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Abstract

As an extension of the recent work of Novotný et al. [17], we study the dissipative weak solutions
to a compressible two-fluid model system describing the time evolution of two fluid flows sharing the
same velocity field in multi-dimensional spaces. We prove the existence of dissipative weak solutions
alternatively via a finite volume approximation. Further, we apply the weak–strong uniqueness
principle to show the convergence of the finite volume approximation towards the strong solution
on the lifespan of the latter.
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1 Introduction

In this paper, we are concerned with a compressible two-fluid model, whose governing equations take
the form: 

∂t%+ divx(%u) = 0,

∂tn+ divx(nu) = 0,

∂t(ru) + divx(ru⊗ u) +∇xp(%, n) = divxS(∇xu).

(1.1)

Here, t ∈ (0, T ) and x ∈ Ω represent the time variable and space variable, respectively; Ω is a bounded
smooth domain in Rd, d = 2, 3. We denote by % = %(t, x) and n = n(t, x) the densities of two different
fluids, r = % + n the total density of the mixture, u = u(t, x) ∈ Rd the velocity field of the mixture,
p = p(%, n) the scalar pressure. The pressure is a nonlinear function of the two densities given by

p(%, n) = %γ + nα, (1.2)

where γ, α > 1 are the adiabatic exponents. Further, S = S(∇xu) stands for the Newtonian viscous
stress tensor

S(∇xu) = µ

(
∇xu+∇txu−

2

d
divxu I

)
+ λdivxu I, (1.3)

where µ > 0 and λ ≥ 0 are the shear viscosity coefficient and bulk viscosity coefficient, respectively.
System (1.1) is formally closed with{

either periodic boundary conditions with Ω = T d =
(
[0, 1]{0,1}

)d
,

or non-slip boundary conditions u|∂Ω = 0,
(1.4)

as well as the initial conditions:
(%, n, ru)|t=0 = (%0, n0,m0). (1.5)

When n = 0, system (1.1) reduces to the compressible Navier-Stokes system. The existence of
global weak solutions with finite energy initial data was first obtained by Lions [21] for any γ ≥ 9

5
(d = 3), and refined by Feireisl et al. [10] for any γ > 3

2 . When n 6= 0, the corresponding mathematical
results are not so fruitful. In case of d = 1, Evje et al. [5] showed the existence of weak solutions
to the liquid-gas two-fluid model (see also [6]), meaning the pressure takes the form p = p(%, n) =
−b(%, n) +

√
b2(%, n) + c(n), with b(%, n), c(n) being linear functions of %, n. In the case of d = 2, Yao

et al. [28] established the existence and asymptotic behavior of global weak solutions to the liquid-
gas two-fluid model. For d = 3 we refer to Bresch et al. [3] for the existence of weak solutions to
the compressible two-fluid model with algebraic pressure closure, which is extended to more general
equation of state by Novotný et al. [25]. We refer to the monographs [2, 14] for more discussions
on other physically relevant two-fluid models. By developing the new method of variable reduction,
Vasseur et al. [26] proved the existence of global weak solutions to (1.1)–(1.5) for d = 3 with some
conditions between the initial densities or adiabatic parameters. These constraints are further relaxed
by Wen [27] to any γ ≥ 9

5 , α ≥
9
5 without any domination conditions.

Very recently, Novotný et al. [17] studied the existence of dissipative weak (DW) solutions for
the two-fluid system for all adiabatic parameter γ, α > 1 as well as the dissipative weak–strong
uniqueness principle. We emphasize that this work shall play an important role in the numerical
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analysis, especially the convergence analysis, of numerical solutions of the system (1.1). Let us point
out that the convergence analysis of numerical solutions to compressible viscous fluids has been a
challenging problem in the past decades. Pioneered from the convergence of (a suitable subsequence
of) a mixed finite volume (FV)–finite element (FE) approximation towards a weak solution in the
work of Karper [18], more recent works have been done via the weak–strong uniqueness principle in
the class of dissipative measure-valued solutions, see Feireisl et al. [7, 8, 23] and the monograph [9] for
an overview.

The idea of the current paper falls into the approach of Feireisl et al [7, 8, 9] with a slight adaptation
to the class of DW solutions to the two-fluid system. We first recall the recent concept of DW solutions
to the system by incorporating the effects of oscillations and concentrations hidden in some nonlinear
terms. Then, we extend the finite volume method studied in [8] to the two-fluid model and prove
the existence of DW solutions by passing to the limit of the finite volume approximation. Finally,
applying the weak–strong uniqueness principle we also derive the convergence of the finite volume
approximation to the classical solution on the lifespan of the latter.

Our work can be view as an extension to Novotný et al. [17] in two folds. First, we provide an
alternative proof for the existence of DW solutions via a numerical construction. Second, we show the
application of the weak–strong uniqueness argument in the convergence analysis of numerical methods.

1.1 Dissipative weak solutions

Before giving a definition to dissipative weak solutions, we introduce some notations. Let Ω ⊂ Rd be
a bounded domain and QT be the time-space cylinder (0, T )× Ω. M(Ω) signifies the space of signed
Borel measures over Ω. M+(Ω) is the subspace ofM(Ω) representing non-negative measures. A . B
means A ≤ CB for generic positive constants C changing from line to line. The space of d×d matrices
are denoted by Rd×d, while its subspace Rd×dsym represents symmetric ones.

We are now ready to introduce the concept of dissipative weak solutions to (1.1)–(1.5).

Definition 1.1 (Dissipative weak solution). A triple (%, n,u) is said to be a dissipative weak solution
to the compressible two-fluid model (1.1)–(1.5) in QT provided that

• Regularities class 
%, n ≥ 0 a.e. in QT ,

% ∈ L∞(0, T ;Lγ(Ω)), n ∈ L∞(0, T ;Lα(Ω)),

u ∈ L2(0, T ;W 1,2
0 (Ω;Rd)),

√
ru ∈ L∞(0, T ;L2(Ω;Rd));

(1.6)

• The continuity equation for %∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dxdt =

[∫
Ω
%ϕdx

]t=τ
t=0

(1.7)

for any ϕ ∈ C1(QT );

• The continuity equation for n∫ τ

0

∫
Ω

(
n∂tϕ+ nu · ∇xϕ

)
dxdt =

[∫
Ω
nϕdx

]t=τ
t=0

(1.8)

for any ϕ ∈ C1(QT );
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• Balance of momentum∫ τ

0

∫
Ω

(
ru · ∂tϕ+ ru⊗ u : ∇xϕ+ p(%, n)divxϕ− S(∇xu) : ∇xϕ

)
dxdt

+

∫ τ

0

∫
Ω
∇xϕ : dµc(t)dt =

[∫
Ω
ru ·ϕdx

]t=τ
t=0

(1.9)

for any ϕ ∈ C1
c ([0, T ]× Ω;Rd) and certain µc ∈ L∞(0, T ;M(Ω;Rd×dsym));

• Balance of total energy∫
Ω

(
1

2
r|u|2 + P (%, n)

)
dx+

∫ τ

0

∫
Ω
S(∇xu) : ∇xudxdt

+

∫
Ω

dD(τ) ≤
∫

Ω

(
1

2

|m0|2

%0 + n0
+ P (%0, n0)

)
dx (1.10)

for a.e. τ ∈ (0, T ) and certain D ∈ L∞(0, T ;M+(Ω)); Here, we denoted by P (%, n) the potential
energy

P (%, n) = H(%) +G(n), with H(%) :=
1

γ − 1
%γ , G(α) :=

1

α− 1
nα;

• Compatibility condition
|µc(τ)| . D(τ) (1.11)

for a.e. τ ∈ (0, T ).

Remark 1.1. We now make some comments about the definition. The regularity class (1.6) mainly
comes from the energy inequality. In (1.9), the measure µc represents the concentration and oscillation
phenomena resulting from the nonlinearities ru ⊗ u, %γ , nα. In (1.10), the non-negative measure D
signifies the defect of energy dissipation. Furthermore, the two measures are interrelated by (1.11),
which is generally satisfied for suitable approximating scheme. In case of periodic boundary conditions,
one defines u ∈ L2(0, T ;W 1,2(T d;Rd)) and other items remain basically unchanged.

1.2 Main theorem

Before stating the main result of this paper, we recall the weak–strong uniqueness principle related to
the stability of strong solutions within the framework of dissipative weak solutions.

Proposition 1.1. Let Ω ⊂ Rd be a bounded smooth domain and the pressure p(%, n) be subject to
(1.2) with γ > 1, α > 1. Assume that (%̃, ñ, ũ) is a strong solution to (1.1)–(1.5) emanating from
(%̃0, ñ0, ũ0) and belonging to 

inf
QT

%̃ > 0, inf
QT

ñ > 0,

(%̃, ñ) ∈ C1(QT ;R2), ũ ∈ C1(QT ;Rd),

divxS(∇xũ) ∈ C(QT ;Rd).

(1.12)

Let (%, n,u) be a dissipative weak solution to (1.1)–(1.5) with initial data (%̃0, ñ0, (%̃0 + ñ0)ũ0) in the
sense of Definition 1.1. Then

% = %̃, n = ñ, u = ũ in QT ,

µc = 0, D = 0.
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Remark 1.2. In a very recent work of Novotný et al. [17], the authors considered a mixture of
two non-interacting compressible fluids filling a bounded domain with general non zero inflow/outfow
boundary conditions and established the weak–strong uniqueness principle. To make the paper self-
contained, we shall present the proof of Proposition 1.1 in the Appendix A.

Our main theorem is concerned with the existence of dissipative weak solutions, which is accom-
plished by a finite volume method. We may also interpret it as the convergence proof of the finite
volume approximation thanks to the weak–strong uniqueness principle stated above. More specifically,
the theorem reads:

Theorem 1.1. Let γ > 1, α > 1, and (%h, nh,uh) be a solution to the finite volume method defined in
Definition 2.1 with discretization parameters ∆t ≈ h ∈ (0, 1), and the initial data (1.5) be subject to

%0 > 0, n0 > 0, %0 ∈ L∞(Ω), n0 ∈ L∞(Ω),u0 ∈ L∞(Ω;Rd).

Then we have the following convergence results:

1. There exists a subsequence of (%h, nh,uh), not relabelled, such that

%h → % weakly-(*) in L∞(0, T ;Lγ(Ω)),

nh → n weakly-(*) in L∞(0, T ;Lα(Ω)),

uh → u weakly in L2(QT ;Rd),

(1.13)

where (%, n,u) represents a dissipative weak solution of the two-fluid system (1.1)–(1.5) in the
sense of Definition 1.1.

2. In addition, suppose that the two-fluid system (1.1)–(1.5) admits a strong solution in the class
(1.12). Then the convergence in (1.13) is strong and unconditional (for the whole sequence).
Moreover, the limit quantity (%, n,u) coincides with the strong solution.

Remark 1.3. We give several remarks on strong solutions to the two-fluid system (1.1)–(1.5). Roughly
speaking, the results are in the same line with “mono-fluid”. When the initial densities contain no vac-
uum states, local existence and uniqueness of strong solutions may be proved by the classical iteration
method and the Schauder fixed point theorem, see [15, 24]; while the global existence and uniqueness
of strong solutions may be obtained when the initial densities are sufficiently close to non-vacuum
constant states, see [22]. When the initial densities allow vacuum, one also has local well-posedness,
similar to [4].

The rest of this article is structured as follows. The existence of dissipative weak solutions is
given in Section 2 through a finite volume approximation scheme. Section 3 is the conclusion. In the
appendix, we present the proof of weak–strong uniqueness principle by the relative energy inequality.

2 Proof of the main results

In this section, we aim to construct a dissipative weak solution in the sense of Definition 1.1 via
a numerical approach. The by-product can be view as the convergence analysis of the numerical
approximation.

As discussed in the introduction, the two-fluid system (1.1)–(1.5) degenerate to the classical
barotropic Naiver-Stokes system when either of the two fluids disappears (% = 0 or n = 0). Here, we
may select any numerical method from [7, 8, 23] and further extend it for the approximation of the
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two-fluid system. As an example, we adapt the fundamental finite volume method [8] to the approxi-
mation of the two-fluid system, and leave the analysis of other methods mentioned above to the reader
as an exercise. For simplicity, we consider the no-slip boundary condition in (1.4) and point out that
the upcoming analysis holds also for periodic boundary conditions.

In the following subsections, we shall introduce the FV method, discuss the stability and consis-
tency of the FV approximation and finally show the convergence towards a dissipative weak solution
as well as a strong solution.

2.1 A finite volume method

In this subsection we propose a FV method for the approximation of two fluid system (1.1)–(1.5).
To begin, we approximate the physical domain Ω by a family of computational domains Ωh in the
following way.

Mesh. Let Ωh be a uniform mesh discretization of Ω consists of squares (if d = 2) or cubes (d = 3)
with the following notations:

• We denote by h = max1≤i≤d hi the size of the mesh discretization, where hi is the uniform length
of any arbitrary cell in the ith-direction. Moreover, we assume h ∈ (0, h0) for some h0 < 1.

• We denote by E the set of all faces, Eext the set of all faces on the boundary, Eint = E\Eext the
set of all interior faces, and by Ei, i = 1, . . . , d, the set of all faces that are orthogonal to the
basis vector ei of the Cartesian coordinate system. By E(K) we denote the set of faces of an
element K. We further denote by n the outer normal vector of a generic face σ ∈ E .

• For any σ ∈ E we write σ = K|L if σ = E(K) ∩ E(L). For any σ = K|L ∈ Ei, i ∈ 1, . . . , d, we
also denote by dσ = hi the distance between the barycenters of K and L.

• By |K| and |σ| we denote the (d– and (d− 1)–dimensional) Lebesgue measure of an element K,
and a face σ, respectively. Obviously, |K| = hi|σ| for any σ ∈ E(K) ∩ Ei.

• A dual element Dσ is associated to a generic face σ = K|L ∈ Eint, where Dσ = Dσ,K ∪Dσ,L, and
Dσ,K (resp. Dσ,L) is built by half of K (resp. L), see Figure 1 for an example of such cell. Note
that Dσ = Dσ,K if σ = E(K) ∩ Eext.

K L•
xK

•
xL

•
xσ

σ
=
−−
→

K
|LDσ,K Dσ,L

Figure 1: Dual grid
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Function space. In order to introduce a finite volume approximation we define a space of piecewise
constant functions Qh on the primary grid Ωh associated with the standard projection operator

ΠQ
h : L1(Ωh)→ Qh. ΠQ

h φ =
∑
K∈Ωh

1K
1

|K|

∫
K
φdx.

Thanks to the above notations, we denote (%h, nh,uh) ∈ Qh × Qh × Qh as the piecewise constant
approximation of the continuous functions (%, n,u), where uh ∈ Qh := Qh(Ωh;Rd) means vi,h ∈ Qh
for all i = 1, . . . , d. The discrete pressure shall be denoted as ph = p(%h, nh), where the function p is
given in (1.2).

Remark 2.1. Note that the physical domain Ω is smooth while the computational domain Ωh is only
Lipschitz (polygonal), thus Ω 6= Ωh. To avoid problems from this mismatch, we assume

Ωh ⊂ Ω and K ⊂ Ωh for any compact K ⊂ Ω for all h ∈ (0, h0).

Moreover, we extend the densities %h, nh and uh outside Ωh to be % > 0, n > 0, and zero, respectively.
Consequently, we may replace

∫
Ωh

dx by
∫

Ω dx in the upcoming analysis, see [7] and [9, Chapter 13].
On the other hand, when shifting to periodic boundary conditions where the physical domain can be
identified by a flat torus, we do not require the above assumption nor extension.

For a piecewise continuous function vh we define

vout
h (x) = lim

δ→0+
vh(x+ δn), x ∈ σ ∈ Eint, and vin

h (x) = lim
δ→0+

vh(x− δn), x ∈ σ ∈ E ,

Concerning x ∈ σ ∈ Eext and vh ∈ {%h, nh,uh}, we implicitly define vout
h (x) according to the following

boundary conditions
J%hKσ = 0 = JnhKσ and {{uh}}σ = 0, (2.1)

where we have denoted

{{vh}} =
vin
h + vout

h

2
, and JvhK = vout

h − vin
h .

Diffusive upwind flux. Given the velocity field uh ∈ Qh, the upwind flux for any function rh ∈ Qh
is specified at each face σ ∈ E by

Up[rh,uh]|σ = rup
h uσ = rin

h [uσ]+ + rout
h [uσ]− = {{r}}uσ −

1

2
|uσ| JrhK ,

where

uσ = {{uh}}σ · n, [rh]± =
rh ± |rh|

2
and rup

h =

{
rin
h if uσ ≥ 0,

rout
h if uσ < 0.

Furthermore, we consider a diffusive numerical flux function of the following form

Fup
h (ε, rh,uh) = Up[rh,uh]− hε JrhK , ε > 0.

When rh becomes a vector-valued function rh, e.g. rh = %huh in the momentum equation, we extend
the above flux operator as

Up(%uh,vh) ≡
(
Up(%u1,h,vh), . . . ,Up(%ud,h,vh)

)T
and

Fup
h (ε, %uh,vh) ≡

(
Fup
h (ε, %u1,h,vh), . . . ,Fup

h (ε, %ud,h,vh)
)T
.
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It is easy to check the following relation for the convective fluxes for any %h ∈ Qh and uh ∈ Qh that∑
σ∈Eint

∫
σ

(
Fup
h (ε, %h,uh)

s
1

2
|uh|2

{
− Fup

h (ε, %huh,uh) · JuhK
)

dS(x)

=
1

2

∑
σ∈Eint

∫
σ
%up
h |JuhK|

2 |uσ|dS(x) + hε
∑
σ∈Eint

∫
σ
{{%h}} |JuhK|2 dS(x),

(2.2)

see [9, Lemma 8.1].

Time discretization. For a given time step ∆t > 0, we denote the approximation of a function
vh at time tk = k∆t by vkh for k = 1, . . . , NT (= T/∆t). Then, we introduce the piecewise constant
extension of discrete values,

vh(t) = v0
h for t ≤ 0, vh(t, ·) = vkh for t ∈ Ik := (tk−1, tk], k = 1, 2, . . . , NT . (2.3)

Furthermore, we denote v/h(t) = vh(t − ∆t). The time derivative is approximated by the backward
Euler method,

Dtvh =
vh − v/h

∆t
=
vh(t)− vh(t−∆t)

∆t
.

Discrete differential operators. We define a divergence operator for any uh ∈ Qh

divhuh(x) =
∑
K∈Ωh

1K(divhuh)K , (divhuh)K =
1

|K|
∑

σ∈E(K)

|σ| {{uh}} · n (2.4)

and a gradient operator for any rh ∈ Qh

∇Erh(x) := (ð(1)
E rh, . . . ,ð

(d)
E rh)(x).

where

ð(i)
E rh(x) :=

∑
σ∈Ei

1Dσ

(
ð(i)
E rh

)
Dσ

,
(
ð(i)
E rh

)
Dσ

:=
JrhKnσ
dσ

, for all σ ∈ Ei,

Now we are ready to introduce a FV method for the approximation of two fluid system (1.1)–(1.5).

Definition 2.1 (FV method). We say (%h, nh,uh) =
∑NT

k=1 1Ik(%kh, n
k
h,u

k
h) is a finite volume approxi-

mation of the two fluid system (1.1)–(1.5) if for all k = 1, · · · , NT the triple (%kh, n
k
h,u

k
h) ∈ Qh×Qh×Qh

satisfies the following system of algebraic equations

Dt%h|K +
1

|K|
∑

σ∈E(K)

|σ|Fup
h (εγ , %h,uh) = 0,

Dtnh|K +
1

|K|
∑

σ∈E(K)

|σ|Fup
h (εα, nh,uh) = 0,

Dt(rhuh)K +
1

|K|
∑

σ∈E(K)

|σ|
(
Fup
h (εγ , %huh,uh) + Fup

h (εα, nhuh,uh)
)
,

+
1

|K|
∑

σ∈E(K)

|σ|
(
{{ph − ηdivhuh}}n− µ

JuhK
dσ

)
= 0,

(2.5)

8
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equipped with the boundary conditions (2.1) for all K ∈ Ωh, where ph = p(%h, nh), rh = %h + nh,
η = d−2

d µ+ λ, the parameters εγ and εα satisfy{
εγ > 0 for γ ≥ 2, or 0 < εγ < min{1, 2(γ − 1)} for γ ∈ (1, 2),

εα > 0 for α ≥ 2, or 0 < εα < min{1, 2(α− 1)} for α ∈ (1, 2).
(2.6)

Moreover, the initial data are give by

(%0
h, n

0
h,u

0
h) = (ΠQ

h %0,Π
Q
h n0,Π

Q
h u0).

Remark 2.2 (Periodic boundary condition). When considering periodic boundary conditions, we have
Eext = ∅ and Eint = E. As a consequence, we do not require anymore the discrete boundary conditions
(2.1).

Lemma 2.1 (Weak form of the FV method). Let (%h, nh,uh) be a FV approximation of the two-fluid
system in the sense of Definition 2.1. Then we have:∫

Ω
Dt%hφhdx−

∑
σ∈Eint

∫
σ

Fup
h (εγ , %h,uh) JφhK dS(x) = 0, for all φh ∈ Qh; (2.7a)

∫
Ω
Dtnhφhdx−

∑
σ∈Eint

∫
σ

Fup
h (εα, nh,uh) JφhK dS(x) = 0, for all φh ∈ Qh; (2.7b)

∫
Ω
Dt(rhuh) · φhdx−

∑
σ∈Eint

∫
σ

(
Fup
h (εγ , %huh,uh) + Fup

h (εα, nhuh,uh)
)
· JφhK dS(x)

+ µ

∫
Ω
∇Euh : ∇Eφhdx+ η

∫
Ω

divhuh divhφhdx =

∫
Ω
phdivhφhdx, for all φh ∈ Qh;

(2.7c)

where εγ and εα satisfy (2.6).

Note that the FV scheme (2.7) is an extension of Feireisl et al. [9, Chapter 11]. The solution to
(2.7) enjoy similar properties as listed in the following remark, see [9, Lemma 11.2 and 11.3].

Remark 2.3 (Positivity of the density, internal energy balance, and existence of a numerical solution).
Let (%h, nh,uh) be a solution to the FV scheme (2.7). Then we have the following properties:

1. Positivity of the density. Let %0 > 0 and n0 > 0 then %h(t) > 0 and nh(t) > 0, respectively,
for all t ∈ (0, T ).

2. Internal energy balance.
There exist %h,† ∈ co{%in

h , %
out
h } and nh,† ∈ co{nin

h , n
out
h } for any σ ∈ Eint, %

?
h ∈ co{%/h, %h} and

n?h ∈ co{n/h, nh} such that∫
Ω
DtH(%h)dx+

∫
Ω

(%hH
′(%h)−H(%h))divhuhdx

= −∆t

2

∫
Ω
H ′′(%?h)|Dt%h|2dx−

∑
σ∈Eint

∫
σ
H ′′(%h,†) J%hK2

(
hεγ +

1

2
|uσ|

)
dS(x) ≤ 0,

(2.8a)

∫
Ω
DtG(nh)dx+

∫
Ω

(nhG
′(nh)−G(nh))divhuhdx

= −∆t

2

∫
Ω
G′′(n?h)|Dtnh|2dx−

∑
σ∈Eint

∫
σ
G′′(nh,†) JnhK2

(
hεα +

1

2
|uσ|

)
dS(x) ≤ 0,

(2.8b)

where we have denoted co{A,B} = [min{A,B},max{A,B}].
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3. Existence of a solution.
There exists a solution (%h, nh,uh) to the FV scheme (2.7) for all t ∈ (0, T ).

2.2 Stability

Now we are ready to show the energy stability.

Theorem 2.1 (Discrete energy balance). Let (%h, nh,uh) be a solution of the FV method (2.7). Then,
it holds

Dt

∫
Ω

(
1

2
rh |uh|2 + P (%h, nh)

)
dx+ µ‖∇Euh‖2L2(Ω) + η‖divhuh‖2L2(Ω) = −Dnum, (2.9)

where Dnum ≥ 0 is the numerical dissipation given by

Dnum =
∆t

2

∫
Ω
r/h|Dtuh|2dx+

1

2

∑
σ∈Eint

∫
σ
rup
h |uσ| |JuhK|

2 dS(x)

+ hεγ
∑
σ∈Eint

∫
σ
{{%h}} |JuhK|2 dS(x) + hεα

∑
σ∈Eint

∫
σ
{{nh}} |JuhK|2 dS(x)

+
∆t

2

∫
Ω
H ′′(%?h)|Dt%h|2dx+

∑
σ∈Eint

∫
σ
H ′′(%h,†) J%hK2

(
hεγ +

1

2
|uσ|

)
dS(x),

+
∆t

2

∫
Ω
G′′(n?h)|Dtnh|2dx+

∑
σ∈Eint

∫
σ
G′′(nh,†) JnhK2

(
hεα +

1

2
|uσ|

)
dS(x).

(2.10)

Here, %h,† ∈ co{%in
h , %

out
h } and nh,† ∈ co{nin

h , n
out
h } for any σ ∈ Eint, %

?
h ∈ co{%/h, %h} and n?h ∈

co{n/h, nh}.

Proof. First, setting φh = uh ∈ Qh in (2.7c) we get∫
Ω
Dt(rhuh) · uhdx+ µ‖∇Euh‖2L2 + η‖divhuh‖2L2

=
∑
σ∈Eint

∫
σ

(
Fup
h (εγ , %huh,uh) + Fup

h (εα, nhuh,uh)
)
· JuhK dS(x) +

∫
Ω
phdivhuhdx.

(2.11)

Next, letting φh = 1
2 |uh|

2 in (2.7a) and (2.7b) we find their sum∫
Ω
Dtrh

1

2
|uh|2 dx =

∑
σ∈Eint

∫
σ

(
Fup
h (εγ , %h,uh) + Fup

h (εα, nh,uh)
)s

1

2
|uh|2

{
dS(x). (2.12)

Subtracting (2.12) from (2.11) and using (2.2) we derive

Dt

∫
Ω

1

2
rh |uh|2 dx+ µ‖∇Euh‖2L2(Ω) + η‖divhuh‖2L2(Ω)

=

∫
Ω
phdivhuhdx− ∆t

2

∫
Ω
r/h |Dtuh|2 dx− 1

2

∑
σ∈Eint

∫
σ
rup
h |JuhK|

2 |uσ|dS(x)

− hεγ
∑
σ∈Eint

∫
σ
{{%h}} |JuhK|2 dS(x)− hεα

∑
σ∈Eint

∫
σ
{{nh}} |JuhK|2 dS(x).

(2.13)

10
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where we have also used the following identity∫
Ω

(
Dt(rhuh) · uh −Dtrh

|uh|2

2

)
dx =

∫
Ω

(
Dt

(1

2
rh |uh|2

)
+

∆t

2
r/h |Dtuh|2

)
dx.

Finally, combining (2.13) and (2.8), we obtain

Dt

∫
Ω

(
1

2
rh |uh|2 +G(nh) +H(%h)

)
dx+ µ‖∇Euh‖2L2(Ω) + η‖divhuh‖2L2(Ω)

= −∆t

2

∫
Ω
r/h|Dtuh|2dx− 1

2

∑
σ∈Eint

∫
σ
rup
h |uσ| |JuhK|

2 dS(x)

− hεγ
∑
σ∈Eint

∫
σ
{{%h}} |JuhK|2 dS(x)− hεα

∑
σ∈Eint

∫
σ
{{nh}} |JuhK|2 dS(x)

− ∆t

2

∫
Ω
H ′′(%?h)|Dt%h|2dx−

∑
σ∈Eint

∫
σ
H ′′(%h,†) J%hK2

(
hεγ +

1

2
|uσ|

)
dS(x)

− ∆t

2

∫
Ω
G′′(n?h)|Dtnh|2dx−

∑
σ∈Eint

∫
σ
G′′(nh,†) JnhK2

(
hεα +

1

2
|uσ|

)
dS(x),

which completes the proof.

2.3 Consistency

One more step towards the convergence analysis is the consistency of the numerical solutions. Analo-
gously to [9, Theorem 11.2] we have the following consistency formulation.

Lemma 2.2. Let (%h, nh,uh) be a solution of the approximate problem (2.7) on the time interval [0, T ]
with ∆t ≈ h, γ > 1 and α > 1. Then

−
∫

Ω
%0
hφ(0, ·)dx =

∫ T

0

∫
Ω

[%h∂tφ+ %huh · ∇φ] dxdt+

∫ T

0
e1,h(t, φ)dt, (2.14a)

for any φ ∈ C2
c ([0, T )× Ω);

−
∫

Ω
n0
hφ(0, ·)dx =

∫ T

0

∫
Ω

[nh∂tφ+ nhuh · ∇φ] dxdt+

∫ T

0
e2,h(t, φ)dt, (2.14b)

for any φ ∈ C2
c ([0, T )× Ω);

−
∫

Ω
r0hu

0
h · φ(0, ·)dx =

∫ T

0

∫
Ω

[rhuh · ∂tφ+ rhuh ⊗ uh : ∇φ+ phdivφ] dxdt,

− µ
∫ T

0

∫
Ω
∇Euh : ∇φdxdt− η

∫ T

0

∫
Ω

divhuhdivφdxdt+

∫ T

0
e3,h(t,φ)dt

(2.14c)

for any φ ∈ C2
c ([0, T )× Ω;Rd);

‖ej,h(·, φ)‖L1(0,T )
<∼ hβ‖φ‖C2 , j = 1, 2, 3 for some β > 0.

11
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2.4 Final proof of Theorem 1.1

With the stability and consistency results in hand, we are ready to show the final proof to Theorem 1.1,
that is the convergence of numerical solutions resulting from the FV method (2.7).

Proof of Theorem 1.1. From the energy estimates (2.9) we deduce that at least for suitable subse-
quences,

%h → % weakly-(*) in L∞(0, T ;Lγ(Ω)), % ≥ 0,

nh → n weakly-(*) in L∞(0, T ;Lα(Ω)), n ≥ 0,

uh → u weakly in L2(QT ;Rd),

∇Euh → ∇xu weakly in L2(QT ;Rd×d), where u ∈ L2(0, T ;W 1,2
0 (Ω;Rd)),

%huh → %u weakly-(*) in L∞(0, T ;L
2γ
γ+1 (Ω;Rd)),

nhuh → nu weakly-(*) in L∞(0, T ;L
2α
α+1 (Ω;Rd)),

Furthermore, it holds

(%h + nh)uh ⊗ uh → (%+ n)u⊗ u weakly-(*) in L∞(0, T ;M(Ω;Rd×dsym)),

p(%h, nh)→ p(%, n) weakly-(*) in L∞(0, T ;M+(Ω)),

1

2
(%h + nh)|uh|2 →

1

2
(%+ n)|u|2 weakly-(*) in L∞(0, T ;M+(Ω)),

P (%h, nh)→ P (%, n) weakly-(*) in L∞(0, T ;M+(Ω)).

Thus we may set

µc :=
[
(%+ n)u⊗ u+ p(%, n)I

]
−
[
(%+ n)u⊗ u+ p(%, n)I

]
,

D :=
[1

2
(%+ n)|u|2 + P (%, n)

]
−
[1

2
(%+ n)|u|2 + P (%, n)

]
.

It then follows that
|µc(τ)| . D(τ) for a.e. τ ∈ (0, T ),

see [20, Section 8], [1, Section 3.4] for similar details.
Consequently, passing to the limit for h → 0 in the energy estimates (2.9) and the consistency

formulation (2.14a)–(2.14c) we deduce that (%, n,u) is a dissipative weak solution in the sense of
Definition 1.1, which prove Item 1 of Theorem 1.1. Further, employing Proposition 1.1, we obtain
Item 2 of Theorem 1.1, which completes the proof of Theorem 1.1.

3 Conclusion

We studied in multi-dimensions a two-fluid model describing the motion of a mixture of two com-
pressible barotropic fluids with the full range of adiabatic exponents γ > 1 and α > 1. We attack the
global-in-time solutions with large initial data for such a system by the concept of dissipative weak
solutions:

• We proved the existence of dissipative weak solutions via a finite volume approximation method,
see Theorem 1.1

12
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• As a by-product, we observed the convergence of the finite volume approximation towards a
strong solution on the lifespan of the latter, see also Theorem 1.1.

As far as we know, this is the first numerical attempt in the mathematical analysis of the two-fluid
model, which also provides a general framework for the convergence analysis of numerical solutions
for the two-fluid model (1.1)–(1.5). The current convergence analysis can be easily adapted to other
numerical methods. For example, we may keep the finite volume approximation of the density equa-
tions and replace the approximation of the momentum equation by either a finite element method or
a finite difference method studied in Chapter 13 and Chapter 14 of Feireisl et al. [9].
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A Appendix

This appendix is dedicated to the proof of Proposition 1.1. To this end, we establish the relative energy
inequality to (1.1)–(1.5) satisfied for any dissipative weak solutions and any suitable test functions.
Then the proof is finished with the help of Gronwall-type argument. Note that we shall present the
proof in case of Dirichlet boundary conditions. The case of periodic boundary conditions can be
carried out analogously and the details are therefore omitted.

A.1 Relative energy inequality

Let (%, n,u) be a dissipative weak solution to (1.1)–(1.5) and (r, b,U) belongs to{
r, b ∈ C1(QT ), r, b > 0 in QT ,

U ∈ C1(QT ;Rd), U|∂Ω = 0.
(A.1)

Similar to [19], we introduce the relative energy as

E
(

(%, n,u)
∣∣∣ (r, b,U)

)
(τ) :=

∫
Ω

[1

2
r|u−U|2

+H(%)−H(r)−H ′(r)(%− r) +G(n)−G(b)−G′(b)(n− b)
]
dx. (A.2)
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Notice that we may rewrite the relative energy in an equivalent form as follows

E
(

(%, n,u)
∣∣∣ (r, b,U)

)
(τ) =

∫
Ω

(
1

2
r|u|2 +H(%) +G(n)

)
dx

+

∫
Ω

(
1

2
%|U|2 −H ′(r)%

)
dx+

∫
Ω

(
1

2
n|U|2 −G′(b)n

)
dx

−
∫

Ω
ru ·Udx+

∫
Ω

(rγ + bα) dx. (A.3)

The crucial observation is that the integrals on the right-hand side of (A.3) can be expressed through
the weak formulations (1.7)–(1.10) with suitable choices of test functions. To handle the density-
dependent terms, testing the continuity equation (1.7) by 1

2 |U|
2 and H ′(r) gives∫ τ

0

∫
Ω

(
%U · ∂tU + %u · ∇xU ·U

)
dxdt =

[∫
Ω

1

2
%|U|2dx

]t=τ
t=0

; (A.4)

∫ τ

0

∫
Ω

(
%∂tH

′(r) + %u · ∇xH ′(r)
)

dxdt =

[∫
Ω
%H ′(r)dx

]t=τ
t=0

; (A.5)

In the same manner, we test the continuity equation (1.8) by 1
2 |U|

2 and G′(b) to obtain∫ τ

0

∫
Ω

(
nU · ∂tU + nu · ∇xU ·U

)
dxdt =

[∫
Ω

1

2
n|U|2dx

]t=τ
t=0

; (A.6)

∫ τ

0

∫
Ω

(
n∂tG

′(b) + nu · ∇xG′(b)
)

dxdt =

[∫
Ω
nG′(b)dx

]t=τ
t=0

. (A.7)

Upon choosing U as a test function in the momentum equation (1.9),∫ τ

0

∫
Ω

(
ru · ∂tU + ru⊗ u : ∇xU + p(%, n)divxU− S(∇xu) : ∇xU

)
dxdt

+

∫ τ

0

∫
Ω
∇xU : dµc(t)dt =

[∫
Ω
ru ·Udx

]t=τ
t=0

. (A.8)

Taking (A.4)–(A.8) and the balance of total energy (1.10) into account, we may estimate (A.3), in
agreement with the compressible Navier-Stokes system [11], to arrive at[

E
(

(%, n,u)
∣∣∣ (r, b,U)

)]t=τ
t=0

+

∫ τ

0

∫
Ω

(
S(∇xu−∇xU) : (∇xu−∇xU)

)
dxdt+

∫
Ω

dD(τ)

≤
∫ τ

0

∫
Ω
r(U− u) ·

(
∂tU + u · ∇xU

)
dxdt

+

∫ τ

0

∫
Ω
S(∇xU) : (∇xU−∇xu) dxdt−

∫ τ

0

∫
Ω
p(%, n)divxUdxdt

+

∫ τ

0

∫
Ω

[ (
1− %

r

)
γrγ−1∂tr − %u · γrγ−2∇xr

]
dxdt

+

∫ τ

0

∫
Ω

[ (
1− n

b

)
αbα−1∂tb− nu · αbα−2∇xb

]
dxdt

14
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≤
∫ τ

0

∫
Ω
r(U− u) ·

(
∂tU + u · ∇xU

)
dxdt+

∫ τ

0

∫
Ω
S(∇xU) : (∇xU−∇xu) dxdt

+

∫ τ

0

∫
Ω

(r − %)∂t

(
γ

γ − 1
rγ−1

)
dxdt+

∫ τ

0

∫
Ω

(b− n)∂t

(
α

α− 1
bα−1

)
dxdt

+

∫ τ

0

∫
Ω

(rU− %u) · ∇x
(

γ

γ − 1
rγ−1

)
dxdt+

∫ τ

0

∫
Ω

(bU− nu) · ∇x
(

α

α− 1
bα−1

)
dxdt.

−
∫ τ

0

∫
Ω

[
p(%, n)− p(r, b)

]
divxUdxdt−

∫ τ

0

∫
Ω
∇xU : dµc(t)dt. (A.9)

Remark A.1. Compared with [19], our relative energy inequality (A.9) holds for any test functions
belonging to the class (A.1) and incorporates the phenomena of oscillations and concentrations.

A.2 Weak–strong uniqueness principle

Basically, the proof of weak–strong uniqueness principle consists of:

• choosing the classical solution (%̃, ñ, ũ) as the test function (r, b,U) in the relative energy in-
equality (A.9);

• estimating each term on the right-hand side of the relative energy inequality in a suitable manner;

• application of Gronwall-type argument.

To do this, assume that (%̃, ñ, ũ) is a strong solution to (1.1)–(1.5) starting from the smooth initial data
(%̃0, ñ0, ũ0) with strictly positive %̃0 and ñ0. Let (%, n,u) be a dissipative weak solution to (1.1)–(1.5)
emanating from the same initial data. It follows from (A.9) that

E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(τ) +

∫ τ

0

∫
Ω

(
S(∇xu−∇xũ) : (∇xu−∇xũ)

)
dxdt+

∫
Ω

dD(τ)

≤
∫ τ

0

∫
Ω

(ũ− u) ·
[
r
(
∂tũ+ u · ∇xũ

)
− divxS(∇xũ)

]
dxdt

+

∫ τ

0

∫
Ω

(%̃− %)∂t

(
γ

γ − 1
%̃γ−1

)
dxdt+

∫ τ

0

∫
Ω

(ñ− n)∂t

(
α

α− 1
ñα−1

)
dxdt

+

∫ τ

0

∫
Ω

(%̃ũ− %u) · ∇x
(

γ

γ − 1
%̃γ−1

)
dxdt+

∫ τ

0

∫
Ω

(ñũ− nu) · ∇x
(

α

α− 1
ñα−1

)
dxdt.

−
∫ τ

0

∫
Ω

[
p(%, n)− p(%̃, ñ)

]
divxũdxdt−

∫ τ

0

∫
Ω
∇xũ : dµc(t)dt. (A.10)

In light of the fact that (%̃, ñ, ũ) solves (1.1) in the classical sense, we furthermore rewrite the relative
energy inequality as (see for instance [16] for similar calculations)

E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(τ) +

∫ τ

0

∫
Ω

(
S(∇xu−∇xũ) : (∇xu−∇xũ)

)
dxdt+

∫
Ω

dD(τ)

≤
∫ τ

0

∫
Ω

(ũ− u) ·
[
(r− r̃)∂tũ+ (ru− r̃ũ) · ∇xũ

]
dxdt

+

∫ τ

0

∫
Ω

(%− %̃)(ũ− u) · ∇x
(

γ

γ − 1
%̃γ−1

)
dxdt

15
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+

∫ τ

0

∫
Ω

(n− ñ)(ũ− u) · ∇x
(

α

α− 1
ñα−1

)
dxdt

−
∫ τ

0

∫
Ω

[(
%γ − %̃γ − γ%̃γ−1(%− %̃)

)
+
(
nα − ñα − αñα−1(n− ñ)

)]
divxũdxdt

−
∫ τ

0

∫
Ω
∇xũ : dµc(t)dt =:

5∑
j=1

R(j). (A.11)

Notice that we may rewrite R(1) as

R(1) =

∫ τ

0

∫
Ω

(ũ− u) · (r− r̃)
[
∂tũ+ ũ · ∇xũ

]
dxdt

+

∫ τ

0

∫
Ω
r(u− ũ) · ∇xũ · (ũ− u)dxdt =: R(1)

1 +R(1)
2 .

Obviously, it holds

|R(1)
2 | .

∫ τ

0
E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(t)dt. (A.12)

Next, to show the estimate of R(1)
1 , we first recall [9, Lemma 14.3] for the following estimates.[(

%γ − %̃γ − γ%̃γ−1(%− %̃)
)

+
(
nα − ñα − αñα−1(n− ñ)

)]

&

(%− %̃)2 + (n− ñ)2, if % ∈ [1/2 min
QT

%̃, 2 max
QT

%̃], n ∈ [1/2 min
QT

ñ, 2 max
QT

ñ],

1 + %γ + nα, otherwise.
(A.13)

Moreover, following [12], we may decompose any measurable function f(t, x) as the sum of “essential
part” and “residual part”:

[f ]ess(t, x) =

f(t, x), if % ∈ [1/2 min
QT

%̃, 2 max
QT

%̃], n ∈ [1/2 min
QT

ñ, 2 max
QT

ñ],

0, otherwise;

[f ]res(t, x) = f(t, x)− [f ]ess(t, x).

Thus,

R(1)
1 =

∫ τ

0

∫
Ω

(ũ− u) · [r− r̃]ess

[
∂tũ+ ũ · ∇xũ

]
dxdt

+

∫ τ

0

∫
Ω

(ũ− u) · [r− r̃]res

[
∂tũ+ ũ · ∇xũ

]
dxdt. (A.14)

Observe first that ∣∣∣∣∫ τ

0

∫
Ω

(ũ− u) · [r− r̃]ess

[
∂tũ+ ũ · ∇xũ

]
dxdt

∣∣∣∣
≤
∫ τ

0
‖∂tũ+ ũ · ∇xũ‖L∞(Ω)‖u− ũ‖L2(Ω)‖[r− r̃]ess‖L2(Ω)dt

. ε
∫ τ

0

∫
Ω

(
S(∇xu−∇xũ) : (∇xu−∇xũ)

)
dxdt+ C(ε)

(
‖[%− %̃]ess‖2L2(Ω) + ‖[n− ñ]ess‖2L2(Ω)

)
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. ε
∫ τ

0

∫
Ω

(
S(∇xu−∇xũ) : (∇xu−∇xũ)

)
dxdt+ C(ε)

∫ τ

0
E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(t)dt, (A.15)

where we have employed the generalized Korn’s inequality in the second step and the first item of
(A.17) in the third step. Next, it follows that∣∣∣∣∫ τ

0

∫
Ω

(ũ− u) · [r− r̃]res

[
∂tũ+ ũ · ∇xũ

]
dxdt

∣∣∣∣
.
∫ τ

0

∫
Ω
|u− ũ|

(
|[%− %̃]res|+ |[n− ñ]res|

)
dxdt. (A.16)

We make a decomposition as follows.∫ τ

0

∫
Ω
|u− ũ||[%− %̃]res|dxdt

=

∫ τ

0

∫
%≤1/2 minQT

%̃
|u− ũ||[%− %̃]res|dxdt+

∫ τ

0

∫
%≥2 maxQT

%̃
|u− ũ||[%− %̃]res|dxdt;

Making use of the generalized Korn’s inequality and the second item of (A.17),∫ τ

0

∫
%≤1/2 minQT

%̃
|u− ũ||[%− %̃]res|dxdt .

∫ τ

0
‖[1]res‖L2(Ω)‖u− ũ‖L2(Ω)dt

. ε
∫ τ

0

∫
Ω

(
S(∇xu−∇xũ) : (∇xu−∇xũ)

)
dxdt+ C(ε)

∫ τ

0
E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(t)dt. (A.17)

In the same spirit,∫ τ

0

∫
%≥2 maxQT

%̃
|u− ũ||[%− %̃]res|dxdt .

∫ τ

0

∫
Ω
|[1]res|

√
%|u− ũ|√%dxdt

.
∫ τ

0

∫
Ω
|[1]res|

√
r|u− ũ|√%dxdt .

∫ τ

0
E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(t)dt. (A.18)

The estimate of the second integral in (A.16) can be carried in exactly the same manner. Therefore,
combining (A.12), (A.14)–(A.18),

|R(1)| . ε
∫ τ

0

∫
Ω

(
S(∇xu−∇xũ) : (∇xu−∇xũ)

)
dxdt+C(ε)

∫ τ

0
E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(t)dt. (A.19)

It is easy to see that R(2) and R(3) can be estimated analogously as above. Next, we observe that∣∣∣(%γ − %̃γ − γ%̃γ−1(%− %̃)
)

+
(
nα − ñα − αñα−1(n− ñ)

)∣∣∣
. H(%)−H(%̃)−H ′(%̃)(%− %̃) +G(n)−G(ñ)−G′(ñ)(n− ñ),

whence

|R(4)| .
∫ τ

0
E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(t)dt. (A.20)

Finally,

|R(5)| =
∣∣∣ ∫ τ

0

∫
Ω
∇xũ : dµc(t)dt

∣∣∣ ≤ ‖∇xũ‖L∞(QT )

∫ τ

0

∫
Ω

dD(t)dt. (A.21)
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Consequently, collecting the estimates above, we conclude from (A.11) that, upon choosing ε > 0
sufficiently small,

E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(τ) +

∫ τ

0

∫
Ω

(
S(∇xu−∇xũ) : (∇xu−∇xũ)

)
dxdt+

∫
Ω

dD(τ)

.
∫ τ

0
E
(

(%, n,u)
∣∣∣ (%̃, ñ, ũ)

)
(t)dt+

∫ τ

0

∫
Ω

dD(t)dt,

which immediately finishes the proof of Proposition 1.1 by Gronwall’s inequality. �
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[11] E. Feireisl, Bum Ja. Jin, and A. Novotný. Relative entropies, suitable weak solutions, and
weak–strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14:
717–730, 2012.
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