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Mădălina Petcu

Bangwei She

Preprint No. 31-2022

PRAHA 2022





An entropy stable finite volume method for a compressible
two phase model∗
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Abstract

We study a binary mixture of compressible viscous fluids modelled by the Navier-Stokes-
Allen-Cahn system with isentropic or ideal gas law. We propose a finite volume method for
the approximation of the system based on upwinding and artificial diffusion approaches. We
prove the entropy stability of the numerical method and present several numerical experiments
to support the theory.

Keywords: compressible Navier-Stokes-Allen-Cahn; finite volume method; entropy stability

1 Introduction

Binary mixture of compressible fluids finds its wide applications in physics. Despite the existence
of a rich mathematical theory of such problems [1, 2, 8, 10], the corresponding numerical analysis

∗The research of E.F. and B.S. leading to these results has received funding from the Czech Sciences Foundation
(GAČR), Grant Agreement 21–02411S. The Institute of Mathematics of the Academy of Sciences of the Czech
Republic is supported by RVO:67985840.
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is far from well understood. In this paper, we are interested in a finite volume approximation of
the following model in the time space cylinder (0, T )× Ω, Ω ⊂ Rd, d = 2, 3:

∂t%+ divx(%u) = 0, (1.1a)

∂t(%u) + divx(%u⊗ u) +∇xp = divxS− divx

(
∇xχ⊗∇xχ−

1

2
|∇xχ|2I

)
+∇xF(χ) (1.1b)

∂tχ+ u · ∇xχ = ∆xχ−
∂F(χ)

∂χ
(1.1c)

where %,u and χ represent the fluid density, velocity, and the order parameter, respectively. More-
over, F = F(χ) is Ginzburg-Landau potential, S = S(∇xu) is the viscous stress

S(Dxu) = 2µ

[
Dxu−

1

d
divxuI

]
+ ηdivxuI, Dxu =

1

2

(
∇xu +∇t

xu
)
.

The fluid pressure p is determined by the state equation. In this paper, we consider two variant
of state equations:

• Isentropic case. The pressure is a function of density

p = p(%) = %γ. (1.2a)

• Non-isothermal case. The pressure is a function of density and absolute temperature ϑ

p = p(%, ϑ) = %ϑ with

cv
(
∂t(%ϑ) + divx(%ϑu)

)
− κ∆ϑ = −pdivxu + S : Dxu + (∆xχ−F ′(χ))2.

(1.2b)

For the sake of simplicity, we suppose the no–slip boundary conditions for the velocity, together
with the Neumann boundary conditions for the order parameter, i.e.,

u|∂Ω = 0, ∇xχ · n|∂Ω = 0 for the isentropic case,

and, in addition, ∇xϑ · n|∂Ω = 0 for the non-isothermal case.
(1.3)

To close the system we impose the initial conditions

(%, χ,u)(0) = (%0, χ0,u0) with %0 > 0 for the isentropic case

and, in addition, ϑ(0) = ϑ0 > 0 for the non-isothermal case.
(1.4)
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1.1 Stability of the system

It is easy to check the system (1.1)–(1.4) satisfy the energy balance equation

d

dt

∫
Ω

E dx+

∫
Ω

(
S : Dxu + (∆xχ−F ′(χ))

2
)

dx = 0 (1.5a)

for the isentropic case, and
d

dt

∫
Ω

E dx = 0 (1.5b)

for the non-isothermal case, where E is the total energy function of the system

E =

{
1
2
%|u|2 + 1

2
|∇xχ|2 +H(%) + F(χ) for the isentropic case,

1
2
%|u|2 + 1

2
|∇xχ|2 + cv%ϑ+ F(χ) for the non-isothermal case,

where H(%) = cv%
γ and cv = 1/(γ − 1).

For the isentropic case, the total energy plays the role of the mathematical entropy. When
considering the non-isothermal case, the system satisfies the following entropy balance

d

dt

∫
Ω

%s dx ≥
∫

Ω

1

ϑ

[
S : Dxu + (∆xχ−F ′(χ))

2
+
κ|∇xϑ|2

ϑ

]
dx. (1.6)

where s = log(ϑcv/%) is the specific entropy.
The goal of this paper is to propose a finite volume method preserving the discrete variant

of the above stabilities (1.5a)–(1.6), namely the entropy/energy stability. The rest of the paper
is organized as follows. In Section 2 we introduce a finite volume method for the approximation
of the problem. In Section 3 we analyze the energy/entropy stability of the numerical solutions.
Further, in Section 4 we validate the theoretical results by numerical experiments. Section 5 is the
conclusion.

2 Numerical method

In this section we propose a finite volume method for the approximation of the system (1.1)–(1.4).

Primary grid. Let Ωh be either a regular and quasi-uniform unstructured triangulation of Ω in
the sense of Ciarlet [3] or a uniform structured mesh of Ω with the following notations:
• We denote by K a generic element such that Ω = ∪K∈ΩhK, where in the case of unstructured

mesh K is either a triangle for d = 2 or a tetrahedron for d = 3, and in the case of structured
mesh K is either a rectangle for d = 2 or a cuboid for d = 3.
• For any element K we denote by |K| its volume and by hK its diameter. Further, we define

by h = maxK∈Ωh hK the size of the mesh.
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• We denote by E the set of all faces, EB the set of all faces on the boundary, EI = E\EB the
set of all interior faces, and E(K) the set of all faces of the element K ∈ Ωh. Further, we
denote by σ = K|L the common face of two neighbouring elements K and L.
• For each face σ ∈ E , we denote by |σ| its Lebesgue measure, and n its outer normal vector.

If furthermore σ ∈ E(K) we write it as nK .
• Let Px = {xK |xK ∈ K ∈ Ωh} be a set of control points such that for any σ = K|L the

segment −−−→xKxL is perpendicular to σ. Then we denote by dσ the Euclidean distance between
xK and xL for σ = K|L.

Hereafter, we call Ωh the primary grid and introduce a dual grid for convenience of notations.

Dual grid. We denote Dh =
⋃
σ∈E Dσ as the dual grid, where Dσ is the dual cell associated to the

face σ. On the one hand, for any exterior face σ ∈ E(K)∩EB we define its dual cell as Dσ = Dσ,K ,
where Dσ,K is the domain obtained by connecting the control point xK with the (d − 1) vertices
of σ. On the other hand, for any interior face σ = K1|K2 ∈ EI we define Dσ = Dσ,K1 ∪Dσ,K2 .

Remark 2.1. For uniform structured mesh Px can be chosen as the barycenters. Concerning
unstructured, we refer to VanderZee et al. [11] for the discussion of well-centered mesh, where the
control points are chosen as the circumcenters.

For a piecewise (elementwise) continuous function v we define

vin(x) = lim
δ→0+

v(x− δn) ∀ x ∈ σ ∈ E and vout(x) = lim
δ→0+

v(x+ δn) ∀ x ∈ σ ∈ EI .

Moreover, for x ∈ σ ∈ EB, we specify vout(x) according to the boundary conditions:

vout =

{
vin for no flux condition, s.t. JvK = 0,

−vin for zero-Dirichlet condition, s.t. {{v}} = 0.

where

{{v}} (x) =
vin(x) + vout(x)

2
, JvK (x) = vout(x)− vin(x).

Function spaces. We define Qh and Wh respectively as the space of piecewise constant functions
on the primary grid Ωh and the dual grid Dh. Moreover, we mean by v ∈ Qh (resp. v ∈ Wh )
that v ∈ Qh(Ω;Rd) (resp. v ∈ Wh(Ω;Rd)), i.e., vi ∈ Qh (resp. vi ∈ Wh) for all i = 1, . . . , d. The
interpolation operator associated to Qh reads

ΠQφ =
∑
K∈Ωh

1K(x)

|K|

∫
K

φ dx, 1K(x) =

{
1 if x ∈ K,
0 otherwise.
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Diffusive upwind flux. Given the velocity field v ∈ Qh, the upwind flux for any function
r ∈ Qh is specified at each face σ ∈ E by

Up[r,v]|σ = rupvσ · n = rin[vσ · n]+ + rout[vσ · n]− = {{r}} vσ · n−
1

2
|vσ · n| JrK ,

where

vσ = {{v}} |σ, [f ]± =
f ± |f |

2
and rup =

{
rin if vσ · n ≥ 0,

rout if vσ · n < 0.

Furthermore, we consider a diffusive numerical flux function of the following form

F up
ε (r,v) = Up[r,v]− hε JrK , ε > −1. (2.1)

Discrete operators. For piecewise constant functions we define the discrete gradient, divergence
and Laplace operators elementwisely on the primary grid in the following way

∇hrh(x) =
∑
K∈Ωh

(∇hrh)K 1K(x), (∇hrh)K =
∑

σ∈E(K)

|σ|
|K|
{{rh}}n,

divhvh(x) =
∑
K∈Ωh

(divhvh)K 1K(x), (divhvh)K =
∑

σ∈E(K)

|σ|
|K|
{{vh}} · n,

∆hrh(x) =
∑
K∈Ωh

(∆hrh)K 1K(x), (∆hrh)K =
∑

σ∈E(K)

|σ|
|K|

JrhK
dσ

,

for any rh ∈ Qh and vh ∈ Qh. Further, we define discrete difference operator that involves the
dual grid. For any rh ∈ Qh and q ∈Wh, we define

∇Erh(x) =
∑
σ∈E

1Dσ (∇Erh)Dσ , (∇Erh)Dσ :=
√
d
JrK
dσ

n, for all σ ∈ EI .

It is easy to check for any rh, ϕh ∈ Qh that∫
Ω

∆hrhϕh dx= −
∫
EI

1

dσ
JrhK JϕhK dSx = −

∫
Ω

∇Erh · ∇Eϕh dx if JrhKσ = 0 ∀ σ ∈ EB. (2.2)

Time discretization. For a given time step ∆t > 0, we denote the approximation of a generic
discrete function vh at time tk = k∆t by vkh for k = 1, . . . , NT (= T/∆t). and define

Dtv
k
h =

vkh − vk−1
h

∆t
.
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2.1 A finite volume method

Now we introduce a finite volume (FV) method for the approximation of phase field model (1.1)–
(1.4). First, we consider the isentropic case (1.2a).

Scheme-A: An FV method for the isentropic model.

Let (%0
h,u

0
h, χ

0
h) = (ΠQ%0,ΠQχ0,ΠQu0). Given (%k−1

h , χk−1
h ,uk−1

h ) ∈ Qh × Qh × Qh for any
k = 1, · · · , NT , we say that the triple (%kh, χ

k
h,u

k
h) ∈ Qh ×Qh ×Qh is an FV approximation

of the Navier–Stokes–Allen–Cahn system (1.1), (1.2a), (1.3)–(1.4) at time tk if the following
system of algebraic equations holds:∫

Ω

Dt%
k
hϕh dx−

∫
E
F up
ε (%kh,u

k
h) JϕhK dSx = 0, for all ϕh ∈ Qh; (2.3a)

∫
Ω

Dt(%
k
hu

k
h)·ϕh dx−

∫
E
F up
ε (%khu

k
h,u

k
h)·JϕhK dSx+

∫
Ω

(
2µDhu

k
h : ∇hϕh+λdivhu

k
hdivhϕh

)
dx

=

∫
Ω

pkhdivhϕh dx+

∫
Ω

(fkh −∆hχ
k
h)∇hχ

k
h ·ϕh dx, for all ϕh ∈ Qh, (2.3b)

∫
Ω

(Dtχ
k
h + ukh · ∇hχ

k
h)ψh dx =

∫
Ω

(
∆hχ

k
h − fkh

)
ψh dx, for all ψh ∈ Qh; (2.3c)

where pkh = (%kh)
γ, Dhuh = (∇huh + ∇t

huh)/2, λ = η − 2
d
µ, and the approximation of F ′

follows the so-called convex-concave splitting technique

fkh = F ′a(χkh) + F ′b(χk−1
h ) (2.4)

where Fa and Fb are the convex and concave part of F , respectively.

Further, we propose an FV method for the non-isothermal case (1.2b).
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Scheme-B: An FV method for the non-isothermal model.

Let (%0
h, ϑ

0
h,u

0
h, χ

0
h) = (ΠQ%0,ΠQϑ0,ΠQχ0,ΠQu0). Given (%k−1

h , ϑk−1
h , χk−1

h ,uk−1
h ) ∈ Qh×Qh×

Qh×Qh for any k = 1, · · · , NT , we say that the quadruple (%kh, ϑ
k
h, χ

k
h,u

k
h) ∈ Qh×Qh×Qh×Qh

is an FV approximation of the Navier–Stokes–Allen–Cahn system (1.1), (1.2b), (1.3)–(1.4)
at time tk if it satisfies (2.3) and

cv

∫
Ωh

Dt(%
k
hϑ

k
h)φh dx− cv

∫
EI
F up
ε (%khϑ

k
h,u

k
h) JφhK dSx +

∫
EI

κ

dσ

q
ϑkh

y
JφhK dSx

=

∫
Ωh

(
S(∇hu

k
h) : ∇hu

k
h − pkhdivhu

k
h + |∆hχ

k
h − fkh |2

)
φh dx for all φh ∈ Qh. (2.5)

Here, fh is the same as in scheme-A, and the discrete pressure is defined as ph = %hϑh for
ϑh ≥ 0 with an extension to the non-physical regime for ϑh < 0 that ph(%h, ϑh) = 0.

3 Stability

In this section we show the stability of the FV schemes. Before that we recall some important
properties satisfied by our numerical approximation. First, we recall from [7] that the density
scheme (2.3a) satisfies the positivity of density and conservation of mass.

Lemma 3.1 (Positivity of density and conservation of mass). Let (%h,uh) satisfy (2.3a) with
%0 > 0. Then for any t ∈ (0, T ) there hold

%h(t, x) > 0 for all x ∈ Ω, and

∫
Ω

%h(t) dx =

∫
Ω

%0 dx.

Next, we test the density scheme (2.3a) by ϕh = H′(%kh), and find the following lemma, see [7,
Lemma 11.2].

Lemma 3.2 (Discrete renormalized continuity equation). Let (%kh,u
k
h) ∈ Qh × Qh satisfy the

discrete continuity equation (2.3a) for any k ∈ {1, . . . , NT}. Then, there exist %kξ ∈ co{%k−1
h , %kh}

and %kζ ∈ co{%kK , %kL} for any σ = K|L ∈ EI such that∫
Ω

DtH(%kh) dx+

∫
Ω

(%kh)
γdivhu

k
h dx

= −∆t

2

∫
Ω

H′′(%kξ )|Dt%
k
h|2 dx−

∫
EI
H′′(%kζ )

q
%kh

y2
(
hε +

1

2
|ukσ · n|

)
dSx ≤ 0.

(3.1)

Further, we report the positivity of the temperature, see [6, Lemma 3.5].
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Lemma 3.3 (Positivity of temperature). Let (%h, ϑh, χh,uh) satisfy (2.5) with %0 > 0, ϑ0 > 0.
Then for any t ∈ (0, T ) there hold

ϑh(t, x) > 0 for all x ∈ Ω.

Theorem 3.4 (Existence of numerical solution.). For every k = 1, . . . , NT , there exist a solution
(%kh, χ

k
h,u

k
h) ∈ Qh × Qh × Qh to the FV method scheme-A, and a solution (%kh, ϑ

k
h, χ

k
h,u

k
h) ∈

Qh ×Qh ×Qh ×Qh to the FV method scheme-B

The proof can be done analogously as [7, Lemma 11.3].

3.1 Stability of Scheme-A

Here we derive the energy stability of Scheme-A for compressible Navier–Stokes–Allen–Cahn
system with isentropic state equation (1.2a).

Theorem 3.5 (Discrete energy balance). Let (%h, χh,uh) be a solution of the FV method (2.3).
Then we have the following energy estimate

Dt

∫
Ω

(
1

2
%kh |uh|

2 +H(%kh) + F (χkh) +
1

2
|∇Eχh|2

)
dx

+ 2µ‖Dhu
k
h‖2

L2 + λ‖divhu
k
h‖2

L2 + ‖∆hχ
k
h − fkh‖2

L2 = −Dk
A,

(3.2)

where Dk
A ≥ 0 is the numerical dissipation

Dk
A =

∆t

2

∫
Ωh

(
%k−1
h |Dtu

k
h|2 +

(
F ′a(χkξ )−F ′b(χkζ )

) ∣∣Dtχ
k
h

∣∣2 + |∇EDtχ
k
h|2
)

dx

+
∆t

2

∫
Ω

H′′(%kξ )|Dt%
k
h|2 dx+

∫
EI
H′′(%kζ )

q
%kh

y2
(
hε +

1

2
|
{{

ukh
}}
· n|
)

dSx

+

∫
EI

(
hε
{{
%kh
}}

+
1

2
%k,up
h

∣∣{{ukh}} · n∣∣ )| qukh
y
|2 dSx,

where χkξ , χ
k
ζ ∈ co{χk−1

h , χkh}.

Proof. First, we sum up (2.3a) and (2.3b) with ϕh = −1
2
|ukh|2 ∈ Qh and ϕh = ukh ∈ Qh to get the

kinetic energy balance

Dt

∫
Ωh

1

2
%kh|ukh|2 dx+

∆t

2

∫
Ωh

%k−1
h |Dtu

k
h|2 dx+

∫
EI

(
hε
{{
%kh
}}

+
1

2
%k,up
h

∣∣{{ukh}} · n∣∣ )| qukh
y
|2 dSx

+ 2µ‖Dhu
k
h‖2

L2 + λ‖divhu
k
h‖2

L2 =

∫
Ωh

(%kh)
γdivhu

k
h dx+

∫
Ωh

(fkh −∆hχ
k
h)∇hχ

k
h · ukh dx, (3.3)
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see e.g. [5, equation 3.4] for more details.
Next, by choosing ψh = (∆hχ

k
h − fkh ) ∈ Qh in (2.3c) we derive∫

Ωh

(∆hχ
k
h − fkh )2 dx =

∫
Ω

(
∆hχ

k
h − fkh

)
(Dtχ

k
h + ukh · ∇hχ

k
h) dx

= −Dt

∫
Ω

1

2
|∇Eχkh|2 dx− ∆t

2

∫
Ω

|∇EDtχ
k
h|2 dx−Dt

∫
Ωh

F(χkh) dx

− ∆t

2

∫
Ωh

(
F ′′a (χkξ )−F ′′b (χkζ )

)
|Dtχ

k
h|2 dx+

∫
Ω

(
∆hχ

k
h − fkh

)
ukh · ∇hχ

k
h dx

(3.4)

where χkξ , χ
k
ζ ∈ co{χk−1

h , χkh}.
Finally, summing up (3.3) and (3.4) together with (3.1) completes the proof.

3.2 Stability of Scheme-B

Considering the compressible Navier–Stokes–Allen–Cahn system with non-isothermal state equa-
tion (1.2b), its stability includes not only the energy stability but also the entropy stability. First,
we derive the energy stability of Scheme-B.

Theorem 3.6 (Energy stability). Let (%h, ϑh, χh,uh) be a solution of scheme-B. Then there holds

Dt

∫
Ωh

(
1

2
%kh |uh|

2 + cv%
k
hϑ

k
h + F (χkh) +

1

2
|∇Eχkh|2

)
dx = −Dk

B, (3.5)

where Dk
B ≥ 0 is the numerical dissipation

Dk
B =

∆t

2

∫
Ωh

(
%k−1
h |Dtu

k
h|2 +

(
F ′′a (χkξ )−F ′′b (χkζ )

) ∣∣Dtχ
k
h

∣∣2 + |∇EDtχ
k
h|2
)

dx

+

∫
EI

(
hε
{{
%kh
}}

+
1

2
%k,up
h

∣∣{{ukh}} · n∣∣ )| qukh
y
|2 dSx,

where χkξ , χ
k
ζ ∈ co{χk−1

h , χkh}.

Proof. First, following the proof of Theorem 3.5, we set ϕh = −1
2
|ukh|2Qh in (2.3a), ϕh = ukh ∈ Qh

in (2.3b) and ψh = (∆hχ
k
h − fkh ) ∈ Qh in (2.3c) to get

Dt

∫
Ωh

1

2
%kh|ukh|2 dx+

∆t

2

∫
Ωh

%k−1
h |Dtu

k
h|2 dx+ 2µ‖Dhu

k
h‖2

L2 + λ‖divhu
k
h‖2

L2 + ‖∆hχ
k
h − fkh‖2

L2

=

∫
Ωh

pkhdivhu
k
h dx−Dt

∫
Ω

1

2
|∇Eχkh|2 dx− ∆t

2

∫
Ω

|∇EDtχ
k
h|2 dx−Dt

∫
Ωh

F(χkh) dx

− ∆t

2

∫
Ωh

(
F ′′a (χkξ )−F ′′b (χkζ )

)
|Dtχ

k
h|2 dx−

∫
EI

(
hε
{{
%kh
}}

+
1

2
%k,up
h

∣∣{{ukh}} · n∣∣ )| qukh
y
|2 dSx

(3.6)
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Next, by setting φh = 1 ∈ Qh in (2.5) we obtain

Dt

∫
Ωh

cv%
k
hϑ

k
h dx =

∫
Ωh

(
S(∇hu

k
h) : ∇hu

k
h − ph(%kh, ϑkh)divhu

k
h

)
dx+ ‖∆hχ

k
h − fkh‖2

L2 (3.7)

Further, summing up (3.6) and (3.7) yields the desired result.

Next, following [6, Theorem 3.7] we report the entropy inequality for Scheme-B.

Lemma 3.7 (Entropy inequality). Let (%h, ϑh, χh,uh) be a solution of Scheme-B. Then there
holds

Dt

∫
Ω

%khs
k
h dx =−

∫
Ω

κ∇Eϑkh · ∇E
(

1

ϑkh

)
dx+

∫
Ω

1

ϑkh

(
2µ|Dh(u

k
h)|2 + λ|divhu

k
h|2
)

dx

+

∫
Ωh

1

ϑkh
(∆hχ

k
h − fkh )2 dx+Dk

S ≥ 0.

(3.8)

where

Dk
S =

∆t

2ξk%,h
|Dt%

k
h|2 +

h

2ηk%,h
|∇E%kh|2|ukh · n|+

cv∆t

2|ξkϑ,h|2
%k−1
h |Dtϑ

k
h|2 −

cvh

2|ηkϑ,h|2
|∇Eϑkh|2(%kh)

out[ukh · n]−

+ hε+1∇E%kh · ∇E
(
∇%(−%khskh)

)
+ hε+1∇Epkh · ∇E

(
∇p(−%khskh)

)
≥ 0

where ξk%h ∈ co{%k−1
h , %kh}, ξkϑh ∈ co{ϑk−1

h , ϑkh}, and ηk%h ∈ co{%k,inh , %k,out
h }, ηkϑh ∈ co{ϑk,inh , ϑk,out

h } for
any σ ∈ E .

Remark 3.8. The inequality in Lemma 3.7 implies that the total (physical) entropy is non-
decreasing. Here after we call the above inequality as entropy stability.

4 Numerical experiments

In our experiments, we consider the computational domain to be Ω = [−1, 1]2, divided into 802

uniform squares. To solve the nonlinear schemes, we use the fix-point iteration method and solve
an explicit and linear system at each sub-iteration, which requires the so-called CFL condition.
To fulfill this condition, we take a small time step size ∆t = 1.0e− 4. The potential function F(χ)
and its discrete derivative fh denoted in (2.4) are respectively taken as

F(χ) =
1

4
(χ2 − 1)2 and fkh = (χkh)

3 − χk−1
h .
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Experiment 1 – barotropic case. In this experiment, we consider the barotropic case. Initially,
one of the fluids occupies two circular area located at xl = (−0.12, 0) and xr = (0.1, 0) of the radii
0.08 and 0.1 respectively, while the other fluid stays in the rest of the domain. The initial data
read

u = 0, (%0, χ0) =

{
(%1, 1) if |x− xl| < 0.08 or |x− xr| < 0.12,

(%2, 0) otherwise,
(%1, %2) =


(1, 1) Case A,

(1, 2) Case B,

(2, 1) Case C.

In 1 we present the time evolution of the total mass and energy, which clearly supports the
conservation of mass and stability of energy. Further, we show the time evolution of % and χ in
Figure 2 and Figure 3, respectively.

(a) Mass

(b) Energy

Figure 1: Time evolution of the total mass and energy

Experiment 2 – Non-isothermal case. In this experiment, we consider the non-isothermal
case. Analogously to experiment 1, one of the fluids occupies two circular area located at xl =
(−0.12, 0) and xr = (0.1, 0) of the radii 0.08 and 0.1 respectively, while the other fluid stays in
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(a) Case A (b) Case B (c) Case C

Figure 2: Experiment 1: time evolution of %, from top to bottom are t = 0, 0.001, 0.1, 1

the rest of the domain. We take the initial data for density, velocity, and order parameter, and
moreover ϑ0 = 1.

In Figure 4 we present the time evolution of the total mass, energy, and entropy, which clearly
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(a) Case A (b) Case B (c) Case C

Figure 3: Experiment 1: time evolution of χ, from top to bottom are t = 0, 0.001, 0.1, 1

supports the conservation of mass and stability of energy, and entropy. Further, we show the time
evolution of %h and χh and ϑh in Figure 5, 6, and 7, respectively.
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(a) Mass

(b) Energy

(c) Entropy

Figure 4: Time evolution of the total mass, energy and entropy
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(a) Case A (b) Case B (c) Case C

Figure 5: Experiment 2: time evolution of %, from top to bottom are t = 0, 0.001, 0.1, 1

5 Conclusion

In this paper, we have studied the compressible Navier-Stokes-Allen-Cahn system with both isen-
tropic gas law and ideal gas law. By using central difference, upwinding, and artificial diffusion
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(a) Case A (b) Case B (c) Case C

Figure 6: Experiment 2: time evolution of χ, from top to bottom are t = 0, 0.001, 0.1, 1

techniques, we have proposed a finite volume method. We have shown that the finite volume
method is entropy stable for both isentropic and ideal gas laws. We have also validated the theo-
retical results by numerical experiments.
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(a) Case A (b) Case B (c) Case C

Figure 7: Experiment 2: time evolution of ϑh, from top to bottom are t = 0, 0.001, 0.1, 1

Remark 5.1. Here we open a few technical discussions.

• We point out that the artificial diffusion term hε JrhK is not necessary for the proof of stability,
but plays an important role if one wants to show the consistency of the methods, see [7].
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Indeed, when setting ε = ∞, we have hε = 0 and the diffusive flux F up
ε defined in (2.1)

becomes the standard upwind flux.

• The current paper can be viewed as the preceding chapter of the convergence analysis of the
method, see our recent work on the barotropic Navier–Stokes–Allen-Cahn [9] and Navier–
Stokes–Fourier [6].
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[7] E. Feireisl, M. Lukáčová-Medvid’ová, H. Mizerová and B. She. Numerical analysis of com-
pressible fluid flows. Springer Cham, 2021.
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