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Abstract

We consider K-interpolation spaces involving slowly varying functions,
and derive necessary and sufficient conditions for a Holmstedt-type for-
mula to be held in the limiting case θ0 = θ1 ∈ {0, 1}. We also study the
case θ0 = θ1 ∈ (0, 1). Applications are given to Lorentz-Karamata spaces,
generalized gamma spaces and Besov spaces.
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1 Introduction

Let (A0, A1) be a compatible couple of quasi-normed spaces. For each f ∈
A0 +A1 and t > 0, the Peetre’s K-functional is defined by

K(t, f) = K(t, f ;A0, A1)

= inf{‖f0‖A0
+ t‖f1‖A1

: f0 ∈ A0, f1 ∈ A1, f = f0 + f1}.

Let 0 < q ≤ ∞, 0 ≤ θ ≤ 1, and let b be a slowly varying function on (0,∞).
The K-interpolation space Āθ,q;b = (A0, A1)θ,q;b is formed of those f ∈ A0 +A1

for which the quasi-norm

‖f‖Āθ,q;b = ‖t−θ−1/qb(t)K(t, f)‖q,(0,∞)

is finite; see [22]. If b ≡ 1 and (θ, q) ∈ ([0, 1] × [1,∞]) \ ({0, 1} × [1,∞]),
then we recover the classical real interpolation spaces Āθ,q (see [5, 6, 27]). Let
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0 < q0, q1 ≤ ∞. The celebrated classical Holmstedt’s formula states that, for all
for f ∈ A0 +A1 and for all t > 0, we have

K(tθ1−θ0 , f ; Āθ0,q0 , Āθ1,q1) ≈ ‖u−θ0−1/q0K(u, f)‖q0,(0,t)
+tθ1−θ0‖u−θ1−1/q1K(u, f)‖q1,(t,∞),

provided 0 < θ0 < θ1 < 1 (see [25, Theorem 2.1]). In the limiting case θ = 0
or θ = 1, the classical space Āθ,q contains only zero element unless q = ∞.
However, the limiting K-interpolation spaces Ā0,q;b and Ā1,q;b do make sense
(for all q ∈ (0,∞]) under appropriate conditions on b. In the non-limiting case
0 < θ0 < θ1 < 1, we have the following straightforward extension of the classical
Holmstedt’s formula (see [22, Theorem 3.1]):

K(w(t), f ; Āθ0,q0;b0 , Āθ1,q1;b1) ≈ ‖u−θ0−1/q0b0(u)K(u, f)‖q0,(0,t)
+w(t)‖u−θ1−1/q1b1(u)K(u, f)‖q1,(t,∞),

where b0 and b1 are slowly varying functions and w(t) = tθ1−θ0b0(t)/b1(t). The
limiting case when θ0 = 0 and θ1 = 1 is contained in [3, Example 5]. However,
the limiting case θ0 = θ1 ∈ [0, 1] still remains open for general slowly varying
functions b0 and b1. The main goal of the current paper is to fill this gap.

Let us describe our main results. To this end, let

ρ(t) =
‖u−1/q0b0(u)‖q0,(t,∞)

‖u−1/q1b1(u)‖q1,(t,∞)

, t > 0

and, for each ε > 0, put

ρε(t) =
‖u−1/q0b0(u)‖1+ε

q0,(t,∞)

‖u−1/q1b1(u)‖q1,(t,∞)

.

In the limiting case θ0 = θ1 = 0, there are two distinguishing cases: q0 6= q1

and q0 = q1. In the case when q0 6= q1, we establish that the following version
of Holmstedt’s formula

K(ρ(t), f ; Ā0,q0;b0 , Ā0,q1;b1) ≈ ‖u−1/q0b0(u)K(u, f)‖q0,(0,t)
+ρ(t)‖u−1/q1b1(u)K(u, f)‖q1,(t,∞),

holds for all for f ∈ A0 + A1 and for all t > 0 provided the following con-
dition is met: ρε is equivalent to a non-decreasing function for some ε > 0.
This condition also turns out to be necessary under the additional assumption
that the given couple (A0, A1) is K-surjective (see Definition 3.1 below). When
q0 = q1 < ∞, the previous estimate holds if ρ is increasing and the couple
(A0, A1) is K-surjective, and when q0 = q1 = ∞ the previous estimate holds
under the natural condition that ρ is increasing. The corresponding Holmstedt’s
formulae for the symmetric counterpart limiting case θ0 = θ1 = 1 follows imme-
diately, by the usual symmetry argument, from the limiting case θ0 = θ1 = 0.
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Finally, in the limiting case θ0 = θ1 ∈ (0, 1) we further have two distinguishing
cases: while in the case q0 = q1, a version of Holmstedt’s formula does exist,
there exists no analogue of Holmstedt’s formula in the case q0 6= q1 if the given
couple (A0, A1) is K-surjective.

The reader is referred to recent works [1,3,9–11,15–20] for other generalized
versions of Holmstedt’s formula.

The paper is organised as follows. All the Holmstedt’s formulae mentioned
above are contained in Section 3. The necessary background is collected in Sec-
tion 2. Section 4 contains the reiteration formulae, and some concrete examples
of these reiteration formulae are included in the final section 5.

2 Background material

2.1 Notation

We write A . B or B & A for two non-negative quantities A and B to mean
that A ≤ cB for some positive constant c which is independent of appropriate
parameters involved in A and B. If both the estimates A . B and B . A hold,
we simply put A ≈ B. We let ‖ · ‖q,(a,b) denote the standard Lq-quasi-norm on
an interval (a, b) ⊂ R. We write X ↪→ Y for two quasi-normed spaces X and Y
to mean that X is continuously embedded in Y.

2.2 Slowly varying functions

Let b : (0,∞) → (0,∞) be a Lebesgue measurable function. Following [22], we
say b is slowly varying on (0,∞) if for every ε > 0, there are positive functions
gε and g−ε on (0,∞) such that gε is non-decreasing and g−ε is non-increasing,
and we have

tεb(t) ≈ gε(t) and t−εb(t) ≈ g−ε(t) for all t ∈ (0,∞).

We denote the class of all slowly varying functions by SV. Let A = (α0, α∞) ∈
R2. Define

`A(t) =

 (1− ln t)α0 , 0 < t ≤ 1,

(1 + ln t)α∞ , t > 1,

Then `A ∈ SV. In addition, the class SV contains compositions of appropriate
log-functions, exp | log t|α with α ∈ (0, 1), etc.

We collect in next Proposition some elementary properties of slowly varying
functions, which will be used in the sequel time and again without explicit
mention. The proofs of these assertions can be carried out as in [22, Lemma
2.1] or [12, Proposition 3.4.33].

Proposition 2.1 Given b, b1, b2 ∈ SV , the following assertions hold:
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(i) b1b2 ∈ SV and br ∈ SV for each r ∈ R.

(ii) If g(t) ≈ h(t), t > 0, then b(g(t)) ≈ b(h(t)), t > 0.

(iii) If α > 0, then

‖uα−1b(u)‖1,(0,t) ≈ tαb(t), t > 0.

(iv) If α > 0, then

‖u−α−1b(u)‖1,(t,∞) ≈ t−αb(t), t > 0.

(v) Assume that
‖u−1b(u)‖1,(1,∞) <∞,

and set
b̃(t) = ‖u−1b(u)‖1,(t,∞), t > 0.

Then b̃ ∈ SV, and b(t) . b̃(t), t > 0.

2.3 K-interpolation spaces

Let A0 and A1 be two quasi-normed spaces. We say (A0, A1) is a compatible
couple if A0 and A1 are continuously embedded in the same Hausdorff topolog-
ical vector space. For each f ∈ A0 + A1 and t > 0, the K-functional is defined
by

K(t, f) = K(t, f ;A0, A1)

= inf{‖f0‖A0
+ t‖f1‖A1

: f0 ∈ A0, f1 ∈ A1, f = f0 + f1}.

Note that K(t, f) is, as a function of t, non-decreasing on (0,∞), while K(t, f)/t
is, as a function of t, non-increasing on (0,∞),

Let 0 < q ≤ ∞, 0 ≤ θ ≤ 1, and let b ∈ SV . The K-interpolation space
Āθ,q;b = (A0, A1)θ,q;b is formed of those f ∈ A0 +A1 for which the quasi-norm

‖f‖Āθ,q;b = ‖t−θ−1/qb(t)K(t, f ;A0, A1)‖q,(0,∞)

is finite; see [22]. If b = `A, then we obtain the K-interpolation spaces Āθ,q;A
considered in [13] and [14]. If A = (0, 0) and (θ, q) ∈ ([0, 1]× [1,∞]) \ ({0, 1} ×
[1,∞]), then we recover the classical K-interpolation spaces Āθ,q (see [5,6,27]).

It is not hard to check that for θ ∈ (0, 1) the spaces Āθ,q;b are intermediate,
without any condition on b and q, for the couple (A0, A1), that is,

A0 ∩A1 ↪→ Āθ,q;b ↪→ A0 +A1.

However, while working with the limiting spaces Ā0,q;b and Ā1,q;b, we have to
impose an appropriate condition on b and q. For convenience, let us introduce
two notations. We say b ∈ SV0,q if b ∈ SV and

‖u−1/qb(u)‖q,(1,∞) <∞.
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And we say b ∈ SV1,q if b(1/t) ∈ SV0,q. For b ∈ SV0,q (or b ∈ SV1,q), the space
Ā0,q;b (or Ā1,q;b) is intermediate for the couple (A0, A1) (see [22, Proposition
2.5]).

2.4 Weighted inequalities

First let us recall that a function φ : (0,∞) → (0,∞) is called quasi-concave if
both φ and tφ(1/t) are non-decreasing.

Theorem 2.2 [23, Theorem 5.1] Let 0 < p, q <∞, and let v and w be positive
functions on (0,∞). Consider the inequality(∫ ∞

0

[h(s)w(s)]
q ds

s

)1/q

≤ C
(∫ ∞

0

[h(s)v(s)]
p ds

s

)1/p

. (2.1)

(a) Let 0 < p ≤ q <∞. Then the inequality (2.1) holds for all quasi-concave
functions h on (0,∞) if and only if

A1 = sup
x>0

(∫ x
0
sqwq(s)dss + xq

∫∞
x
wq(s)dss

)1/q(∫ x
0
spvp(s)dss + xp

∫∞
x
vp(s)dss

)1/p <∞.

Moreover, C = A1 is the best constant.
(b) Let 0 < q < p <∞. Then the inequality (2.1) holds for all quasi-concave

functions h on (0,∞) if and only if

A2 =

∫ ∞
0

(∫ x
0
sqwq(s)dss + xq

∫∞
x
wq(s)dss

) q
p−q(∫ x

0
spvp(s)dss + xp

∫∞
x
v(s)p dss

) q
p−q

xqwq(x)
dx

x

1/q−1/p

<∞.

Moreover, C = A2 is the best constant.

Corollary 2.3 Let 0 < p, q <∞, and let v ∈ SV0,p and w ∈ SV0,q.
(a) Let 0 < p ≤ q <∞. Then the inequality (2.1) holds for all quasi-concave

functions h on (0,∞) if and only if

A3 = sup
x>0

(∫∞
x
wq(s)dss

)1/q(∫∞
x
vp(s)dss

)1/p <∞.

Moreover, C = A3 is the best constant.
(b) Let 0 < q < p <∞. Then the inequality (2.1) holds for all quasi-concave

functions h on (0,∞) if and only if

A4 =

∫ ∞
0

(∫∞
x
wq(s)dss

) q
p−q(∫∞

x
v(s)p dss

) q
p−q

wq(x)
dx

x

1/q−1/p

<∞.

Moreover, C = A4 is the best constant.
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Proof. The proof immediately follows from the previous theorem in view of
the assertions (iv) and (vi) in Proposition 2.1.

Corollary 2.4 Let 0 < p, q < ∞, and let v ∈ SV0,p and w ∈ SV0,q. Consider
the inequality

(∫ ∞
0

[
h(s)w(s)χ(0,t)(s)

]q ds
s

)1/q

. φ(t)

(∫ ∞
0

[h(s)v(s)]
p ds

s

)1/p

. (2.2)

(a) Let 0 < p ≤ q < ∞. Then the inequality (2.2) holds for all quasi-concave
functions h on (0,∞) if and only if we have

sup
0<x<t

(∫∞
x
wq(s)dss

)1/q(∫∞
x
vp(s)dss

)1/p . φ(t), t > 0. (2.3)

(b) Let 0 < q < p <∞. Then the inequality (2.2) holds for all quasi-concave
functions h on (0,∞) if and only if we have∫ t

0

(∫∞
x
wq(s)dss

) q
p−q(∫∞

x
v(s)p dss

) q
p−q

wq(x)
dx

x

1/q−1/p

. φ(t), t > 0. (2.4)

Corollary 2.5 Let 0 < p, q < ∞, and let v ∈ SV0,p and w ∈ SV0,q. Consider
the inequality

(∫ ∞
0

[
h(s)w(s)χ(t,∞)(s)

]q ds
s

)1/q

. ψ(t)

(∫ ∞
0

[h(s)v(s)]
p ds

s

)1/p

. (2.5)

(a) Let 0 < p ≤ q < ∞. Then the inequality (2.5) holds for all quasi-concave
functions h on (0,∞) if and only if we have

sup
x>t

(∫∞
x
wq(s)dss

)1/q(∫∞
x
vp(s)dss

)1/p . ψ(t), t > 0. (2.6)

(b) Let 0 < q < p <∞. Then the inequality (2.5) holds for all quasi-concave
functions h on (0,∞) if and only if we have∫ ∞

t

(∫∞
x
wq(s)dss

) q
p−q(∫∞

x
v(s)p dss

) q
p−q

wq(x)
dx

x

1/q−1/p

. ψ(t), t > 0. (2.7)

Theorem 2.6 [1, Lemma 3.2] Let 1 < α < ∞, and assume that w and φ are
positive functions on (0,∞). Put

v(t) = (w(t))1−α
(
φ(t)

∫ ∞
t

w(u)du

)α
.
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Then ∫ ∞
0

(∫ t

0

φ(u)h(u)du

)α
w(t)dt .

∫ ∞
0

hα(t)v(t)dt

holds for all positive functions h on (0,∞).

An appropriate change of variable gives us the following variant of the previous
theorem.

Theorem 2.7 Let 1 < α <∞, and assume that w and φ are positive functions
on (0,∞). Put

v(t) = (w(t))1−α
(
φ(t)

∫ t

0

w(u)du

)α
.

Then ∫ ∞
0

(∫ ∞
t

φ(u)h(u)du

)α
w(t)dt .

∫ ∞
0

hα(t)v(t)dt

holds for all positive functions h on (0,∞).

Theorem 2.8 [1, Lemma 3.3] Let 0 < α < 1, and assume that w and φ are
positive functions on (0,∞). Put

v(t) = φ(t)

(∫ t

0

φ(u)du

)α−1 ∫ ∞
t

w(u)du.

Then ∫ ∞
0

(∫ ∞
t

φ(u)h(u)du

)α
w(t)dt .

∫ ∞
0

hα(t)v(t)dt

holds for all positive, non-increasing functions h on (0,∞).

Again an appropriate change of variable gives us the following variant of the
previous theorem.

Theorem 2.9 Let 0 < α < 1, and assume that w and φ are positive functions
on (0,∞). Put

v(t) = φ(t)

(∫ ∞
t

φ(u)du

)α−1 ∫ t

0

w(u)du.

Then ∫ ∞
0

(∫ ∞
t

φ(u)h(u)du

)α
w(t)dt .

∫ ∞
0

hα(t)v(t)dt

holds for all positive, non-decreasing functions h on (0,∞).

Theorem 2.10 [24, Theorem 3.3 (b)] Let 0 < α ≤ 1. Assume that w and
v are non-negative functions on (0,∞), and ψ is a non-negative function on
(0,∞)× (0,∞). Then∫ ∞

0

(∫ ∞
0

ψ(t, u)h(u)du

)α
w(t)dt .

∫ ∞
0

hα(t)v(t)dt (2.8)
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holds for all non-negative, non-decreasing functions h on (0,∞) if and only if∫ ∞
0

(∫ ∞
x

ψ(t, u)du

)α
w(t)dt .

∫ ∞
x

v(t)dt (2.9)

holds for all x > 0.

3 Holmstedt-type formulae

This section contains our main results. In order to describe our results, we need
the following class of compatible couples.

Definition 3.1 [26, p. 217] We say a compatible couple (A0, A1) of quasi-
normed spaces is K-surjective if for every quasi-concave function φ, there exists
f ∈ A0 +A1 such that

φ(t) ≈ K(t, f), t > 0.

3.1 The case θ0 = θ1 = 0

Let 0 < qj ≤ ∞ and bj ∈ SV0,qj (j = 0, 1). Put

ρ(t) =
‖u−1/q0b0(u)‖q0,(t,∞)

‖u−1/q1b1(u)‖q1,(t,∞)

,

I(t, f) = ‖u−1/q0b0(u)K(u, f ;A0, A1)‖q0,(0,t),

and
J(t, f) = ‖u−1/q1b1(u)K(u, f ;A0, A1)‖q1,(t,∞).

Moreover, let ε > 0 and set

ρε(t) =
‖u−1/q0b0(u)‖1+ε

q0,(t,∞)

‖u−1/q1b1(u)‖q1,(t,∞)

.

Theorem 3.2 Let 0 < q0, q1 ≤ ∞, q0 6= q1, and bj ∈ SV0,qj (j=0,1). Assume
that the following condition is met:

ρε is equivalent to a non-decreasing function for some ε > 0. (3.1)

Then, for all f ∈ A0 +A1 and all t > 0, we have

K(ρ(t), f ; Ā0,q0;b0 , Ā0,q1;b1) ≈ I(t, f) + ρ(t)J(t, f). (3.2)

Moreover, the condition (3.1) is also necessary provided that the given couple
(A0, A1) is K-surjective.
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Proof. First assume that the condition (3.1) is met. According to the estimate
(2.30) in [1, Theorem 2.3], we have the following estimate from below:

K(ρ(t), f ; Ā0,q0;b0 , Ā0,q1;b1) . I(t, f) + ρ(t)J(t, f) + ρ(t)b1(t)K(t, f)

+ ‖u−1/q0b0(u)‖q0,(t,∞)K(t, f). (3.3)

Since t 7→ K(t, f) is non-decreasing, we obtain

J(t, f) ≥ K(t, f)‖u−1/q1b1(u)‖q1,(t,∞), (3.4)

whence we get

ρ(t)J(t, f) ≥ ‖u−1/q0b0(u)‖q0,(t,∞)K(t, f). (3.5)

Moreover, by Proposition 2.1 (vi), (3.4) gives

J(t, f) & K(t, f)b1(t). (3.6)

Now, in view of (3.5) and (3.6), the estimate “ . ” in (3.2) follows from (3.3).
In order to establish the converse estimate “ & ”, it will suffice to show that the
following estimates

I(t, f) . ‖f0‖Ā0,q0;b0
+ ρ(t)‖f1‖Ā0,q1;b1

,

and
ρ(t)J(t, f) . ‖f0‖Ā0,q0;b0

+ ρ(t)‖f1‖Ā0,q1;b1
,

hold for an arbitrary decomposition f = f0 + f1 with fj ∈ Aj (j = 0, 1). As
K(u, f) . K(u, f0) +K(u, f1), we have

I(t, f) . I(t, f0) + I(t, f1),

and
J(t, f) . J(t, f0) + J(t, f1).

Clearly, I(t, f0) ≤ ‖f0‖Ā0,q0;b0
and J(t, f1) ≤ ‖f1‖Ā0,q1;b1

. Therefore, it remains
to show that

I(t, f1) . ρ(t)‖f1‖Ā0,q1;b1
, (3.7)

and
ρ(t)J(t, f0) . ‖f0‖Ā0,q0;b0

. (3.8)

Since
‖fj‖Ā0,qj ;bj

≥ K(x, fj)‖u−1/qj bj(u)‖qj ,(x,∞), x > 0, (3.9)

it follows that the estimate (3.7) holds if the following condition is met:∥∥∥∥ x−1/q0b0(x)

‖s−1/q1b1(s)‖q1,(x,∞)

∥∥∥∥
q0,(0,t)

. ρ(t), (3.10)
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while the estimate (3.8) holds if the following condition is met:∥∥∥∥ x−1/q1b1(x)

‖s−1/q0b0(s)‖q0,(x,∞)

∥∥∥∥
q1,(t,∞)

. 1/ρ(t). (3.11)

Next let us derive the estimate (3.10) using the condition (3.1). We consider
only the case when q0 < ∞ since the case q0 = ∞ is analogous and easier.
Observe that ∫ t

0

bq00 (x)(∫∞
x
bq11 (s)dss

)q0/q1 dxx
.

(∫∞
t
bq00 (s)dss

)1+ε(∫∞
t
bq11 (s)dss

)q0/q1
∫ t

0

(∫ ∞
x

bq00 (s)
ds

s

)−ε−1

bq00 (x)
dx

x

≈
∫∞
t
bq00 (s)dss(∫∞

t
bq11 (s)dss

)q0/q1 ,
whence we get (3.10). Next we show that (3.11) also follows from the condition
(3.1). Again we consider only the case when q1 <∞. This time we observe that∫ ∞

t

bq11 (x)(∫∞
x
bq00 (s)dss

)q1/q0 dxx
.

(∫∞
t
bq11 (s)dss

) 1
1+ε(∫∞

t
bq00 (s)dss

)q1/q0
∫ ∞
t

(∫ ∞
x

bq11 (s)
ds

s

) −1
1+ε

bq11 (x)
dx

x

≈
∫∞
t
bq11 (s)dss(∫∞

t
bq00 (s)dss

)q1/q0 ,
whence we get (3.11). The proof of the sufficiency of the condition (3.1) is com-
plete.

Next assume that the estimate (3.2) holds for all A0 + A1 and t > 0. We
distinguish two cases: q1 < q0 and q0 < q1. First we treat the case q1 < q0.
Taking a particular decomposition f = f + 0, f ∈ Ā0,q0;b0 and 0 ∈ Ā1,q1;b1 , we
obtain

ρ(t)J(t, f) . ‖f‖Ā0,q0;b0
,

from which, according to Corollary 2.5 (b), it follows that∫ ∞
t

(∫∞
x
bq11 (s)dss

) q1
q0−q1(∫∞

x
bq00 (s)dss

) q1
q0−q1

bq11 (x)
dx

x

1/q1−1/q0

. 1/ρ(t). (3.12)

Next we introduce the operator

(Qw)(t) =

∫ ∞
t

w(x)

(∫ ∞
x

bq11 (s)
ds

s

)−1

bq11 (x)
dx

x
.
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Set temporarily

σ =

[
1

ρ

] q1q0
q0−q1

and

B(t) =

∫ ∞
t

bq11 (s)
ds

s
.

For each k ∈ N, define Qk+1 = Q(Qk). Then

(Qk+1w)(t) =
1

k!

∫ ∞
t

w(x) lnk
[
B(t)

B(x)

]
[B(x)]

−1
bq11 (x)

dx

x
, k ∈ N. (3.13)

Moreover we see that (3.12) translates into

(Qσ)(t) ≤ cσ(t)

for some constant c > 0. Therefore, we have

(Qk+1σ)(t) ≤ ck+1σ(t), k ∈ N,

which, in view of (3.13), leads us to

1

k!

∫ ∞
t

σ(x) lnk
[
B(t)

B(x)

]
[B(x)]

−1
bq11 (x)

dx

x
≤ ck+1σ(t), k ∈ N. (3.14)

We choose ε > 0 such that max(εc, ε) < 1. Then by (3.14), we obtain

∫ ∞
t

σ(x)

∞∑
k=0

lnk
[
B(t)
B(x)

]ε
k!

[B(x)]
−1
bq11 (x)

dx

x
≤ c

∞∑
k=0

(εc)kσ(t),

whence we get∫ ∞
t

σ(x)

[
B(t)

B(x)

]ε
[B(x)]

−1
bq11 (x)

dx

x
≤ c

1− εc
σ(t),

or, ∫ ∞
t

σ(x) [B(x)]
−ε−1

bq11 (x)
dx

x
≤ c

1− εc
σ(t) [B(t)]

−ε
. (3.15)

Now the converse estimate∫ ∞
t

σ(x) [B(x)]
−ε−1

bq11 (x)
dx

x
& σ(t) [B(t)]

−ε
(3.16)

holds as well. Indeed,∫ ∞
t

σ(x) [B(x)]
−ε−1

bq11 (x)
dx

x
&

(∫ ∞
t

bq00 (s)
ds

s

) q1
q1−q0

∫ ∞
t

[B(x)]
q1q0
q0−q1

−ε−1
bq11 (x)

dx

x

≈
(∫ ∞

t

bq00 (s)
ds

s

) q1
q1−q0

[B(x)]
q1q0
q0−q1

−ε
,
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whence we get (3.1). From (3.15) and (3.1), it follows that∫ ∞
t

σ(x) [B(x)]
−ε−1

bq11 (x)
dx

x
≈ σ(t) [B(t)]

−ε

which shows that t 7→ σ(t) [B(t)]
−ε

is equivalent to a non-increasing function.
That is,

t 7→
[

1

ρ(t)

] q1q0
q0−q1

(∫ ∞
t

bq11 (s)
ds

s

)−ε
is equivalent to a non-increasing function, or,

t 7→ ρ(t)

(∫ ∞
t

bq11 (s)
ds

s

) ε(q0−q1)
q0q1

is equivalent to a non-decreasing function. It follows that

t 7→ ρ(t)

(∫ ∞
t

bq00 (s)
ds

s

) ε(q0−q1)

q0(q0−ε(q0−q1))

is equivalent to a non-decreasing function since

ρ(t)

(∫ ∞
t

bq00 (s)
ds

s

) ε(q0−q1)

q0(q0−ε(q0−q1))

=

ρ(t)

(∫ ∞
t

bq11 (s)
ds

s

) ε(q0−q1)
q0q1


q0

q0−ε(q0−q1)

.

Thus the condition (3.1) is valid in the case when q1 < q0. As for the case q0 < q1,
we take a particular decomposition f = 0 + f , 0 ∈ Ā0,q0;b0 and f ∈ Ā1,q1;b1 to
get

I(t, f) . ρ(t)‖f‖Ā0,q1;b1
,

from which, according to Corollary 2.4 (b), it follows that∫ t

0

(∫∞
x
bq00 (s)dss

) q0
q1−q0(∫∞

x
bq11 (s)dss

) q0
q1−q0

bq00 (x)
dx

x

1/q0−1/q1

. ρ(t). (3.17)

This time we introduce the operator

(Pw)(t) =

∫ t

0

w(x)

(∫ ∞
x

bq00 (s)
ds

s

)−1

bq01 (x)
dx

x
,

and using a similar argument as in the case q1 < q0 we can conclude that the
condition (3.1) is also valid in the case when q0 < q1. This completes the proof
of the theorem.

Remark 3.3 The argument for the estimate “ . ” in (3.2) also works when
q0 = q1. Moreover, the condition (3.1) is only required for the estimate “ & ”
in (3.2).
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Remark 3.4 The converse estimate in (3.11) holds trivially.

Next we treat the case q0 = q1.

Theorem 3.5 Let 0 < p ≤ ∞ and bj ∈ SV0,p. Assume that ρ is increasing.
In the case p < ∞, assume additionally that the given couple (A0, A1) is K-
surjective. Then, for all f ∈ A0 +A1 and all t > 0, we have

K(ρ(t), f ; Ā0,p;b0 , Ā0,p;b1) ≈ I(t, f) + ρ(t)J(t, f). (3.18)

Proof. In view of Remark 3.3, it remains to derive the converse estimate “ & ”
in (3.18). First we consider the case p =∞. In this case we can assume, without
loss of generality, that b0 and b1 are non-increasing functions. Therefore, we have
ρ = b0/b1. The desired estimate “ & ” follows from the estimate (2.35) in [1].
Next we turn to the case 0 < p < ∞. As in the previous theorem, we need to
show that the estimates (3.7) and (3.8) hold ( with q0 = q1 = p) for an arbitrary
decomposition f = f0 + f1 with fj ∈ Aj (j = 0, 1). According to Corollary 2.4
(a), the estimate (3.7) holds if the following condition is met:

sup
0<x<t

ρ(x) . ρ(t), (3.19)

while, according to Corollary 2.5 (a), the estimate (3.8) holds if the following
condition is met:

sup
x>t

1/ρ(x) . 1/ρ(t). (3.20)

But both (3.19) and (3.20) hold trivially in view of the fact that ρ is increasing.
The proof of the theorem is complete.

3.2 The case θ0 = θ1 = 1

The case θ0 = θ1 = 1 is symmetric counterpart of the case θ0 = θ1 = 1, and
the corresponding estimates can be derived immediately from the estimates in
the previous subsection using the same symmetry argument as in the proof of
Theorem 4.3 in [22].

In order to formulate the results, we introduce some further notation. Let
0 < qj ≤ ∞ and bj ∈ SV1,qj (j = 0, 1). Put

η(t) =
‖u−1/q0b0(u)‖q0,(0,t)
‖u−1/q1b1(u)‖q1,(0,t)

,

I1(t, f) = ‖u−1−1/q0b0(u)K(u, f ;A0, A1)‖q0,(0,t),
and

J1(t, f) = ‖u−1−1/q1b1(u)K(u, f ;A0, A1)‖q1,(t,∞).

Moreover, let ε > 0 and set

ηε(t) =
‖u−1/q0b0(u)‖1+ε

q0,(0,t)

‖u−1/q1b1(u)‖q1,(0,t)
.

13



Theorem 3.6 Let 0 < q0, q1 ≤ ∞, q0 6= q1, and bj ∈ SV1,qj (j=0,1). Assume
that the following condition is met:

ηε is equivalent to a non-decreasing function for some ε > 0. (3.21)

Then, for all f ∈ A0 +A1 and all t > 0, we have

K(η(t), f ; Ā1,q0;b0 , Ā1,q1;b1) ≈ I1(t, f) + ρ(t)J1(t, f). (3.22)

Moreover, the condition (3.21) is also necessary provided that the given couple
(A0, A1) is K-surjective.

Theorem 3.7 Let 0 < p ≤ ∞ and bj ∈ SV1,p. Assume that η is increasing.
In the case p < ∞, assume additionally that the given couple (A0, A1) is K-
surjective. Then, for all f ∈ A0 +A1 and all t > 0, we have

K(η(t), f ; Ā1,p;b0 , Ā1,p;b1) ≈ I1(t, f) + η(t)J1(t, f). (3.23)

3.3 The case θ0 = θ1 ∈ (0, 1)

First we treat the case q0 6= q1.

Theorem 3.8 Let 0 < θ < 1, 0 < q0 6= q1 ≤ ∞, and let b0, b1 ∈ SV . Assume
that the given couple (A0, A1) is K-surjective. Then there exists no positive
function w on (0,∞) such that the following estimate holds

K(w(t), f ; Āθ,q0;b0 , Āθ,q1;b1) &

(∫ t

0

s−θq0Kq0(s, f)
ds

s

)1/q0

+w(t)

(∫ ∞
t

s−θq1Kq1(s, f)
ds

s

)1/q1

for all f ∈ A0 +A1 and for all t > 0.

Proof. We give the argument only in the case 0 < q0 < q1 ≤ ∞ since the
argument in the other case 0 < q1 < q0 ≤ ∞ is similar. We assume, on
the contrary, that there exists such a positive function w on (0,∞). Taking a
particular decomposition f = f + 0, f ∈ Āθ,q0;b0 and 0 ∈ Āθ,q1;b1 , we obtain

w(t)‖s−θ−1/qb1(s)K(s, f)‖q1,(t,∞) . ‖f‖Āθ,q0;b0
, (3.24)

while taking a particular decomposition f = 0+f , 0 ∈ Āθ,q0;b0 and f ∈ Āθ,q1;b1 ,
we obtain (∫ t

0

s−θq0bq00 (s)Kq0(s, f)
ds

s

)1/q0

. w(t)‖f‖Āθ,q1;b1
. (3.25)

First let q1 < ∞. Now, according to Corollary 2.5 (a), it follows from (3.24)
that

w(t) .
b0(t)

b1(t)
, t > 0, (3.26)
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and while, according to Corollary 2.4 (b), it follows from (3.25) that(∫ t

0

[
b0(s)

b1(s)

] q0q1
q0−q1 ds

s

)1/q1−1/q0

. w(t), t > 0. (3.27)

Finally, combining (3.26) and (3.27) yields(∫ t

0

[
b0(s)

b1(s)

] q0q1
q0−q1 ds

s

)1/q1−1/q0

.
b0(t)

b1(t)
, t > 0,

which is not possible since b0 and b1 are slowly varying functions. Next we turn
to the case q1 = ∞. Choose q0 < r < ∞. Then, in view of the well-known
embedding Āθ,r;b1 ↪→ Āθ,∞;b1 , (3.25) gives(∫ t

0

s−θq0bq00 (s)Kq0(s, f)
ds

s

)1/q0

. w(t)‖f‖Āθ,r;b1 ,

from which, using Corollary 2.4 (b), it follows that(∫ t

0

[
b0(s)

b1(s)

] q0r
q0−r ds

s

)1/r−1/q0

. w(t), t > 0. (3.28)

Next we choose an ε > 0 so that both θ + ε and θ − ε lie in the interval (0, 1).
Next choose a f ∈ A0 +A1 such that we have

K(s, f) =

{
sθ+ε, 0 < s < t,

t2εsθ−ε, s ≥ t.

Then we again get (3.26) from (3.24). This time combining (3.26) and (3.28)
yields (∫ t

0

[
b0(s)

b1(s)

] q0r
q0−r ds

s

)1/r−1/q0

.
b0(t)

b1(t)
, t > 0,

which is again not possible. The proof is complete.

Next in the case q0 = q1, a version of Holmstedt’s formula does exit.

Theorem 3.9 Let 0 < θ < 1, 0 < q ≤ ∞. Let b0 and b1 be slowly varying
functions such that ρ = b0/b1 is non-decreasing. Then for all f ∈ A0 + A1 and
for all t > 0, we have

K(ρ(t), f ; Āθ,q;b0 , Āθ,q;b1) ≈ ‖u−θ−1/qb0(u)K(u, f)‖p,(0,t)
+ρ(t)‖u−θ−1/pb1(u)K(u, f)‖p,(t,∞).

Proof. The proof follows immediately from the estimates (2.30) and (2.35)
in [1, Theorem 2.3].

15



4 Reiteration

Theorem 4.1 Let 0 < q0, q1, q < ∞, 0 < θ < 1, bj ∈ SV0,qj (j=0,1), and b ∈
SV. Assume that ρ is increasing on (0,∞) with lim

t→0+
ρ(t) = 0 and lim

t→∞
ρ(t) =∞.

If q0 6= q1, assume additionally that the condition (3.1) is met, while if q0 = q1,
assume additionally that the given couple (A0, A1) is K-surjective and that the
following two-sided estimate holds:

ρ′(t)

ρ(t)
≈ t−1bq11 (t)∫∞

t
bq11 (u)duu

, t > 0.

Put

b̃(t) = [ρ(t)](1−θ)b(ρ(t))[b1(t)]q1/q
(∫ ∞

t

bq11 (u)
du

u

)1/q1−1/q

.

Then (
Ā0,q0;b0 , Ā0,q1;b1

)
θ,q;b

= Ā0,q;b̃. (4.1)

Proof. We consider only the case q0 6= q1; the other case q0 = q1 being similar.
Let f ∈ A0 +A1, and set X =

(
Ā0,q0;b0 , Ā0,q1;b1

)
θ,q;b

, , Y = Ā0,q;b̃ and

1

σ(t)
=

∥∥∥∥ x−1/q1b1(x)

‖s−1/q0b0(s)‖q0,(x,∞)

∥∥∥∥
q1,(t,∞)

.

Then, in view of (3.11) along with Remark 3.4, we have σ ≈ ρ. Thus, by Theorem
3.2, we get

‖f‖qX ≈ I1 + I2,

where

I1 =

∫ ∞
0

[σ(t)]−θqbq(σ(t))

(∫ t

0

bq00 (u)Kq0(u, f)
du

u

)q/q0
σ′(t)

σ(t)
dt,

and

I2 =

∫ ∞
0

[σ(t)](1−θ)qbq(σ(t))

(∫ ∞
t

bq11 (u)Kq1(u, f)
du

u

)q/q1 σ′(t)
σ(t)

dt.

We can compute that
σ′(t)

σ(t)
≈ t−1bq11 (t)∫∞

t
bq11 (u)duu

.

First we show that I2 ≈ ‖f‖qY . Now I2 ≥ ‖f‖qY is a simple consequence of
the fact that u 7→ K(u, f) is non-decreasing. In order to establish the converse
estimate I2 . ‖f‖qZ , we distinguish three cases: q = q1, q > q1 and q < q1. The
case q = q1 simply follows from Fubini’s theorem. Next the case q > q1 follows
from Theorem 2.7, while the case q < q1 follows from Theorem 2.9. Thus, it
remains to show that I1 . ‖f‖qY . Again we distinguish three cases: q = q0,

16



q > q0 and q < q0. The case q = q0 follows from Fubini’s theorem, while the
case q > q0 follows from Theorem 2.6 in view of the following estimate

bq00 (t)∫∞
t
bq00 (u)duu

.
bq11 (t)∫∞

t
bq11 (u)duu

, t > 0,

which is a simple consequence of our assumption that ρ is increasing on (0,∞).
As for the case q < q0, we apply Theorem 2.10 with α = q/q0, h(t) = K(t, f),
w(t) = t−1[b̃(t)]q, ψ(t, u) = u−1bq00 χ(0,t)(u) and

v(t) = t−1[ρ(t)]q(1−θ)bq(ρ(t))[b1(t)]q1
(∫ ∞

t

bq11 (u)
du

u

)q/q1−1

.

We observe that∫ ∞
0

(∫ ∞
x

ψ(t, u)du

)α
w(t)dt =

∫ ∞
x

(∫ t

x

bq00 (u)
du

u

)q/q0
[b̃(t)]q

dt

t

≤
(∫ ∞

x

bq00 (u)
du

u

)q/q0 ∫ ∞
x

[b̃(t)]q
dt

t

≈
(∫ ∞

x

bq00 (u)
du

u

)q/q0
[ρ(t)]−θqbq(ρ(t)),

and∫ ∞
x

v(t)dt & [ρ(t)]q(1−θ)bq(ρ(t))

∫ ∞
x

[b1(t)]q1
(∫ ∞

t

bq11 (u)
du

u

)q/q1−1
dt

t

≈
(∫ ∞

x

bq00 (u)
du

u

)q/q0
[ρ(t)]−θqbq(ρ(t)).

Thus, I1 . ‖f‖qY holds. The proof of the theorem is complete.

Remark 4.2 We have left out the cases θ = 0 and θ = 1 since in these cases
no simplification takes place and the resulting interpolation spaces involve the
K-interpolation spaces of type L and R (see, for instance, [22]). We leave the
details to the reader.

Remark 4.3 We refer the reader to a recent reiteration formula [2, Theorem
5.8] which deals with the case q0 = q1 (without K-surjective assumption) for
general weights (under certain appropriate conditions ) and for ordered couples
(A0, A1) in the sense that A1 ↪→ A0.

The reiteration theorem corresponding to the limiting case θ0 = θ1 = 1 reads
as follows.
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Theorem 4.4 Let 0 < q0, q1, q < ∞, 0 < θ < 1, bj ∈ SV1,qj (j=0,1), and b ∈
SV. Assume that η is increasing on (0,∞) with lim

t→0+
η(t) = 0 and lim

t→∞
η(t) =∞.

If q0 6= q1, assume additionally that the condition (3.21) is met, while if q0 = q1,
assume additionally that the given couple (A0, A1) is K-surjective and that the
following two-sided estimate holds:

η′(t)

η(t)
≈ t−1bq11 (t)∫ t

0
bq11 (u)duu

, t > 0.

Put

b̂(t) = [η(t)]θb(η(t))[b1(t)]q1/q
(∫ t

0

bq11 (u)
du

u

)1/q1−1/q

.

Then (
Ā1,q0;b0 , Ā1,q1;b1

)
θ,q;b

= Ā1,q;b̂. (4.2)

Remark 4.5 The previous two reiteration theorems have already obtained in
the special case when bj (j = 0, 1) are logarithmic functions (see [8, Corollary
1]) or broken logarithmic functions (see [14, Corollaries 7.8 and 7.11]).

Remark 4.6 Let 0 < θ, η < 1 and 0 < q ≤ ∞. The characterization of the
interpolation spaces

(Āθ,q;b0 , Āθ,q;b1)θ,r;b

will involve the K-interpolation spaces of type L and R. We once again leave
the elementary details to the reader.

5 Concrete examples

5.1 Lorentz-Karamata spaces

Let (Ω, µ) be a σ-finite measure space. Let f∗ denotes the non-increasing rear-
rangement of a µ-measurable function f on Ω (see, for instance, [5]).

Definition 5.1 [22] Let 0 < p, q ≤ ∞ and b ∈ SV. The Lorentz-Karamata
space Lp,q;b consists of all µ-measurable functions f on Ω such that the quasi-
norm

‖f‖Lp,q;b = ‖t1/p−1/qb(t)f∗(t)‖q,(0,∞)

is finite.

For b = `A, the spaces Lp,q;b coincide with the spaces Lp,q;A from [13] and [14].
When b ≡ 1, the spaces Lp,q;b become the Lorentz spaces Lp,q, which coincide
with the classical Lebesgue spaces Lp for p = q.

We give an application of Theorem 4.4 to the interpolation of Lorentz-
Karamata spaces Lp,q;b in the critical case when p = ∞. To this end, we char-
acterize L∞,q;b as limiting K-interpolation spaces for the couple (L1, L∞).
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Lemma 5.2 Let 0 < q <∞ and b ∈ SV1,q. Then

L∞,q;b = (L1, L∞)1,q;b.

Proof. Put X = (L1, L∞)0,q;b and Y = L∞,q;b, and let f ∈ L1 + L∞. Since
(see [6, Theorem 5.2.1])

K(t, f ;L1, L∞) =

∫ t

0

f∗(u)du, t > 0,

it turns out that

‖f‖X =

(∫ ∞
0

t−qbq(t)

(∫ t

0

f∗(u)du

)q
dt

t

)1/q

.

Now the estimate ‖f‖X ≥ ‖f‖Y follows immediately in view of the fact that
f∗ is non-increasing. On the other hand, the converse estimate ‖f‖X . ‖f‖Y
follows from Theorem 2.6 (in the case q > 1), Theorem 2.8 (in the case q < 1)
and Fubini’s theorem (in the case q = 1). The proof is complete.

Theorem 5.3 Let 0 < q0, q1, q < ∞, 0 < θ < 1, bj ∈ SV1,qj (j=0,1), and b ∈
SV. Assume that η is increasing on (0,∞) with lim

t→0+
η(t) = 0 and lim

t→∞
η(t) =∞.

If q0 6= q1, assume additionally that the condition (3.21) is met, while if q0 = q1,
assume additionally that the following two-sided estimate holds:

η′(t)

η(t)
≈ t−1bq11 (t)∫ t

0
bq11 (u)duu

, t > 0.

Then
(L∞,q0;b0 , L∞,q1;b1)θ,q;b = L∞,q;b̂,

where

b̂(t) = [η(t)]θb(η(t))[b1(t)]q1/q
(∫ t

0

bq11 (u)
du

u

)1/q1−1/q

.

Proof. Take A0 = L1 and A1 = L∞, and apply Theorem 4.4 to obtain(
(L1, L∞)1,q0;b0 , (L

1, L∞)1,q1;b1

)
θ,q;b

= (L1, L∞)1,q;b̂.

Now it remains to apply Lemma 5.2.

5.2 Generalized gamma spaces

Definition 5.4 ( [21]) Let 0 < q, r ≤ ∞, 0 < p < ∞, b ∈ SV0,q and w ∈ SV
The generalized gamma space Γ(r, q, p; b, w) = Γ(r, q, p; b, w)(Ω) consists of all
those real-valued Lebesgue measurable functions f on Ω, for which the quasi-
norm

‖f‖Γ(r,q,p;b,w) =
∥∥∥t−1/qb(t)‖τ1/p−1/rw(τ)f∗(τ)‖r,(0,t)

∥∥∥
q,(0,∞)

is finite.
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Theorem 5.5 Let 0 < q0 6= q1 < ∞, 0 < q, p, r < ∞, 0 < θ < 1, bj ∈ SV0,qj

(j=0,1), and b, w ∈ SV. Assume that the condition (3.1) is met, and assume
that ρ is increasing with lim

t→0+
ρ(t) = 0 and lim

t→∞
ρ(t) =∞. Then

(Γ(r, q0, p; b0, w),Γ(r, q1, p; b1, w))θ,q;b = Γ(r, q, p; b̃, w),

where

b̃(t) = [ρ(t)](1−θ)b(ρ(t))[b1(t)]q1/q
(∫ ∞

t

bq11 (u)
du

u

)1/q1−1/q

.

Proof. The proof follows from Theorem 4.1 and the following interpolation
formula (for j = 0, 1)

Γ(r, qj , p; bj , w) = (Lp,r;w, L
∞)0,qj ;bj .

5.3 Homogeneous Besov spaces

Let E be a rearrangement invariant Banach function space on Rn as in [5], and
let ωE(f, t) = sup

|h|≤t
‖∆hf‖E is the modulus of continuity of f ∈ E (see, for

example, [4]).

Definition 5.6 ( [4]) Let 0 < q ≤ ∞ and b ∈ SV0,q. The homogeneous Besov

space B0,b
E,q consists of those functions f ∈ E for which the semi-quasi-norm

‖f‖B0,b
E,q

= ‖t−1/qb(t)(t)ωE(f, t)‖q,(0,∞)

is finite.

It is well-known (see, for instance, [7]) that

K(f, t;E,W 1E) ≈ ωE(f, t), t > 0,

where W 1E is the Sobolev space built over E with a norm ‖f‖W 1E = ‖|D1f |‖E .
Here |D1f | =

∑
|α|=1

|Dαf |. Then it follows immediately that

(E,W 1E)0,b,q = B0,b
E,q. (5.1)

Remark 5.7 We observe that Theorem 4.1 also holds when the compatible
couple quasi-normed spaces is replaced by a compatible couple of semi-quasi-
normed spaces.

Theorem 5.8 Let 0 < q0 6= q1 < ∞, 0 < q < ∞, 0 < θ < 1, bj ∈ SV0,qj

(j=0,1), and b ∈ SV. Assume that the condition (3.1) is met, and assume that
ρ is increasing with lim

t→0+
ρ(t) = 0 and lim

t→∞
ρ(t) =∞. Then

(B0,b0
E,q0

, B0,b1
E,q1

)θ,q;b = B0,b̃
E,q,
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where

b̃(t) = [ρ(t)](1−θ)b(ρ(t))[b1(t)]q1/q
(∫ ∞

t

bq11 (u)
du

u

)1/q1−1/q

.

Proof. The proof follows from Theorem 4.1 and the interpolation formula (5.1).
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