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Abstract. We give necessary and sufficient conditions on an m-isometry to have an

invertible m-isometrical extension. As particular cases, we give a useful characteriza-

tion for a general m-isometrical unilateral weighted shift and for ℓ-Jordan isometries.

In particular, every ℓ-Jordan isometry operator has an invertible (2ℓ − 1)-isometrical

extension.
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1. Introduction

In the last twenty years there has been an intense research activity on m-isometries.

In this paper, we focus our attention on characterizing m-isometries that have an

invertible extension that is also m-isometry.

The notion of m-isometric operator on a Hilbert space was introduced by J. Agler [2]

and studied in detail shortly after by J. Agler and M. Stankus in three papers [4, 5, 6].

These publications can be considered the first ones to initiate this topic of study.

An operator T ∈ L(H), the algebra of all bounded linear operators acting on a

Hilbert space H, is called an m-isometry, for some positive integer m, if

m

∑
k=0

(
m
k

)
(−1)kT∗kTk = 0 ,

where T∗ denotes the adjoint operator of T. When m = 1, we obtain an isometry. It is

said that T is a strict m-isometry if either m = 1 or T is an m-isometry with m > 1 but

it is not (m − 1)-isometry.

As one should expect, m-isometries share many important properties with isome-

tries. For example, the following dichotomy property: the spectrum of an m-isometry

is the closed unit disc if it is not invertible or a closed subset of the unit circle if it
1
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is invertible [4]. Also, if T is an m-isometry, then T is bounded below; that is, there

exists M > 0 such that ∥Tx∥ ≥ M∥x∥ for every x ∈ H.

Given an m-isometry T ∈ L(H), we are interested in research conditions which

guarantee the existence of a Hilbert space K and an operator S ∈ L(K), which is an

extension of T, such that S is an invertible m-isometry. To say that S ∈ L(K) is an

extension of T ∈ L(H) means that K contains an isometric subspace to H, which we

denote also by H, and the restriction S|H from H to H coincides with T.

Problem 1.1. Characterize those m-isometric operators which have an invertible m-isometrical

extension.

In 1969 Douglas [13] obtained that any isometry in a Banach space has an invertible

isometric extension, also valid in a Hilbert space context. So, the case m = 1 holds.

For m ≥ 2, first immediate consideration is that m must be odd, since every invertible

m-isometry with even m is an (m − 1)-isometry by [4, Proposition 1.23].

Our problem is similar to others that arise naturally in Operator Theory and can be

formulated in very general terms as follows. Given a class C of operators, for example

defined on Hilbert spaces, and given a property P relative to those operators, we wish

to characterize the operators that have an extension in the class C with property P.

Let T ∈ L(H) and S ∈ L(K) with H a closed subspace of K. Denote by PH the

orthogonal projection of K onto H and by J the inclusion of H into K. It is said that

• S is a lifting of T if PHS = TPH.

• S is a dilation of T if Tn = PHSn J, for every n ∈ N.

Many authors have studied, for a given bounded linear operator T ∈ L(H), some

additional properties of extension, lifting, or dilation of the operator T. The following

results are known and respond to these problems :

• Every contraction has an extension which is an unitary dilation and a lifting

which is an isometry. See [16].

• Every isometry has a unitary extension. See [13].

• Every operator T such that the norms of its powers grow polynomially has an

extension which is an m-isometric lifting for some integer m ≥ 1. See [9].
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Notice that the norms of the powers of an m-isometry have a polynomial behaviour

(see part (1) of Proposition 2.1). However, there are operators such that those norms

have a polynomial behaviour that are not m-isometries. In [9], the authors study

lifting and dilations which are m-isometries. In particular, they obtain that if T is an

m-isometry, then T has an (m + 3)-isometric lifting with other additional properties.

A special class of m-isometric operators is the ℓ-Jordan isometries; that is, operators

which are the sum of an isometry and an ℓ-nilpotent operator which commute. It is

known that every ℓ-Jordan isometry is a strict (2ℓ− 1)-isometry, but the converse is

not valid. However, every strict m-isometry on a finite dimensional Hilbert space is

an (m+1)
2 -Jordan isometry operator. See [12, 17, 3] for more details.

Another natural and important examples of m-isometries are certain weighted shift

operators. In [1, 11], the authors obtained a characterization of weighted shift which

are m-isometric.

We summarize the contents of the paper. In Section 2, we define a bilateral se-

quence of operators associated to an m-isometry that allow us to transfer important

information of the m-isometry to the bilateral sequence, that it will be an important

tool in the paper. In Section 3, we present some necessary conditions to obtain an

invertible m-isometrical extension. The main results are given in Section 4 where we

obtain characterizations for an m-isometry to have an invertible m-isometrical exten-

sion. Finally, in Section 5, we present particular classes of m-isometries for which one

can obtain nice results. In particular, we give a useful characterization for a general m-

isometrical unilateral weighted shift and for ℓ-Jordan isometries. In particular, every

ℓ-Jordan isometry operator has an invertible (2ℓ− 1)-isometrical extension.

2. Some previous results

In this section, we define a bilateral sequence of operators associated to an m-

isometry, that allow us to transfer important information of the m-isometry to the

bilateral sequence that it will be relevant for obtaining necessary conditions for hav-

ing an invertible m-isometrical extension.

Any polynomial of degree less or equal to m − 1 is uniquely determined by its

values at m distinct points. If a0, a1, . . . , am−1 are given real (or complex) numbers,
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then the unique polynomial p of degree less or equal to m − 1 satisfying p(k) = ak for

all k ∈ {0, 1, . . . , m − 1} is giving by Lagrange interpolating polynomial

p(z) =
m−1

∑
k=0

ak ∏
0≤j≤m−1

j ̸=k

z − j
k − j

.

Note that

p(n) =
m−1

∑
k=0

akbk(n)

with

bk(n) := ∏
0≤j≤m−1

j ̸=k

n − j
k − j

= (−1)m−k−1 n(n − 1) . . . (̂n − k) · · · (n − m + 1)
k!(m − k − 1)!

(2.1)

where (̂n − k) means that the factor (n − k) is omitted.

Given T ∈ L(H), define the bilateral sequence by

Dn :=
m−1

∑
k=0

bk(n)T∗kTk , (2.2)

for every n ∈ Z. Clearly Dn ∈ L(H) and it is self adjoint operator for every n ∈ Z.

Denote px(k) := ⟨Dkx, x⟩ for every x ∈ H and k ∈ Z.

Given T ∈ L(H), denote T > 0 if ⟨Tx, x⟩ > 0 for every x ∈ H \ {0} and we call it

strictly positive operator.

We concentrate now on the family (Dn)n∈Z of operators which arise from a fixed

m-isometry. Indeed, the bilateral sequence (Dn)n∈Z has some interesting properties

that will be important tools to solve Problem 1.1.

Proposition 2.1. Let T ∈ L(H) be an m-isometry and (Dn)n∈Z be operators defined by (2.2).

Then

(1) [11, Theorem 2.1] & [4] Dn = T∗nTn and px(n) = ⟨Dnx, x⟩ = ∥Tnx∥2 > 0 for

every x ∈ H \ {0} and n ∈ N ∪ {0}. Henceforth, there exists the square root D1/2
n of

Dn, for every n ∈ N ∪ {0}.

(2) Dn is invertible for every n ∈ N ∪ {0}.

(3) T∗kDnTk = Dn+k for every n ∈ Z and k ∈ N.
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(4) Let y ∈ R(Tk) for some k ∈ N. Then py(−k) = ∥x∥2, where y = Tkx.

(5) If D−n > 0 and invertible, then D−k > 0 and invertible for every k ∈ {1, 2, · · · , n −
1}.

Proof. (2) Let n ∈ N. By [14, Theorem 2.3] & [10, Theorem 3.1], any power of T, Tn is

an m-isometry, so, Tn is bounded below. Hence

∥Dnx∥∥x∥ ≥ |⟨Dnx, x⟩| = ⟨Dnx, x⟩ = ∥Tnx∥2 ≥ M(n)2∥x∥2 ,

where M(n) > 0. That is, Dn is bounded below. Then trivially Dn is invertible since

Dn is self adjoint operator.

(3) It is enough to prove the required equality for k = 1. Observe that

pTx(n) = ∥TnTx∥2 = ∥Tn+1x∥2 = px(n + 1) ,

for every n ∈ N and

⟨Dn+1x, x⟩ = px(n + 1) = pTx(n) = ⟨DnTx, Tx⟩ = ⟨T∗DnTx, x⟩

for every n ∈ Z.

(4) Let y = Tkx for some k ∈ N and x ∈ H. Then

py(n) = pTkx(n) = px(k + n) ,

for every n ∈ N. Therefore py(n) = px(k + n) for every n ∈ Z.

(5) Let k ∈ {1, 2, · · · , n − 1} and x ∈ H \ {0}. If D−n > 0, then by part (3),

⟨D−kx, x⟩ = ⟨T∗n−kD−nTn−kx, x⟩ = ⟨D−nTn−kx, Tn−kx⟩ > 0 . (2.3)

Since Tn−k is bounded below and by (2.3), we have that

∥D1/2
−k x∥2 = ∥D1/2

−n Tn−kx∥2 ≥ M∥x∥2 .

So, the result is obtained since D−k is a self adjoint operator. □

We close this section by studying the bilateral sequence (Dn)n∈Z associated to uni-

lateral weighted shift which are m-isometries.
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Let H be a Hilbert space with an orthonormal basis (en)n∈N. Recall that the unilat-

eral weighted shift given by Swen = wnen+1 on H, where wn =

√
p(n + 1)

p(n)
with p a

polynomial of degree m − 1, is a non invertible strict m-isometry, [1]. Also

pej(n) = ∥Sn
wej∥2 = |wjwj+1 · · ·wn+j−1|2 =

p(j + n)
p(j)

. (2.4)

The following proposition gives an explicit expression of the operator Dn, when T

is an m-isometrical unilateral weighted shift operator.

Proposition 2.2. Let H be a Hilbert space with orthonormal basis (en)n∈N and let Sw ∈
L(H) be an m-isometrical unilateral weighted shift with weight sequence w = (wn)n∈N.

Then

(1) Dn is a diagonal operator for every n ∈ Z, with diagonal

λn(j) :=
m−1

∑
k=0

bk(n)
j+k−1

∏
ℓ=j

|wℓ|2 ,

where bk(n) is giving by (2.1).

(2) Let n ∈ Z. The following conditions are equivalent

(a) Dn is invertible.

(b) Dn > 0.

(c) λn(j) > 0 for every j ∈ N.

Proof. (1) By [1], there exists a polynomial p of degree m − 1, such that the weights

are given by wn =
√

p(n+1)
p(n) . So,

Dnej =
m−1

∑
k=0

bk(n)S∗k
w Sk

wej =
m−1

∑
k=0

bk(n)
j+k−1

∏
ℓ=j

|wℓ|2ej

=
m−1

∑
k=0

bk(n)
p(j + k)

p(j)
ej = λn(j)ej ,

(2.5)

where

λn(j) =
m−1

∑
k=0

bk(n)
p(j + k)

p(j)
. (2.6)

(2) It is immediate by (1). □
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In general, the converse of part (5) of Proposition 2.1 is not valid. A suitable choose

of the weight sequence gives an example such that D−q > 0 and D−(q+1) is not positive

for some q ∈ N.

Example 2.3. Let q ∈ N and define pq(n) := (n + q)(n + q + 1). Then Sw with

weight wn =

√
pq(n+1)

pq(n)
is a 3-isometry and it satisfies that D−n > 0 and invertible for

n ∈ {1, · · · , q} and D−(q+1) is not. In fact,

λ−n(j) :=
pq(j − n)

pq(j)
=

(j + q − n)(j + q − n + 1)
(j + q)(j + q + 1)

,

for n ∈ N. If n ∈ {1, · · · , q}, then we have that −q − 1 + n < −q + n < 0. Hence,

λ−n(j) > 0, for every j ∈ N. If n = q + 1,

λ−(q+1)(j) =
j(j − 1)

(j + q)(j + q + 1)
.

Hence λ−(q+1)(1) = 0 and consequently ⟨D−(q+1)e1, e1⟩ = 0.

3. Necessary conditions of having an invertible m-isometrical extension

In an attempt towards solution of finding necessary conditions to obtain an in-

vertible m-isometrical extension, we draw upon an interesting connection between

D−1 > 0 and the invertibility of D−1 with the existence of a particular m-isometrical

extension. Notice that in the following theorem we do not obtain an invertible m-

isometrical extension.

Theorem 3.1. Let T ∈ L(H) be an m-isometry. The following statements are equivalent:

(i) There exist a Hilbert space K ⊃ H and an m-isometry S ∈ L(K) such that S|H = T

and R(S) = H.

(ii) D−1 > 0 and D−1 is invertible.

Proof. (i)⇒(ii): Let x ∈ H and y = S−1x ∈ K. For n ∈ Z, denote

D̃n :=
m−1

∑
k=0

bk(n)S∗kSk, Dn :=
m−1

∑
k=0

bk(n)T∗kTk

and for n ∈ N

p̃x(n) := ∥Snx∥2, px(n) := ∥Tnx∥2 ,
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where bk(n) is given by (2.1). Then

⟨D̃−1x, x⟩ = ⟨D̃−1Sy, Sy⟩ = ⟨S∗D̃−1Sy, y⟩ = ⟨D̃0y, y⟩ = ∥y∥2

=
m−1

∑
k=0

bk(−1)⟨S∗kSkx, x⟩ =
m−1

∑
k=0

bk(−1)⟨Tkx, Tkx⟩

= ⟨D−1x, x⟩ .

Then ⟨D̃−1x, x⟩ = ∥y∥2 = ⟨D−1x, x⟩ ≥ 0 for all x ∈ H. Also

∥D−1x∥∥x∥ ≥ ⟨D−1x, x⟩ = ∥y∥2 ≥ ∥Sy∥2

∥S∥2 =
∥x∥2

∥S∥2 .

So, D−1 > 0 and bounded below. Hence D−1 is invertible since D−1 is self adjoint

operator.

(ii)⇒(i): Consider the vector space H × H with a new seminorm

|||(h, h′)||| := ∥D1/2
−1 (Th + h′)∥

and the subspace

N := {(h, h′) ∈ H × H : |||(h, h′)||| = 0} .

Let K := (H × H)/N with the quotient norm

|||(h, h′) + N||| := ∥D1/2
−1 (Th + h′)∥ .

Then K is a normed space. Let us prove that ||| · ||| satisfies the parallelogram law.

For u = (h, h′) + N and v = (g, g′) + N in K we have

|||u + v|||2 + |||u − v|||2 = ⟨D−1(Th + h′ + Tg + g′), Th + h′ + Tg + g′⟩

+ ⟨D−1(Th + h′ − Tg − g′), Th + h′ − Tg − g′⟩

= 2⟨D−1(Th + h′), Th + h′⟩+ 2⟨D−1(Tg + g′), Tg + g′⟩

= 2|||u|||2 + 2|||v|||2.

Henceforth, K is a pre-Hilbert space. The linear mapping ϕ : K −→ H defined by

ϕ((h, h′) + N) = Th + h′ is an isomorphism. Indeed, ϕ is bounded since D−1 is an

invertible operator. It is clear that ϕ is onto and bounded below since the square
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root of D−1 is a bounded operator. Hence K is complete and so it is a Hilbert space.

Moreover,

|||(h, 0) + N|||2 = ∥D1/2
−1 (Th)∥2 = ⟨D−1Th, Th⟩ = ⟨T∗D−1Th, h⟩ = ∥D0h∥2 = ∥h∥2 .

So K contains H as a subspace and we identify h ∈ H with (h, 0) + N ∈ K.

Define S on K by
(
(h, h′) + N

)
:= (Th + h′, 0) + N. The operator S is well defined

and bounded:

|||S
(
(h, h′) + N

)
|||2 = |||(Th + h′, 0) + N|||2 = ∥D1/2

−1 (T(Th + h′))∥2

= ⟨D−1(T(Th + h′)), T(Th + h′)⟩ = ⟨D0(Th + h′), Th + h′⟩

= ∥Th + h′∥2 ≤ ∥D−1/2
−1 ∥2∥D1/2

−1 (Th + h′)∥2

= ∥D−1/2
−1 ∥2|||(h, h′) + N|||2 .

Clearly S is an extension of T. Let h ∈ H. We have identified h with (h, 0) + N ∈ K

and S((h, 0) + N) = (Th, 0) + N. Also SK = H.

Let us prove that S is an m-isometry. Let u = (h, h′) + N ∈ K and write y :=

Th + h′ ∈ H. We have that Su = (y, 0) + N, Sku = (Tk−1y, 0) + N and |||Sku|||2 =

∥D1/2
−1 (T

ky)∥2 = ∥Tk−1y∥2 for k ∈ N. So

m

∑
k=0

(−1)k
(

m
k

)
|||Sku|||2 = |||u|||2 +

m

∑
k=1

(−1)k
(

m
k

)
|||Sku|||2

= ⟨D−1y, y⟩+
m

∑
k=1

(−1)k
(

m
k

)
∥Tk−1y∥2

=
m

∑
k=0

(−1)k
(

m
k

)
py(k − 1) = 0,

since py has degree less or equal to m − 1. Hence S is an m-isometry. □

The following result gives necessary conditions of having an invertible m-isometrical

extension.

Proposition 3.2. Let T ∈ L(H) be a strict m-isometry.

(1) If T is invertible, then px(n) = ∥Tnx∥2 > 0 for every x ∈ H \ {0} and n ∈ Z.
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(2) If T has an invertible m-isometrical extension S, then px(−k) := ∥S−kx∥2 > 0 for

every x ∈ H \ {0} and k ∈ N, where px(n) := ∥Tnx∥2 for n ∈ N. In particular, the

degree of px is even for every x ∈ H \ {0}.

(3) If there exists an invertible m-isometrical extension of T, then Dn > 0 and invertible

operator for every n ∈ Z.

Proof. (1) Part (3) of Proposition 2.1 yields that T∗nD−nTn = D0 = I for n ∈ N. So,

for every x ∈ H \ {0} and n ∈ N,

px(−n) = ⟨D−nx, x⟩ = ⟨T∗−nT−nx, x⟩ = ∥T−nx∥2 > 0 ,

since T−1 is an m-isometry.

(2) Let x ∈ H and n ∈ N. Denote by

px(n) : = ⟨Dnx, x⟩ :=
m−1

∑
k=0

bk(n)∥Tkx∥2

p̃x(n) : = ⟨D̃nx, x⟩ :=
m−1

∑
k=0

bk(n)∥Skx∥2 ,

where S is an invertible m-isometrical extension of T. Clearly, px(n) = p̃x(n) is a

polynomial of degree less or equal to m − 1. Observe that px(−n) = p̃x(−n) =

∥S−nx∥2 for every n ∈ N. □

Remark 3.3. (1) Observe that part (2) of the above Proposition implies that the

degree of px is even if px(n) > 0 for every n ∈ Z. Indeed, this is a different

way to prove that there are no invertible strict m-isometries for even m. See

also [4, Proposition 1.23].

(2) The conditions Dn > 0 and invertible operator for every n ∈ Z are not suffi-

cient to define an invertible m-isometrical extension of T. Indeed, invertibility

of Dn would suffice to construct an unbounded m-isometrical extension of T

with dense range.

Proposition 3.2 allow us to obtain that some m-isometries have not an invertible

m-isometrical extension.
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Remark 3.4. Let T ∈ L(H) be a strict m-isometry. Denote px(n) := ∥Tnx∥2, for n ∈ N

and x ∈ H \ {0}. Then

(1) If m = 1, then px(n) > 0 for every x ∈ H \ {0} and n ∈ Z.

(2) If m is even, then there exist x0 ∈ H and n0 ∈ Z with n0 < 0 such that px0(n0) ≤ 0.

(3) If m is odd, then it is possible that px(n) > 0 for every x ∈ H \ {0} and n ∈ Z or

there exist x0 ∈ H and n0 ∈ Z with n0 < 0 such that px0(n0) ≤ 0.

In the following examples we present different behaviours of px(n) with negative

integer n for unilateral weighted shift.

Example 3.5. Let p(n) = nm−1 with odd m. It is clear that pej(n) := ∥Sn
wej∥2 =(

j + n
j

)m−1

and pej(−j) = 0. So, Sw can not have an invertible m-isometrical extension.

Example 3.6. Let p(n) := ∏m−1
i=1 (mn + i) with odd m. It is clear that

pej(n) := ∥Sn
wej∥2 =

m−1

∏
i=1

(m(j + n) + i)

∏m−1
i=1 (mj + i)

.

If j ≥ n, then pej(−n) > 0. In other case, pej(−n) > 0 since m − 1 is even. As we will see

later, Sw has an invertible m-isometrical extension by Theorem 5.1.

4. Characterization of having an invertible m-isometrical extension

The main result of this paper is to obtain, for a fixed m-isometry, characterizations

of having an invertible m-isometrical extension. In Proposition 3.2, we proved that

a necessary condition is that the bilateral sequence of operators (Dn)n∈Z must be

strictly positive and invertible.

Now, we are in position to prove the main result.

Theorem 4.1. Let T ∈ L(H) be an m-isometry and let (Dn)n∈Z be the bilateral sequence

defined by (2.2). Denote px(n) := ⟨Dnx, x⟩ for every x ∈ H \ {0} and n ∈ Z. The following

statements are equivalent:

(i) There exist a Hilbert space K ⊃ H and an invertible m-isometrical operator S ∈ L(K)

such that S|H = T.
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(ii) px(j) > 0 for every x ∈ H \ {0}, and j ∈ Z and

sup

{
px(j + 1)

px(j)
: x ∈ H \ {0}, j ∈ Z

}
< ∞ . (4.7)

(iii) Dn > 0 and invertible for every n ∈ Z, and

sup

{
⟨D−n+1x, x⟩
⟨D−nx, x⟩ : x ∈ H, ∥x∥ = 1, n ∈ N

}
< ∞ . (4.8)

Proof. (i) ⇒ (ii): Let x ∈ H \ {0}. Then

∥Sj+1x∥2 = ∥T j+1x∥2 = px(j + 1) > 0

for j ∈ Z and
px(j + 1)

px(j)
=

∥Sj+1x∥2

∥Sjx∥2 ≤ ∥S∥2 .

So, we get (4.7).

(ii) ⇒ (iii): By parts (1) and (2) of Proposition 2.1 we have that Dn > 0 and invertible

for n ∈ N. By hypothesis, Dj > 0 for j ∈ Z since px(j) = ⟨Djx, x⟩. Let us prove that

D−n are bounded below for every n ∈ N. The condition (4.7) yields that there exists

M > 0 such that

px(−n) ≥ px(−n + 1)
M

≥ px(0)
Mn =

∥x∥2

Mn

hence

∥D1/2
−n x∥2 ≥ ∥x∥2

Mn ,

for every x ∈ H \ {0} and n ∈ N. Therefore D−n is bounded below for n ∈ N and

hence invertible.

It is remained to prove (4.8). Indeed, (4.8) is an immediate consequence of (4.7)

using the identification px(j) = ⟨Djx, x⟩ for every x ∈ H \ {0} and j ∈ Z.

(iii)⇒(i): Let V be the vector space of all sequences (h1, h2, . . . ) of elements of H

with finite support, that is, there exists n ∈ N such that hj = 0 for j > n. Define a

new seminorm on V by

|||(h1, h2, . . . )|||2 := ⟨D−ny, y⟩,

where n ∈ N is any integer satisfying hj = 0 for j > n and y := ∑n
j=1 Tn−jhj.
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The seminorm ||| · ||| does not depend on the choice of n. Indeed, if hj = 0 for j > n,

r = n + n0 with n0 ∈ N, and y = ∑n
j=0 Tn−jhj, then

〈
D−r

r

∑
j=1

Tr−jhj,
r

∑
i=1

Tr−ihi

〉
=

〈
D−(n+n0)T

n0

n+n0

∑
j=1

Tn−jhj

 , Tn0

(
n+n0

∑
i=1

Tn−ihi

)〉

=

〈
T∗n0 D−(n+n0)T

n0

 n

∑
j=1

Tn−jhj

 ,
n

∑
i=1

Tn−ihi

〉
= ⟨D−ny, y⟩

where the last equality is by part (3) of Proposition 2.1.

Let N := {(h1, h2, . . . ) ∈ V : |||(h1, h2, . . . )||| = 0} and let K be the completion of

V/N.

Let us prove that K is a pre-Hilbert space. For that, it is enough to prove that ||| · |||
satisfies the parallelogram law. Let u := (h1, h2, · · · ) + N, v := (g1, g2, · · · ) + N ∈
V/N, n ∈ N such that hj = 0 = gj for j > n and x := ∑n

j=1 Tn−jhj, y := ∑n
j=1 Tn−jgj.

Then

|||u + v|||2 + |||u − v|||2 = ⟨D−n(x + y), x + y⟩+ ⟨D−n(x − y), x − y⟩

= 2(|||u|||2 + |||v|||2) .

For each h ∈ H we have |||(h, 0, 0, . . . ) + N|||2 = ⟨D−1Th, Th⟩ = ⟨D0h, h⟩ = ∥h∥2.

Let L be the closed subspace generated by (h, 0, · · · ) + N with h ∈ H and define

ϕ on H taking values on L by ϕ(h) := (h, 0, · · · ) + N. Then ∥h∥2 = |||ϕ(h)|||2 and

R(ϕ) = L. For each h ∈ H we can identify h with (h, 0, . . . ) + N ∈ K. So, K contains

H as a subspace.

Define S on V/N by S((h1, h2, · · · ) + N) := (Th1 + h2, h3, · · · ) + N ∈ V/N. Then

the definition of S is correct and S is bounded. Indeed, let u := (h1, h2, · · · ) + N ∈
V/N, n ∈ N such that hj = 0 for j > n and y := ∑n

j=1 Tn−jhj. Denote (h̃1, h̃2, · · · ) :=

(Th1 + h2, h3, · · · ). Then

|||Su|||2 = |||(Th1 + h2, h3, · · · ) + N|||2 = ⟨D−(n−1)ỹ, ỹ⟩
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where

ỹ :=
n−1

∑
j=1

Tn−1−jh̃j = Tn−1(Th1 + h2) +
n−1

∑
j=2

Tn−1−jh̃j = y .

Then |||Su|||2 = ⟨D−(n−1)y, y⟩ = py(−n + 1) . Repeating the process we have that

|||Sku|||2 = py(−n + k) ,

for k = 0, . . . m. Therefore
m

∑
k=0

(−1)k
(

m
k

)
|||Sku|||2 =

m

∑
k=0

(−1)k
(

m
k

)
py(−n + k) = 0 ,

since py has degree less or equal to m − 1. By continuity, S is an m-isometry.

It is easy to see that R(S) ⊃ V + N. So the range of S is dense, and consequently S

is an invertible m-isometry. □

Moreover, the invertible extension S ∈ L(K) is defined uniquely (up to the unitary

equivalence) if we assume that S is minimal, i.e., K =
∨

k≥0 S−kH.

We will prove that the converse of part (3) of Proposition 3.2 is not true in general,

that is, if Dn > 0 and invertible for n ∈ Z are not sufficient to have an invertible

m-isometrical extension of an m-isometry. Firstly, we need a previous result on m-

isometries.

Proposition 4.2. Let (Tn)n∈N ⊂ L(H) be a uniformly bounded sequence of m-isometries.

Then T = T1 ⊕ T2 ⊕ · · · is an m-isometry on ℓ2(H).

Proof. Since (Tn)n∈N is a uniformly bounded, then T = T1 ⊕ T2 ⊕ · · · is well-defined

on ℓ2(H).

Let x = (x1, x2, · · · ) ∈ ℓ2(H). Denote pxn(k) := ∥Tk
nxn∥2. Since (Tn)n∈N is a

sequence of m-isometries, then (pxn(k))n∈N is a sequence of polynomials of degree

less or equal to m − 1. Fixed k ∈ N,

px(k) := ∥Tkx∥2 =
∞

∑
n=1

∥Tk
nxn∥2 =

∞

∑
n=1

pxn(k)

is a polynomial of degree less or equal to m − 1. Hence T is an m-isometry. □
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It is possible to exhibit an example of m-isometry with odd m such that Dn > 0 and

invertible for every n ∈ Z but not fulfilling the hypothesis of Theorem 4.1. In order

to simplify the presentation we include an example with a 3-isometry.

Example 4.3. Let qn(j) := j2 + j(2− 1
n ) + 1. Let H be a Hilbert space with an orthonor-

mal basis (en,j)n,j∈N and K := ℓ2(H). Define T ∈ L(K) by

Ten,j :=

√
qn(j + 1)

qn(j)
en,j+1

for any n, j ∈ N. Then

(1) T is a 3-isometry on K.

(2) px(k) > 0 for every x ∈ K \ {0} and k ∈ Z, where px(n) := ∥Tnx∥2 for n ∈ N.

(3) Dn > 0 and invertible for n ∈ Z.

(4) There is no invertible 3-isometrical extension of T.

Proof: It is clear that qn(j) > 0 for n ∈ N and j ∈ Z.

Let x = (x1, x2, · · · ) =
(
∑∞

n=1 αn,1en,1, ∑∞
n=1 αn,2en,2, · · ·

)
∈ K. Then

T(x1, x2, · · · ) := (0, T1x1, T2, x2, · · · ) ,

where

Tixi := Ti

(
∞

∑
n=1

αn,ien,i

)
=

∞

∑
n=1

αn,iwn,ien,i+1

and

wn,i :=

√
qn(i + 1)

qn(i)
.

By Proposition 4.2, the operator T is a 3-isometry, since Tn is a 3-isometry for every

n ∈ N and also (Tn)n∈N is uniformly bounded, that is

sup
n∈N

∥Tn∥ ≤ sup
n,i∈N

√
qn(i + 1)

qn(i)
< M

for some positive constant M.
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Let us prove that px(k) > 0 for every x ∈ K \ {0} and k ∈ Z. Let x = (x1, x2, · · · ) =
(∑∞

n=1 αn,1en,1, ∑∞
n=1 αn,2en,2, · · · ) ∈ K \ {0} and k ∈ N. Then

px(k) := ∥Tkx∥2 = ∥(0, · · · , 0, TkTk−1 · · · T1x1, Tk+1Tk · · · T2x2, · · · ∥2

=

∥∥∥∥∥(0, · · · , 0,
∞

∑
n=1

αn,1

√
qn(k + 1)

qn(1)
en,k+1, · · · )

∥∥∥∥∥
2

=
∞

∑
j=1

∥∥∥∥∥ ∞

∑
n=1

αn,j

√
qn(k + j)

qn(j)
en,k+j

∥∥∥∥∥
2

=
∞

∑
n,j=1

|αn,j|2
qn(k + j)

qn(j)
> 0

for k ∈ N. Notice that

D−n :=
(n + 1)(n + 2)

2
I − n(n + 2)T∗T +

n(n + 1)
2

T∗2T2 ,

is a diagonal operator given by D−nem,j = λ−n(k, j)ek,j where

λ−n(k, j) : =
1

2qk(j)
(
(n + 1)(n + 2)qk(j)− n(n + 2)qk(j + 1) + n(n + 1)qk(j + 2)

)
=

1
2qk(j)

j2(n2 + 2n + 2) + j

(
−n2

k
+ 4n2 − 2

n
k
+ 4n − 2

k
+ 4

)

−n2

k
+ 6n2 + 4n + 2

)
> 0 ,

for n, k, j ∈ N. So, it is immediate that D−n is invertible for n ∈ N.

In order to finish the proof, let us prove that there is no invertible 3-isometrical

extension of T. Taking into account that

pen,1(−1)
pen,1(−2)

=
qn(0)

qn(−1)
= n ,

we have that

sup

{
px(j + 1)

px(j)
: x ∈ K \ {0}, j ∈ Z

}
= ∞ .

□
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5. Some particular cases

In this section, the goal is to study two different examples of m-isometries, the

ℓ-Jordan isometry and unilateral weighted shift that are m-isometries for some m.

In the case of unilateral weighted shift we can obtain a nice characterization of

invertible m-isometrical extensions of an m-isometry, as a consequence of Theorem

4.1.

Theorem 5.1. Let H be a Hilbert space with orthonormal basis (en)n∈N and let Sw ∈ L(H)

be an m-isometrical unilateral weighted shift associated to the weight w := (wn)n∈N. Then

Sw has an invertible m-isometrical extension if and only if pe1(n) > 0 for every n ∈ Z, where

pe1(n) := ∥Sn
we1∥2 for n ∈ N.

Proof. If Sw has an invertible m-isometrical extension S, then px(n) := ∥Snx∥2 > 0 for

every x ∈ H \ {0} and n ∈ Z, by Proposition 3.2. Hence pe1(n) > 0 for n ∈ Z.

Let us prove the sufficient condition. Suppose that pe1(n) > 0 for n ∈ Z. A first

consequence is that m is odd. By equality (2.4), pe1(n) is a polynomial of degree m− 1.

Hence

lim
n→∞

pe1(−n + 1)
pe1(−n)

= 1 ,

and

inf

{
pe1(−n + 1)

pe1(−n)
: n ∈ N

}
> 0 .

Let K be a Hilbert space with (en)n∈Z an orthonormal basis. Define Tβ ∈ L(K) by

Tβen = βnen+1 where βn =

√
pe1(n)

pe1(n − 1)
for n ∈ Z. By [1, Theorem 19] we have that

Tβ is an m-isometry, since pe1(n) is a polynomial of degree m − 1 by (2.4). Moreover,

Tβ is an invertible extension of Sw and the desired result is proved. □

Remark 5.2. In the above theorem, it is possible to obtain the same information with

different elements of the orthogonal basis, as a consequence of equality (2.4). Indeed,

in the conditions of Theorem 5.1 the following statements are equivalent:

(1) Sw has an invertible m-isometrical extension.

(2) pe1(n) > 0 for n ∈ Z.
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(3) pej(n) > 0 for n ∈ Z and some j ∈ N.

(4) pej(n) > 0 for n ∈ Z and j ∈ N.

Let us obtain a first approach to ℓ-Jordan isommetries. In the next result we obtain

that any 2-Jordan isometry operator admits an invertible 3-isometric extension, as a

particular case of Theorem 4.1.

Corollary 5.3. Let T ∈ L(H) be a 2-Jordan isometry operator. Then T has an invertible

2-Jordan isometry extension.

Proof. Let T be a 2-Jordan isometry operator, that is T = A + Q, where A is an isome-

try and Q is a 2-nilpotent operator such that AQ = QA. By (2.2) we obtain that

D−n =
(n + 1)(n + 2)

2
I − n(n + 2)T∗T +

n(n + 1)
2

T∗2T2

= I − n(A∗Q + Q∗A) + n2Q∗Q .

Then

⟨D−nx, x⟩ = ∥x∥2 − n(⟨Qx, Ax⟩+ ⟨Ax, Qx⟩) + n2∥Qx∥2 .

Let us prove that ⟨D−nx, x⟩ > 0 for every x ∈ H such that ∥x∥ = 1 and n ∈ N. It is

enough to prove that

n2∥Qx∥2 + 1 > 2nRe(⟨Ax, Qx⟩) , (5.9)

where Re(z) denotes the real part of z. If Re(⟨Ax, Qx⟩) ≤ 0, then (5.9) is clear. Assume

that Re(⟨Ax, Qx⟩) > 0. Then

Re(⟨Ax, Qx⟩) = |Re(⟨Ax, Qx⟩)| ≤ |⟨Ax, Qx⟩| ≤ ∥Ax∥∥Qx∥ ≤ ∥Q∥ .

If |⟨Ax, Qx⟩| = ∥Ax∥∥Qx∥, then the vectors Ax and Qx are linearly dependent, so

there exists λ such that Qx = λAx. Then λ = 0, since 0 = ∥Q2x∥ = |λ|2∥A2x∥ = |λ|2

and therefore ∥Qx∥ = 0, which is an absurd with Re(⟨Ax, Qx⟩ > 0. If |⟨Ax, Qx⟩| <
∥Ax∥∥Qx∥, then

2nRe(⟨Ax, Qx⟩) < 2n∥Qx∥ ≤ n2∥Qx∥2 + 1 .

So, ⟨D−nx, x⟩ > 0 for every x ∈ H such that ∥x∥ = 1 and all n ∈ N.
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In order to get the result, it is enough to prove that (4.8) is bounded. Let x ∈ H

such that ∥x∥ = 1 and n ∈ N. Then

⟨D−n+1x, x⟩
⟨D−nx, x⟩ = 1 +

2Re(⟨Ax, Qx⟩) + (−2n + 1)∥Qx∥2

1 − 2nRe(⟨Ax, Qx⟩) + n2∥Qx∥2

≤ 1 +

∣∣∣∣∣2Re(⟨Ax, Qx⟩) + (−2n + 1)∥Qx∥2

1 − 2nRe(⟨Ax, Qx⟩) + n2∥Qx∥2

∣∣∣∣∣
≤ 1 +

2∥Q∥+ (2n − 1)∥Q∥2

1 − 2n∥Q∥ − n2∥Q∥2

converges to zero as n tends to infinity. Hence

sup

{
⟨D−n+1x, x⟩
⟨D−nx, x⟩ : x ∈ H, ∥x∥ = 1, n ∈ N

}
< ∞ .

□

Corollary 5.4. Let T, C ∈ L(H) such that TC = CT.

(1) If T is an isometry, then T̃ :=

 T C

0 T

 has an invertible 3-isometric extension on

K ⊃ H ⊕ H.

(2) If λT is an isometry for some λ ∈ C, then λT̃ = λ

 T C

0 T

 has an invertible

3-isometric extension on K ⊃ H ⊕ H.

Proof. (1) It is clear that T̃ =

 T 0

0 T

+

 0 C

0 0

 is a 2-Jordan isometry operator.

Therefore the result is consequence of Corollary 5.3.

Applying (1) to the operator λT we obtain (2). □

A similar result of part (1) of Corollary 5.4 was obtained in [8, Corollary 4.4]. That

is, if T ∈ L(H) is a contraction and C ∈ L(H) such that TC = CT, then T̃ has a

3-isometric lifting on K ⊃ H ⊕ H.
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In the next theorem we can improve Corollary 5.3. Indeed, we prove that every

ℓ-Jordan isometry has an invertible ℓ-Jordan isometry extension. The first part of our

proof is based in the construction by Douglas [13], as it is presented by Laursen and

Neumann in the monograph [15, Proposition 1.6,6].

Theorem 5.5. Let T ∈ L(H) be an ℓ-Jordan isometry. Then there exist a Hilbert space K

and S ∈ L(K), such that H is isometrically embedded in K and S is an invertible ℓ-Jordan

isometry extension of T.

Proof. As T is an ℓ-Jordan isometry, there are an isometry A ∈ L(H) and an ℓ-nilpotent

operator Q ∈ L(H) such that AQ = QA and T = A + Q.

Let K0 be the linear space of all the sequences u = (un)n∈N in H such that there is

m ∈ N satisfying um+k = Akum, for k ∈ N. Define, for u, v ∈ K0,

⟨u, v⟩0 := lim
n→∞

⟨un, vn⟩ ,

being ⟨·, ·⟩ the inner product on H. Note that there exists m ∈ N such that ⟨um, vm⟩ =
⟨Akum, Akvm⟩ = ⟨um+k, vm+k⟩, so the sequence (⟨un, vn⟩)n∈N is eventually constant,

that is, there exists k0 ∈ N such that ⟨un, vn⟩ is constant for n > k0. It is routine to

verify what ⟨·, ·⟩0 is a semi-inner product on K0. Therefore K0 is a semi pre-Hilbert

space. Moreover,

∥u∥2
0 := ⟨u, u⟩0 = lim

n→∞
⟨un, un⟩ = lim

n→∞
∥un∥2

defines a seminorm ∥ · ∥0 on K0.

Let M := {u ∈ K0 : ⟨u, u⟩0 = ∥u∥2
0 = 0}. Then M is a closed subspace of K0 and we

consider the quotient space K0/M. In this space are defined, for u, v ∈ K0,

⟨u + M, v + M⟩ := ⟨u, v⟩0 and ∥u + M∥2 := ⟨u + M, u + M⟩ = ⟨u, u⟩0 = ∥u∥2
0 ,

and we obtain that K0/M is a pre-Hilbert space.

Denote by K the Hilbert space what it is the completion of K0/M. The operator

J ∈ L(H, K), defined by Jx := (Anx)n∈N + M for x ∈ H, satisfies that

∥Jx∥ = ∥(Anx)n∈N + M∥ = ∥(Anx)n∈N∥0 = lim
n→∞

∥Anx∥ = ∥Ax∥ = ∥x∥ ,
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hence J is an isometry. So K contains an isometric copy of H. It is clear that J(H) is a

closed subspace of K.

In order to define B ∈ L(K), we define an isometry on K0/M by

B((un)n∈N + M) := (Aun)n∈N + M ,

for every (un)n∈N + M ∈ K0/M. Note that B is a linear isometry whose range contains

K0/M; in fact, given (vn)n∈N + M = (v1, ..., vm, Avm, A2vm, ...) + M, we have that

B((0, ..., 0︸ ︷︷ ︸
m

, vm, Avm, A2vm, ...) + M) = (0, ..., 0︸ ︷︷ ︸
m

, Avm, A2vm, A3vm, ...) + M

= (v1, · · · , vm, Avm, A2vm, · · · ) + M .

As K0/M is dense in K, we have that B can be extended to an invertible isometry

defined on K. Moreover, B can be considered as an extension of A since, for x ∈ H,

BJx = B((Anx)n∈N + M) = (An+1x)n∈N + M = JAx .

That is, BJ = JA.

Define P ∈ L(K) in the following way

P((un)n∈N + M) = (Qun)n∈N + M ,

for every (un)n∈N + M ∈ K0/M. It is clear that P is an ℓ-nilpotent. Let us prove that

B and P commute. Taking into account that AQ = QA, we have that

BP((un)n∈N + M) = B((Qun)n∈N + M) = (AQun)n∈N + M

= (QAun)n∈N + M = P((Aun)n∈N + M) = PB((un)n∈N + M) .

for every (un)n∈N + M ∈ K0/M. Therefore, S := B+ P ∈ L(K) is an ℓ-Jordan isometry

that extends T. Moreover, S is an invertible since σ(S) = σ(B) and B is an invertible

isometry. So the proof is finished. □

An operator T ∈ L(H) is a doubly ℓ-Jordan isometry if T = A + Q is an ℓ-Jordan

isometry operator such that the ℓ-nilpotent Q ∈ L(H) which commutes with A also

commutes with A∗. For all scalar λ with |λ| = 1 and an ℓ-nilpotent operator Q, we

have that λI + Q is a doubly ℓ-Jordan isometry.
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Corollary 5.6. Let T ∈ L(H) be a doubly ℓ-Jordan isometry. Then there exist a Hilbert space

K, such that H is isometrically embedded in K and an invertible doubly ℓ-Jordan isometry

extension S ∈ L(K) of T.

Remark 5.7. We use the notation of the proof of Theorem 5.5.

(1) It is easy to prove that the orthogonal subspace of J(H), J(H)⊥ is the closure of

the subspace of all classes

(un)n∈N + M = (u1, ..., um, Aum, A2um, ...) + M ∈ K0/M

such that um ∈ R(Am)⊥.

(2) The decomposition K = J(H)⊕ J(H)⊥ gives rise to the representation of B as a

operator matrix:

B =

 B1 B2

0 B3

 (5.10)

being B1 ∈ L(J(H)), B2 ∈ L(J(H)⊥, J(H)) and B3 ∈ L(J(H)⊥). Notice that J(H) is a

closed invariant subspace of B.

(3) The operator P is defined by the following operator matrix, associated to the

decomposition K = J(H)⊕ J(H)⊥,

P =

 P1 P2

0 P3

 (5.11)

being P1 ∈ L(J(H)), P2 ∈ L(J(H)⊥, J(H)) and P3 ∈ L(J(H)⊥). Notice that J(H) is a

closed invariant subspace of P.

(4) If T is a doubly ℓ-Jordan isometry, then P2 = 0 in (5.11). For this purpose only

it is necessary to prove that if (un)n∈N + M ∈ J(H)⊥, then P((un)n∈N + M) ∈ J(H)⊥,

and that BP∗ = P∗B. In fact, given u = (u1, ..., um, Aum, A2um, ...) such that um ∈
R(Am)⊥, we have that Qum ∈ R(Am)⊥ since, for all x ∈ H,

⟨Qum, Amx⟩ = ⟨um, Q∗Amx⟩ = ⟨um, AmQ∗x⟩ = 0 ,

because Q∗A = AQ∗. Therefore P((un)n∈N + M) = (Qu1, ..., Qum, AQum, A2Qum, ...)+

M ∈ J(H)⊥. Hence P(J(H)⊥) ⊂ J(H)⊥.
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