaces W Ă Gpz1,...,znq are H-modules. For
H-torsor Xα of its module W and Xα, let us associate the Xα-twist of W EXα “
W

Ś

H
Xα “ W ˆ Xα{ tpw, a ¨ ξq „ paw, ξqu, for ξ P Xα, a P H, and w P W . The

isomorphisms ipz1,...,znq,Xα : W ĂÑ EXα of W define a representation of H on W . Then
EXα is canonically identified with the twist of W by the H-torsor of Xα. Elements
of Θ

`

n, k,Wpz1,...,znq, Xα

˘

form sections F px1, . . . , xnq. The principal bundle for the
group H on X provides the construction of local parts of a twisted Apgq-bundle. Let
AutXα be the space of all sets of local formal parameters on Xα. We define the
H-twist of W Epz1,...,znq “W

Ś

H
AutXα .

Let us assume that a C-grading on W is induced by a K0-graidng defined on G Let
G Ă AutpGq be a W -grading preserving subgroup. Denote by OG,Apgq a subcategory
of OApgq consisting of Apgq-modules W such that G acts on W as automorphisms.
By using ideas of [2], let us define the local part EpWpz1,...,znq,pλqq of a tweisted Apgq-

bundle via matrix elements F px1, . . . , xnq that belong to Θ
`

n, k,Wpz1,...,znq,pλq

˘

for all
n, k ě 0. on a finite part tXα, α P I0u of a covering tXαu ofX. By using the properties
of prescribed rational functions we form a principal H-bundle, which is a fiber bundle
EpWpz1,...,znq,pλqq with the fiber space provided by elements fpx1, . . . , xnq P W , and
defined by trivializations ipz1,...,znq : F px1, . . . , xnq “ pθ, fpx1, . . . , xnqq Ñ Xα, with a
continuous free and transitive F px1, . . . , xnq-preserving right action F px1, . . . , xnq ˆ
H Ñ F px1, . . . , xnq. The projection AutXα Ñ X is a principal H-bundle similar
to [2]. H-torsor AutXα is the fiber of this bundle over Xα. For a finite-dimensional
H-module Wipz1,...,znq,λ

, let EpWpz1,...,znq,λq “
À

n,kě0Wipz1,...,znq,λ
Ś

H
AutXα , be the

fiber bundle associated to Wipz1,...,znq,λ
, AutXα , with sections provided by elements

of Θpn, k,W,Xαq, for n, k ě 0. On X we can choose tXαu such that the bundle
EpWpz1,...,znq,λq over Xα is Xα ˆ F px1, . . . , xnq. The map EpWpz1,...,znq,λq : Cn Ñ X
is the fiber bundle EpWpz1,...,znq,λq with fiber fpx1, . . . , xnq, the total space Cn of

EpWpz1,...,znq,λq, and X is its base space. For every Xα of X i´1
pz1,...,znq

is homeomorphic

to Xa ˆ Cn. For fppx1, . . . , xnqq : i´1
pz1,...,znq

Ñ Xα ˆ Cn, that P ˝ fppx1, . . . , xnqq “
ipz1,...,znq ˝ i

´1
pz1,...,znq

pXαq, where P is the projection map on Xα.

A twisted fiber bundle E over X associated to Apgq-module with the fiber W P

OG,Apgq and Θ pn, k,W,Xq, n, k ě 0-valued sections is a direct sum of vector bun-
dles E “

À

λPC EpWpz1,...,znq,λq, such that all transition functions are Apgq-module
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isomorphisms. It includes a family of continuous isomorphisms Hα “ tHα,λ, λ P Cu,
Hα,λ : EpWpλqq|Xα ÑWipz1,...,znq,λ

Ś

G
AutXα , of fiber bundles such that for transition

functions gαβ,λ “ Hα,λ ˚2 H
´1
β,λ, for all λ P C. Then gαβpxq “ pgαβ,λpξqq : W Ñ W ,

are Apgq-module isomorphisms for any ξ P Xα

Ş

Xβ where the transition functions
gα,βpxq are G-valued.

Now we recall properties of twisted Apgq-bundles [23]. For Apgq “ C, the twisted
Apgq-bundle is a classical complex vector bundle over X. We have

Lemma 4. For E1, E2 Apg1q- and Apg2q-bundles E1 b E2 is Apg1q bC Apg2q-bundle
over X.

For E , let us introduce E 1 “ ‘λPCpEpWpλqqq
˚ which is, due to properties of the non-

degenerate bilinear pairing p., .q, is also a Apgq-bundle. For two bundles E and E 1 on
X, a map η : E Ñ E 1, is called a bundle morphism if there exist a family of continuous
morphisms of fiber bundles ηλ : EpWpλqq Ñ E 1pWpλqq, such that with η “ pηλq, for all
λ P C, and ηλ : E Ñ E 1, is an Apgq-module morphism. From [6, 23] we find

Lemma 5. E
À

E 1 is a twisted Apgq-bundle, endowed with non-degenerate symmetric

invariant bilinear pairing
´

g˚αβpξqθ, gαβpξqu
¯

“ pθ, uq, independent of gαβ for all α,

β P I, ξ P Xα X Xβ, ξ P G, θ P G1, and induced by the natural bilinear pairing on
G‘G1.

A twisted Apgq-bundle E is called trivial if there exists an Apgq-bundle isomorphism
ϕ : E Ñ W ˆ X, here W ˆ X is the Apgq-bundle on X with W as fibers. For any
Apgq-module M P OApgq we denote the trivial Apgq-bundle on X by M. Let us now
understand how the notion of a trivial bundle is determined by the definition of a
twisted Apgq-bundle. Let W P OApgq. A subgroup H Ă Autpz1,...,znqOX determines
a trivial bundle W ˆ X if H satisfies the following properties. W is a H-module.
The H twist EpXαq preserves W under Autpz1,...,znqOXα-actions by isomorphisms
ipz1,...,znq. The local part of the bundle W ˆ X is given by the principle H-bundle
with H-actions preserving sections F px1, . . . , xnq Ñ Xα. The trivial bundle W ˆX
is the direct sum of trivial bundles with transition functions g given by W -preserving
triansition functions of tXαu, α P I. From [23] we have

Proposition 1. For any twisted Apgq-bundle E, there exists a twisted Apgq-bundle
rE such that E

À

rE is a trivial twisted Apgq-bundle with a Apgq-module W -preserving
action of a subgroup of Autpz1,...,znq OX .

Twisted Apgq-bundles possess the following homotopy-stability property:

Proposition 2. For a homotopy τt : rX Ñ X, 0 ď t ď 1, of a compact Hausdorff

space rX, and a twisted Apgq-bundle E over X, τ˚0 pEq » τ˚1 pEq.

We then have

Proposition 3. For a rational Apgq-module W with a decomposition into irreducible
modules W i, any twisted Apgq-bundle over X E » ‘pi“1VpEqibWi with trivial twisted
bundles Wi associated to W i, and vector bundles VpEqi.
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Proof. Let E be a twisted Apgq-bundle with fiber W “ ‘
p
i“1Mi bW i, where Mi is

the space of multiplicity of W i in W . Then each set of transition functions tgαβu
defines a map hαβ : XαXXβ Ñ

Àp
i“1 EndpMiq. For each i we define a vector bundle

VpEqi over X with fiber Mi and transition functions thαβ |α, β P Iu. Then we have a
Apgq-bundle VpEqi bWi. ˝

6. K pApgq, Xq-group for twisted Apgq-bundles

In this Seciton, for an associative algebraApgq, we introduce the K-groupKpApgq, Xq
of a twisted Apgq-bundle on a compact topological space X, and study correspond-
ing properties. We follow the set-ups of [1, 6] with certain necessary extensions.
According to the definition of a twisted Apgq-bundle E , the set of its equivalence
classes rEs is an abelian semigroup with addition given by the direct sum. We de-
note by KpApgq, Xq the abelian group generated by the set of equivalence classes
rEs of a twisted Apgq-bundle E . For g “ C, the group KpApgq, Xq becomes the or-
dinary group KpXq as in [1]. Let us define by Ω0 “

`

g,W Ă Gpz1,...,znq,KG, p., .q ,

θ, βpg1, g2q,K0;H, ipz1,...,znq, Xα, α P I
˘

the extented moduli space for a twisted Apgq-
bundle defined on a compact topological space X. Let us now describe the set of
parameters the isomorphism classes of twisted Apgq-bundles depend on. Recall that
H Ă Autpz1,...,znq OX of independent formal parameters pz1, . . . , znq automorphisms
on X. The construction involves the category of subsets W Ă G which is a H-
module. H-torsors and Xα-twists of W on Xα are determined by H, AutXα , and
W . The elements of Θ pn, k,W,Xαq give rise to a collection of sections F px1, . . . , xnq
as prescribed rational functions. The space Θ

`

n, k,Wpz1,...,znq,λ

˘

for all n, k ě 0,
of prescribed rational functions is fixed by assumptions of Lemma. The module
W Ă OpApgqq is endowed with a C-grading generated by K0. Note that the trivi-
alizations ipz1, . . . , znq : F px1, . . . , xnq “ pθ, fpx1, . . . , xnqq Ñ Xa are chosen in such

way that they preserve the space Θ
`

n, k,Wpz1,...,znq,λ

˘

. The choice of trivializations
ipz1,...,znq,Xα : W ĂÑ EXα , is coherent with the choice of tXαu. Suppose we take an-
other system of domains tX 1α1u. One shows that the construction of the bundle does
not depend on the choice of transition functions on the intersections XαXX

1
α1 . Thus,

the equivalence classes do not depend on the choice of a covering. Since, by con-
struction, the transition functions gαβpxq “ pgαβ,λpξqq : W Ñ W , are Apgq-module
isomorphisms for any ξ P Xα

Ş

Xβ , then the construction of the bundle is invariant of

the choice of transition functions. The twisted Apgq-bundle rE in Proposition 1 is con-
structed as follows [23]. Define an Apgq-bundle injective and bilinear form preserving
homomorphism ψ : E Ñ W ‘ s ˆ X for some s, sending E to a trivial Apgq-bundle.

Let us take rE “ ψpEq: with respect to the bilinear form p., .q. As the dual to E , rE is
an Apgq-bundle on X. From Proposition 1 we infer

Lemma 6. For the fixed set of data pg, W Ă G, KG-grading, p., .q, θ P W 1
pz1,...,znq

,

βpg1, g2qq of Ω0, the elements of KpApgq, Xq are of the form rEs{rrEs|H.W up to W -
preserving action H.W of a subgroup H Ă Autpz1,...,znq OH.X , where H.X denotes
the H preserving section and transition functions.
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The statement of following Lemma follows from Lemma 4 and the construction of
a twisted Apgq-bundle.

Lemma 7. For two infinite-dimensional algebras g and rg, the tensor product of the
twisted Apgq- and Aprgq-bundles induces a natural group homomorphism KpApgq, XqbZ
KpAprgq, Xq Ñ KpApgq bAprgq, Xq.

According to the definition of a twisted Apgq-bundle E , the set of isomorphis classes
of E is determined in particular by H-invariant modules W and H-invariant sections
F pz1, . . . , znq. The axioms of prescribed rational functions F px1, . . . , xnq form a func-
tional representation of G with additional analytic behavior properties. Lemma 7
shows that for each s elements of the K-group is the tensor product of Apgq where
each element if represented by commutative elements of F pz1, . . . , znq. Therefore,
from Lemma 7 we obtain

Lemma 8. With Apgqb0 » C, the group K “
À

sě0
K pApgqbs, Xq form a commutative

algebra over KpApgq, Xq.

Next we state

Lemma 9. Any element of KpApgq, Xq has the form rEs{rMs, where E is a twisted
Apgq-bundle and M is a Apgq-module. For two equivalent classes rEs, rE 1s P KpApgq, Xq,
there exists a Apgq-module M such that E – E 1 up to the trivial Apgq-bundle M.

Proof. As we have shown in Lemma 6, for every E one constructs a bundle E 1 such
that every element of KpApgq, Xq is of the form rEs{rE 1s up to Apgq-module M -
preserving action of a subgroup H Ă Autpz1,...,znq OX . By Proposition 1, for any

twisted Apgq-bundle E , there exists a twisted Apgq-bundle rE and a Apgq-module M

such that E ‘ rE – M. Thus we have rE 1s{rEs “ rE 1 ‘ rEs{rE ‘ rEs “ rE 1 ‘ rEs{rMs.

If rEs “ rE 1s then there exists a Apgq-bundle E2 such that E ‘ E2 – rE ‘ E2. Let E
be a Apgq-bundle such that E2 ‘ E – M for some Apgq-module M . Then we have
E ‘M – E 1 ‘M. ˝

Here we describe the group KpApgq, pξ1, . . . , ξnqq for pξ1, . . . , ξnq P X. According to
the construction of a twistedApgq-bundle, one has a subgroup H0 Ă Autpzξ1 ,...,zξn qOpξ1,...,ξnq
over a set pξ1, . . . , ξnq P X, such that an Apgq-module W is H0-module. The local part
of E is defined by Epξ1,...,ξnq H0-twists of Wpzξ1 ,...,zξn q

attached to pξ1, . . . , ξnq via map-

pings ipz1,...,znq : Wpzξ1 ,...,zξn q
Ñ Epξ1,...,ξnq. An invariant H0-action on F px1, . . . , xnq is

assumed. Basically, Epξ1,...,ξnq “ Wpzξ1 ,...,zξn q
ˆ

Sn
Autpξ1,...,ξnq. The equivalence classes

rEs|pξ1,...,ξnq of twisted Apgq-bundle E over a set of points pξ1, . . . , ξnq P X. are given
by equivalence classes of H0-invariant Autpzξ1 ,...,zξn qOpξ1,...,ξnq modules Wpzξ1 ,...,zξn q

.

If Apgq “
Àp

i“1Apgq is semisimple up to isomorphisms, then KpApgq, pξ1, . . . , ξnqq is
isomorphic to the group Zpˆ. . .ˆZp with generators rM1s, . . . , rMps for inequivalent
Apgq-modules M1, . . . ,Mp. Generalizing results of [6], we obtain.

Lemma 10. For a semisimple associative algebra Apgq KpApgq, Xq “ KpXq bZ
KpApgq, pξ1, . . . , ξnqq.
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Proof. For rational G correspoding twisted Apgq-bundle E is determined by certain
vector bundles. Assume that its fiber M “ ‘

p
i“1EibM

i where tM1, . . . ,Mpu contains
all inequivalent irreducible Apgq-modules, and Ei is the space of multiplicity of M i in
M . Similar to Proposition 3, we know that if Apgq is semisimple then there exist vector

bundles VpEqi for i “ 1, . . . , p such that E »
Àp

i“1 V pEq
i
bMi, where trivial bundles

Mi correspond to inequivalent set of Apgq-modules M i. According our description
of a twisted Apgq-bundle over a set pξ1, . . . , ξnq P X, one has a map to equivalence

classes which gives Kp
Àp

i“1Apgq
i, Xq “

Àp
i“1KpApgq

i, Xq “ Kp
Àp

i“1 V pEq
i
, XqbZ

KpMiq “ KpXq bZ KpApgq, pξ1, . . . , ξnqq. ˝

7. Cohomology of K-cells

By using results of [6], we first define K-groups for twisted associative algebra
bundles on factor spaces of compact topological spaces. Let Cc denote the category
of compact spaces, C0 the category of compact spaces with distinguished basepoints.
We define a functor C0 ˆ C0 Ñ C0, by associating two compact topological spaces
X, Y to a compact space X{Y with base points pξ1, . . . , ξnq “ Y {Y . In the case
Y ‰ tHu, X{Y is the disjoint union of X with points pξ1, . . . , ξnq, and for X P Cc, we
denote X0 “ X{ tHu. If X is in C0, we define a functor Ker i˚0 pXq to be the kernel
of the map i˚0 : KpApgq, Xq Ñ KpApgq, pξ1, . . . , ξnqq where i0 : pξ1, . . . , ξnq Ñ X is
the inclusion of the basepoints. If c : X Ñ pξ1, . . . , ξnq is the collapsing map then
c˚ induces a splitting KpApgq, Xq “ Ker i˚0 pXq ‘ KpApgq, pξ1, . . . , ξnqq. It is clear
that KpApgq, Xq » Ker i˚pX0q. Now we define KpApgq, X{Y q “ Ker i˚0 pX{Y q. In
particular, KpApgq, Xq » KpX0q.

Now let us introduce [6] the generalized smash product operator in C0, for X, Y P
C0. We put X^Y “ XˆY {X_Y for X_Y “ Xˆtpξ1, . . . , ξnqu

Ť

tpξ11, . . . , ξ
1
nquˆY ,

being base-points of X, Y respectively. For any triple of spaces X, Y , Z P C0, one
has a natural homeomorphism X ^ pY ^ Zq » pX ^ Y q ^ Z. Let Iptq, 0 ď t ď 1
we denote the boundary BIptq “ t0, 1u. Then Iptq{BIptq » S1 P C0. For X P C0 we
define the operator S of the reduced suspension on X as SX “ S1 ^X P C0. Then
one has the s-th power of iterated suspensions SsX – Ss ^X. For X P C0 and s ě 0
we consider Ker i˚0 pSsXq. For X, Y P Cc let us define KpApgq, X{Y q´s “ pKer i˚0 q

´s

pX{Y q “ Ker i˚0 pSspX{Y qq, KpApgq, Xq´s “ KpApgq, X0q
´s = Ker i˚0 pSspX0qq. We

next define the cone functor C : Cc Ñ C0 on X by CX “ IptqˆX{t0uˆX, and identify
X with the t1u ˆX Ă CX. One calls CX{X “ Iptq ˆX{BIptq ˆX the unreduced
suspension of X. In what follows, we assume that X is a finite CW-complex and
Y Ă X is a CW sub-complex. Next, we have a modification of a Lemma from [6] in
our context of twisted Apgq-bundles:

Lemma 11. For ξ P Ker i˚0 pSXq, T ptq “ 1´ t, 0 ď t ď 1 such that pT ^ 1q : SX Ñ

SX and the identity on X P C0. Then pT ^ 1q˚ξ “ ´ξ for ξ.

Proof. By construction of a twisted Apgq-bundle and according to Lemma 9, for any
ξ P Ker i˚0 pSXq, there exist a Apgq-bundle E and a Apgq-module M such that ξ “
rEs{rMs|H.M , where M is a trivial bundle associated to M . For two cones C1X and
C2X, on the contructible C1XYC2X “ C1XC2X “ SX, the restrictions E |CX , E |C2X
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of E are trivial. Then we can define maps ρi : E |CiX Ñ M ˆ CiX, 1 ď i ď 2, such
that ρ “ ρ2 ˝ ρ

´1
1 “ ρs : X Ñ AutGpz1,...,znqpMq, s P C. According to definition of

the smash product above, pT ^ 1q˚ acts on rEs x Ñ ρpxq´1 “ pρsq´1 resulting in
E 1 P KpApgq,SXq. Since ρi are isomorphisms of M , from Lemma 5 we obtain that
classes of isomorphisms of E and E 1 are the direct sum of classes of M and M1 in
KpApgq,SXq. ˝

Now we establish the cohomological properties of KpApgq, X{Y q.

Lemma 12. For inclusions i : Y Ñ X, j : X0 Ñ X{Y , the cohomology of the cell

KX{Y “ KpApgq, X{Y q
j˚

Ñ KpApgq, Xq
i˚
Ñ KpApgq, Y q is given by HKpApgq,X{Y q “

Ker i˚{Im j˚ “ Autpz1,...,znqOX{Y |H.W .

Proof. Let Y0 “ Y { tHu. The composition i˚ ˝ j˚ is induced by the composition
j ˝ i : Y0 Ñ X{Y , and i˚ ˝ j˚ “ 0. Suppose now that ξ P Ker i˚. According to Lemma
9, ξ is represented in the form prEs{rMsq|H.Wpz1,...,znq where E is a twisted Apgq-

bundle over X and M is a Apgq-module. Since i˚ξ “ 0, it follows that rEs|Y “ rMs

in KpApgq, Y q. According to Lemma 9, this implies that there exists a Apgq-module
M 1|H.W such that pE‘M1q|H.W “ pM‘M1q|H.W , and the bundle M1 is trivial. Now

as Y is a CW sub-complex of X, there exists an open neighborhood rY of Y in X such

that Y satisfies the following condition with respect to rY . For 0 ď t ď 1, one can find a

map fptq : rY Ñ rY such that fp1q “ Id
rY , fp0q|Y “ IdY , and fp0qprY q “ Y . By Lemma

2 the triviality of the blow-up pE ‘M1q|
rY of pE ‘M1q|Y is homotopically preserved,

on rY . This defines a bundle E‘M1{α on X{Y , and an element τ “ rE‘M1{γs{rM‘

M1s P Ker i˚0 pX{Y q “ KpApgq, X{Y q, where I˚ : KpApgq, Xq Ñ KpApgq, ξq. Since
M1 is trivial, j˚pbτq “ rE ‘ M1{γs{rM ‘ M1s|H.W “ rEs{rMsH.W “ bξ, where
b P Autpz1,...,znq OX{Y . Thus Ker i˚ “

`

Autpz1,...,znq OX{Y

˘

Im j˚. ˝

Lemma 13. For X{Y P Cc and Y P C0, the cohomology of the sequence KpApgq, X{Y q Ñ
Ker i˚0 pXq Ñ Ker i˚0 pY q, is given by Autpzξ1 ,...,zξn q Opξ1,...,ξnq|H.W up to the twist
EH.W .

Proof. The statement follows from Lemma 12 and the decomposition isomorphisms
KpApgq, Xq » Ker i˚0 pXq‘KpApgq, pξ1, . . . , ξnqq, KpApgq, Y q » Ker i˚0 pY q‘KpApgq, pξ

1
1, . . . , ξ

1
nqq.

Thus, we obtain the statement of the lemma with the twist inserted. ˝

For s ě 0 we next define the p´sq-th power of the cell of K-groups

K´sX{Y “ KpApgq, X{Y q´s
j˚

Ñ KpApgq, Xq´s
i˚
Ñ KpApgq, Y q´s.

For a map ν1 : Z Ñ Z{X, and the isomorphism ϑ : KpApgq, Z{Xq Ñ KpApgq, Y q´1,
let us define the operator δpsq : KpApgq, X{Y q´s Ñ KpApgq, X{Y q´s´1, as the op-
erator δ “ ν˚1 ˝ ϑ

´1 acting on KpApgq, Y q´s. The main proposition of this paper
is

Proposition 4. The s-th cell cohomology Hs
KX{Y “ Ker δp´sq{Im δ´ps`1q, of the

left-infinite sequence

¨ ¨ ¨
δp´s´2q

ÝÑ K´s´1
X{Y

δ´ps`1q

ÝÑ K´sX{Y
δp´sq
ÝÑ . . .

δp´1q

ÝÑ K0
X{Y

δp0q
Ñ 0,
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for s ě 0, is given by Autpz1,...,znqOSspX{Y q|H.W .

Proof. The proof is a modification of the proof of Theorem (5.3) of [6] for our case.

Let us set K0
0 “ Ker i˚0 pX{Y q

j˚

Ñ Ker i˚0 pXq
i˚
Ñ Ker i˚0 pY q. One can see that the

cohomology of the main sequence is equivalent to the cohomology of the sequence

. . .
δp´2q

Ñ K´1
X{Y

δp´1q

Ñ K0
0
δp0q
Ñ 0, (7.1)

defined by H0
KX{Y “ Ker δp´1q{Im δp0q is Autpz1,...,znq OX{Y |H.W . By replacing X{Y

by SspX{Y q for s ě 1, we obtain cohomology of an infinite sequence continuing (7.1).
Then by replacing X{Y by X0{Y0 where X{Y is any pair in Cc ˆ Cc, we get the
cohomology of the infinite sequence in our Proposition. Recall that Lemma 13 gives
the cohomology of mappings inside the cell K0 of (7.1). To determine cohomology
of other parts of the sequence will apply Lemma 13 to Z “ XCY “ X

Ť

CY , Z{X
and ZCX{Z “ pZ

Ť

CXq{Z. Let ν1 : Z Ñ Z{X and ν2 : X Ñ Z bet two inclusions.
By considering Z{X we get the cohomology HK0,Z “ Ker ν˚2 {Im ν˚1 of the sequence

KpApgq, Z{Xq
ν˚1
Ñ Ker i˚0 pApgq, Zq

ν˚2
Ñ Ker i˚0 pXq, given by Autpzξ1 ,...,zξn q Opε1,...,εnq

for pε1, . . . , εnq beeing base points for Z{X. Let rY be the neighborhood of Y in X as
in Lemma 12. Note that CY is contractible. Then by Lemma 2 any twisted Apgq-

bundle E on Z is trivial on rYCY . Therefore p˚ : Ker i˚0 pX{Y q Ñ Ker i˚0 pZq is an
isomorphism where p : Z Ñ Z{CY “ X{Y for the collapsing map. The have the

composition j˚ “ ν˚2 ˝ p
˚ of maps. We then obtain the sequence KpApgq, Y q´1 δp´1q

Ñ

KpApgq, X{Y q
j˚

Ñ Ker i˚0 pXq given by Ker i˚0 pSY q´1 δ
p´1q

Ñ Ker i˚0 pX{Y q
j˚

Ñ Ker i˚0 pXq,

which cohomology is HK0,X{Y “ Ker j˚{Im δp´1q “ Autpzξ11 ,...,zξ1n q
Opε11,...,ε1nq. We

apply Lemma 13 to approximations pXC1
Y q and pXC1

Y qC2
X{pXC1

Y q where we have
denoted the cones Ci, i “ 1, 2. Thus we obtain the sequence

KpApgq, pXC1
Y qC2

X{pXC1
Y qq

ν˚3
Ñ Ker i˚0 ppXC1

Y qC2
Xq

ν˚4
Ñ Ker i˚0 pXC1

Y q. (7.2)

One shows that this sequence is isomorphic to the sequence in K´1
X{Y of (7.1). Accord-

ing to the definition of δ, it is enough to will show the equivalence of the following
two maps

KpApgq, pXC1Y qC2X{XC1Y q
ν˚3
Ñ Ker i˚0 ppXC1Y qC2Xq

ν˚5
Ñ Ker i˚0 pC2X{Xq (7.3)

“ KpApgq, Xq´1 i˚
Ñ KpApgq, Y q´1 “ Ker i˚0 pC1Y {Y q.

Using Lemma 11, according to definition of Ci, i “ 1, 2 we obtain the sequence
Ker i˚0 pSY q Ñ KpApgq, C1Y {Y q Ñ KpApgq, pC1Y qC2

Y q, which is equivalent to
KpApgq, C2Y {Y q Ñ Ker i˚0 pSY q. Finally, we get

H0
KX{Y “ Ker δp0q{Im δp´1q “ HK0

0
“ Autpz1,...,znq OX{Y |H.W .

˝
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