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Abstract. Our paper deals with three-dimensional nonsteady Navier-
Stokes equations for non-Newtonian compressible fluids. It contains
a derivation of the relative energy inequality for the weak solutions to
these equations. We show that the standard energy inequality implies
the relative energy inequality. Consequently, the relative energy inequal-
ity allows us to achieve a weak-strong uniqueness result. In other words,
we present that the weak solution of the Navier-Stokes system coincides
with the strong solution emanated from the same initial conditions as
long as the weak solution exists.

1. Introduction

This paper deals with the analysis of solution to the system describing
a compressible non-Newtonian fluid – a fluid whose viscosity is non-constant,
namely it depends on the shear rate in our case.

The study of such system dates back to Mamontov [10], [11] who showed
the existence of a weak solution for an exponential growth of viscosity and
an isothermal pressure. The existence of the weak solution in more general
setting was provided by Zhikov and Pastukhova [13], nevertheless, their
proof is wrong as noted by Feireisl, Liao and Málek in [6]. The article [6]
itself deals with the existence of a weak solution, authors, however, had to
assume a viscosity with rather an artificial term.

The viscosity which does not possess an exponential growth admits only
measure-valued solutions. This has been recently showed by Abbatiello,
Feireisl and Novotný in [1] for an isentropic pressure, and by Basarić in [2]
for the isothermal pressure. Authors of the former article also gave a proof
of the relative energy and weak-strong uniqueness.

The existence of a strong solution was, up to now, showed in [8] where
authors used the Lp−Lq regularity approach to show the local-in-time well-
posedness of the system describing compressible non-Newtonian fluids.

The relative entropy inequality (and corresponding weak-strong unique-
ness) for the exponentially growing viscosity and isothermal pressure has
not been investigated up to now. This is the main aim of our paper – in
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particular, we derive a connection between results from [10], [11] (resp. also
[2]) and [8].

The motion of the non-Newtonian compressible fluid in a domain Ω ⊂ R3

is described by its velocity u : Ω→ R3 and density ρ : Ω→ [0,∞). The time
evolution of u and ρ is governed by the continuity and momentum equations

∂tρ+ div (ρu) = 0,(1.1)

∂t (ρu) + div (ρu⊗ u) +∇p = div S + ρf in Ω× (0, T ),(1.2)

where T > 0, p stands for the pressure, S is the viscous stress tensor and f
represents the external forces [10].

Let us suppose that the fluid is isothermal and non-Newtonian. Namely,
we assume that (without the loss of generality)

S = P (|Du|)Du, p = ρ

where conditions on P : [0,∞)→ [0,∞) are discussed later.
Equations (1.1) and (1.2) are supplemented with the no-slip boundary

conditions

u|∂Ω = 0,

and initial conditions

ρ(·, 0) = ρ0 , (ρu)(·, 0) = (ρu)0 in Ω,

where ρ0 is non-negative.
The weak formulation of the system (1.1), (1.2) endowed with presented

boundary and initial condition is

(1.3)

∫
Ω
ρ0ϕ(·, 0) dx+

∫ T

0

∫
Ω
ρ∂tϕ+ ρu · ∇ϕ dxdt = 0,

and

(1.4)∫
Ω

(ρu)0ψ(·, 0) dx+

∫ T

0

∫
Ω

(ρu · ∂tψ + (ρu⊗ u) : Dψ + ρdivψ) dxdt

=

∫ T

0

∫
Ω

(P (|Du|)Du : Dψ − ρf · ψ) dxdt,

for any ϕ ∈ C∞c (Ω̄× 〈0, T )) and ψ ∈ C∞c (Ω̄× 〈0, T );R3).
The weak solution is supposed to satisfy the standard energy inequality

expressed as [11]∫
Ω

(
1

2
ρ|u|2 + ρ ln ρ

)
(·, τ) dx+

∫ τ

0

∫
Ω
P (|Du|)|Du|2 dxdt

≤
∫ τ

0

∫
Ω
ρf · u dxdt+

∫
Ω

(
|(ρ0u)0|2

2ρ0
+ ρ0 ln ρ0

)
dx(1.5)

for almost all τ ∈ (0, T ).
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Let us define Young functions Φγ(z) = (1+z) lnγ (1 + z), γ > 1. Functions
Ψγ , denote their convex conjugates. For a given Young function Φ and its

convex conjugate Ψ, we employ a standard notation of Orlicz class L̃Φ(Ω)

and Orlicz space LΦ(Ω). While v ∈ L̃Φ(Ω) if
∫

Ω Φ(|v(x)|)dx < +∞, v ∈
LΦ(Ω) if supw

∫
Ω |v(x)w(x)|dx < +∞, where the supremum is taken over

all functions w ∈ L̃Ψ(Ω) such that
∫

Ω Ψ(|w(x)|)dx ≤ 1. For further details
about Orlicz spaces we refer to [9].

Next, we define a Young function M(z) = ez − z − 1 and we denote by
N its convex conjugate. Similarly as in [12], we assume that the function P
satisfies the following five conditions1

(1.6)

∫
Ω
P (|U |)|U |2 dx ≥ C

∫
Ω
M(|U |) dx,

(1.7)

∫
Ω

(P (|U |)U − P (|V |)V ) : (U − V ) dx ≥ 0,

(1.8) P (z)|z|2 is a convex function for z ≥ 0,

(1.9)

∫
Ω
N(P (|U |)|U |) dx ≤ C

(
1 +

∫
Ω
M(|U |) dx

)
,

(1.10) P (|U − λV |)(U − λV )
M
⇀ P (|U |)U, for λ→ 0,

for any U , V belonging to Orlicz class [L̃M (Ω)]3×3.
Throughout this paper, we assume even stricter condition then (1.7).

Namely, we assume the existence of q ∈ (1,∞) such that

(1.11)

∫
Ω

(P (|U |)U − P (|V |)V ) : (U − V ) dx ≥ C
∫

Ω
|U − V |q dx

for all U and V as above.

We also define the following function spaces in accordance with [10]:

Y = {v|Dv ∈ LM (Ω× (0, T ))3×3, v|∂Ω×(0,T ) = 0},
X = {v|Dv ∈ LM (Ω)3×3, v|∂Ω = 0}, ‖v‖X = ‖Dv‖LM (Ω),

First, our paper contains a derivation of the relative energy inequality for
the weak solution constructed by Mamontov in [10] and [11]. This derivation
is described in Section 2. The relative energy inequality is the cornerstone
for further qualitative analysis of solutions as it allows to deduce various
results concerning long-time behavior, singular limits, dimension reduction
and weak-strong uniqueness result among others. The latter is performed in
Section 3 – we present that all weak solutions constructed by Mamontov are

1Hereinafter, we use the letter C as an arbitrary positive constant which may vary from
line to line, nevertheless, it is always independent of %, u, U and V .
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equal to the (unique) strong solution. Here, we would like to remind that
the strong solution for the system in question with the periodic boundary
conditions was constructed recently in [8]. Finally, Section 4 focuses on
assumptions imposed on the function P . In particular, we provide a more
convenient condition replacing (1.11).

2. Relative energy inequality

Let us define

H(ρ) = ρ

∫ ρ

1

1

z
dz = ρ ln ρ.

Let us consider smooth functions r and U such that r is strictly positive and
U satisfies the no-slip boundary conditions. Following [5], relative entropy
E([ρ,u]|[r,U]) is defined as follows

E([ρ,u]|[r,U]) =

∫
Ω

(
1

2
ρ|u−U|2 +H(ρ)−H(r)−H ′(r)(ρ− r)

)
dx

=

∫
Ω

(
1

2
ρ|u−U|2 + ρ ln

ρ

r
− (ρ− r)

)
dx.(2.1)

We would like to point out that the function

ρ 7→ H(ρ)−H(r)−H ′(r)(ρ− r), ρ, r ≥ 0.

is strictly convex with minimum 0 attained at ρ = r. Therefore, for every
0 < r < r < r <∞ there is a positive constant c such that

(2.2) H(ρ)−H(r)−H ′(r)(ρ− r) > c(ρ− r)2

whenever ρ ∈
( r

2 , 2r
)
, and

(2.3) H(ρ)−H(r)−H ′(r)(ρ− r) > c|ρ− r|

whenever ρ ∈ R+ \
( r

2 , 2r
)
.

Similarly as in [7], a suitable weak solution to (1.1) and (1.2) is a couple
[ρ,u] satisfying (1.3)-(1.4), boundary and initial conditions, and the follow-
ing relative energy inequality for all r and U belonging to the class specified
in Theorem 2.1:

E([ρ,u]|[r,U])(τ) +

∫ τ

0

∫
Ω

(P (|Du|)Du− P (|DU|)DU) : (Du−DU) dxdt

≤ E([ρ0,u0]|[r(·, 0),U(·, 0)]) +

∫ τ

0
R(ρ,u, r,U) dt,(2.4)
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where the remainder R is defined as

R(ρ,u, r,U) =

∫
Ω
ρ(∂tU + u∇U) · (U− u)dx

+

∫
Ω
P (|DU|)DU : (DU−Du)dx+

∫
Ω
ρf · (u−U)dx

+

∫
Ω

(
(r − ρ)

∂tr

r
+
∇r
r
· (rU− ρu)

)
dx

+

∫
Ω

divU(r − ρ)dx.(2.5)

If we set r = r0 = |Ω|−1
∫

Ω ρ0 dx and U = 0, then following the definition
of the relative entropy (2.1), we arrive at

E([ρ,u]|[r0, 0]) =

∫
Ω

(
1

2
ρ|u|2 + ρ ln ρ− ρ ln r0

)
dx,

E([ρ0,u0]|[r0, 0]) =

∫
Ω

(
1

2
ρ0|u0|2 + ρ0 ln ρ0 − ρ0 ln r0

)
dx,

R(ρ,u, r0, 0) =

∫
Ω
ρf · u dx.

Since
∫

Ω(ρ − ρ0) ln r0 dx = ln r0

∫
Ω(ρ − ρ0) dx = 0, (2.4) reduces to the

standard energy inequality (1.5). Thus, the relative energy inequality (2.4)
implies the standard energy inequality (1.5). In section 2.1, we show that
this implication holds also the other way round.

Theorem 2.1. Let ρ and u be the weak solution specified in (1.3), (1.4)
and (1.5). For some p > 1 and γ > 1, let U ∈ Y be such that DU ∈
L̃M (Ω × (0, T ))9 and ∂tU ∈ Lp(0, T ;LΨγ (Ω))3. Let us further suppose

that f ∈ Lp(0, T ;LΨγ (Ω))3 and r : Ω × 〈0, T 〉 → (0,∞) is such that r ∈
L∞(0, T ;LΦγ (Ω)), ∂t ln r ∈ L1(0, T ;LΨγ (Ω)) and ∇ ln r ∈ Lp(0, T ;LΨγ (Ω))3.
Then the pairs [ρ,u] and [r,U] satisfy the relative entropy inequality (2.4).

2.1. Proof of Theorem 2.1. First, we take 1
2 |U|

2ψ, ψ = χ〈0,τ〉 as a test
function in (1.3) – this is possible although ψ is not sufficiently regular as
it suffices to take piecewise linear approximations of ψ ensuring the validity
of the following equalities for almost all τ ∈ (0, T ). We infer

(2.6)
1

2

∫
Ω
ρ0U

2(·, 0) dx+

∫ τ

0

∫
Ω

(ρU · ∂tU + ρu∇U ·U) dxdt

=
1

2

∫
Ω
ρ(·, τ)U2(·, τ) dx,
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using identity ∂j(UiUi) = 2Ui∂jUi. Second, we test (1.4) by Uψ (with the
same remark as above) to arrive at

(2.7)

∫
Ω

(ρu)0U(·, 0) dx+

∫ τ

0

∫
Ω

(ρu · ∂tU + (ρu⊗ u) : DU + ρdivU

+ ρf ·U− P (|Du|)Du : DU) dxdt =

∫
Ω
ρu(·, τ)U(·, τ) dx

In the third step, we use ln r as a test function in (1.3) to obtain

(2.8)

∫
Ω
ρ0 ln r(·, 0) dx+

∫ τ

0

∫
Ω

(
ρ
∂tr

r
+ ρu · ∇r

r

)
dxdt

=

∫
Ω
ρ(·, τ) ln r(·, τ) dx.

We multiply (2.6) by −1 and sum it up with (2.7), (2.8) and the standard
energy inequality (1.5) to deduce∫

Ω

(
1

2
ρ|u−U|2 + ρ ln ρ− ρ ln r − ρ

)
(·, τ)dx

+

∫ τ

0

∫
Ω

(P (|Du|)Du− P (|DU|)DU) : (Du−DU) dxdt

≤
∫

Ω

(
1

2
ρ0|u0 −U(·, 0)|2 + ρ0 ln ρ0 − ρ0 ln r(·, 0)− ρ0

)
dx

+

∫ τ

0

∫
Ω
ρ (∂tU + u∇U) · (U− u) dxdt+

∫ τ

0

∫
Ω
ρf · (u−U) dxdt

+

∫ τ

0

∫
Ω
P (|DU|)DU : (DU−Du) dxdt

−
∫ τ

0

∫
Ω

(
ρ
∂tr

r
+ ρu · ∇r

r
+ ρdivU

)
dxdt.(2.9)

We add equality∫
Ω
r(·, τ) dx−

∫
Ω
r(·, 0) dx =

∫ τ

0

∫
Ω
∂tr dxdt

to get

E([ρ,u]|[r,U]) +

∫ τ

0

∫
Ω

(P (|Du|)Du− P (|DU|)DU) : (Du−DU) dxdt

≤ E([ρ0,u0]|[r(·, 0),U(·, 0)]) +

∫ τ

0

∫
Ω
ρ (∂tU + u∇U) · (U− u) dxdt

+

∫ τ

0

∫
Ω
ρf · (u−U) dxdt+

∫ τ

0

∫
Ω
P (|DU|)DU| : (DU−Du) dxdt

+

∫ τ

0

∫
Ω

(
(r − ρ)

∂tr

r
− ρu · ∇r

r
− ρdivU

)
dxdt.(2.10)
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Finally, the boundary condition for U yields∫
Ω

(U · ∇r + rdivU) dx =

∫
Ω

div(rU) dx =

∫
∂Ω

(rU) · n dS = 0,

and thus we can add the term
∫

Ω(U ·∇r+ rdivU) dx to the right-hand side
of (2.10) which gives the demanded inequality.

3. Weak-Strong uniqueness

The relative entropy inequality can be used to prove the weak-strong
uniqueness principle. In other words, it enables us to show that weak and
strong solutions of (1.1)-(1.2) with the same boundary and initial conditions
coincide as long as the strong solution exists.

Theorem 3.1. Let ρ̃, ũ be a strong solution to (1.1) and (1.2) satisfying
the Dirichlet boundary condition and ρ̃(x, t) ≥ C, C ∈ R+. If P satisfies
(1.6)–(1.11), then every weak solution ρ, u emanating from the same initial
data ρ̃(·, 0) and ũ(·, 0) is equal to ρ̃ and ũ.

Remark 3.2. We assume the strong solution satisfies (1.1), (1.2) point-
wisely and all terms in this formulation are well defined. In particular,
%̃ ∈ C1(Ω × 〈0, T 〉) and ũ ∈ C1(Ω × 〈0, T 〉)3 with ∇xu ∈ C(Ω × 〈0, T 〉)3×3.
It is worth to mention that the proof presented below works also for weak
solutions with sufficient regularity.

3.1. Proof of Theorem 3.1. Let us consider r = ρ̃ and U = ũ, where
[ρ̃, ũ] is the strong solution of (1.1)-(1.2) and ρ̃ ≥ C, C ∈ R+. The idea of
the proof is to show that all terms in (2.5) can be bounded by the means of
the left-hand side of (2.4) in order to use a Gronwall type argument. Recall
that the assumptions on the strong solution imply that there is not any
vacuum region, i.e., it holds that 0 < r < ρ̃ < r < ∞ for appropriately
chosen constants r and r.

First, we introduce a decomposition of a general function G = G(ρ) into
the essential and residual part, namely,

G = Gess +Gres

where

Gess :=

{
G on ρ ∈

(
1
2r, 2r

)
0 otherwise.

Due to the convexity of H one can deduce the following coercivity properties
(see also (2.2) and (2.3)):

(3.1) E([ρ,u]|[ρ̃, ũ]) ≥ C
∫

Ω

(
ρ|u− ũ|2 + |ρ− ρ̃|2ess + 1res + ρres

)
dx.
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According to (2.5), it holds that

R(ρ,u, ρ̃, ũ) =

∫
Ω
ρ(∂tũ + u∇ũ− f) · (ũ− u) dx

+

∫
Ω
P (|Dũ|)Dũ : (Dũ−Du) dx

+

∫
Ω

(
(ρ̃− ρ)

∂tρ̃

ρ̃
+ (ρ̃ũ− ρu) · ∇ρ̃

ρ̃

)
dx

+

∫
Ω

divũ(ρ̃− ρ) dx.(3.2)

Since [ρ̃, ũ] is a strong solution of (1.1)-(1.2), we can rearrange the mo-
mentum equation (1.2) as follows:

1

ρ̃
(ũ∂tρ̃+ ρ̃∂tũ + div(ρ̃ũ)ũ + ρ̃ũ∇ũ)− f =

1

ρ̃
div (P (|Dũ|)Dũ)− ∇ρ̃

ρ̃

which by the means of the continuity equation (1.1) reduces into

∂tũ + ũ∇ũ− f =
1

ρ̃
div (P (|Dũ|)Dũ)− ∇ρ̃

ρ̃
.

Hence, the first term in (3.2) can be rewritten as∫
Ω
ρ(∂tũ + ũ∇ũ− f) · (ũ− u) dx+

∫
Ω
ρ(u− ũ)∇ũ · (ũ− u) dx

=

∫
Ω

ρ

ρ̃
div (P (|Dũ|)Dũ) · (ũ− u) dx−

∫
Ω

ρ∇ρ̃
ρ̃
· (ũ− u) dx

+

∫
Ω
ρ(u− ũ)∇ũ · (ũ− u) dx,(3.3)

which leads to (using the identity
∫

ΩDv : Dwdx = −
∫

Ω div(Dv) ·w dx):

R(ρ,u, ρ̃, ũ) =

∫
Ω
ρ(u− ũ)∇ũ · (ũ− u) dx

+

∫
Ω

1

ρ̃
(ρ− ρ̃)div (P (|Dũ|)Dũ) · (ũ− u) dx

+

∫
Ω

(ρ̃− ρ)

(
∂tρ̃

ρ̃
+ ũ · ∇ρ̃

ρ̃

)
dx

+

∫
Ω

divũ(ρ̃− ρ) dx.(3.4)

With respect to the continuity equation (1.1), the last two terms in (3.4)
cancel each other out, because

∂tρ̃

ρ̃
+ ũ · ∇ρ̃

ρ̃
+ divũ =

1

ρ̃
(∂tρ̃+ ũ · ∇ρ̃+ ρ̃divũ)

=
1

ρ̃
(∂tρ̃+ div(ρ̃ũ)) = 0.
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Thus

R(ρ,u, ρ̃, ũ) =

∫
Ω
ρ(u− ũ)∇ũ · (ũ− u) dx

+

∫
Ω

1

ρ̃
(ρ− ρ̃)div (P (|Dũ|)Dũ) · (ũ− u) dx.(3.5)

Concerning the first term of the remainder (3.5), we have (recall that ∇ũ
is a bounded function)∣∣∣∣∫

Ω
ρ(u− ũ)∇ũ · (ũ− u) dx

∣∣∣∣ ≤ C

∫
Ω

1

2
ρ|ũ− u|2dx

≤ CE([ρ,u]|[ρ̃, ũ]).(3.6)

Regarding the second term in (3.5) we decompose it into two parts and we
use the regularity of the strong solution to get∣∣∣∣∫

Ω

1

ρ̃
(ρ− ρ̃)div(P (|Dũ|)Dũ) · (ũ− u) dx

∣∣∣∣
≤ C

∫
Ω
|ρ̃− ρ|ess|ũ− u| dx+ C

∫
Ω
|ρ̃− ρ|res|ũ− u| dx =: I1 + I2.

Next,

I1 ≤ C
∫

Ω

1
√
ρ
|ρ̃− ρ|ess

√
ρ|ũ− u| dx

≤ C
(∫

Ω
|ρ̃− ρ|2ess dx+

∫
Ω
ρ|ũ− u|2 dx

)
≤ cE([ρ,u], [ρ̃, ũ])

according to (3.1). We split I2 once again as

I2 = C

∫
Ω∩{ρ>2r}

|ρ̃− ρ||ũ− u| dx+ C

∫
Ω∩{ρ< 1

2
r}
|ρ̃− ρ||ũ− u| dx

where the first integral may be treated in the same way as I1 and second
integral is estimated with the help of the Korn inequality as follows

(3.7)

∫
Ω∩{ρ< 1

2
ρ}
|ρ̃− ρ||ũ− u| dx ≤ C

∫
Ω
|ũ− u| dx

≤ C
∫

Ω
1q

′
res dx+ δ

∫
Ω
|ũ− u|q dx ≤ CE([ρ,u], [ρ̃, ũ]) + δ

∫
Ω
|Dũ−Du|q

where q′ = q
q−1 and δ > 0 might be as small as needed – in particular, we

choose δ such that (using (1.11))

δ

∫
Ω
|Dũ−Du|q dx ≤ 1

2

∫
Ω

(P (|Dũ|)Dũ− P (|Du|)Du)(Dũ−Du) dx

so the last term of (3.7) can be absorbed in the left hand side of (2.4).
Summing up, (2.4) yields

E([ρ,u]|[ρ̃, ũ])(τ) ≤ C
∫ τ

0
E([ρ,u]|[ρ̃, ũ])(s) ds
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and, consequently,

E([ρ,u]|[ρ̃, ũ]) ≡ 0.

4. Assumptions on P

The most restrictive assumption on P is (1.11) which is not needed in the
proof of the existence given by Mamontov. This assumption is discussed
throughout this section. First, we show that a natural choice of P satisfies
the condition (1.11). Next, we formulate a replacement assumption which
is more convenient than (1.11).

4.1. P (z) = 1
z2
M(z). Let us consider a function

P (z) =

{
M(z)
z2

, for z 6= 0,
0, for z = 0.

It satisfies all conditions (1.6)-(1.10) and it satisfies also (1.11) with q = 3.
Indeed, recall that

P (z)z =
z

2
+
z2

6
+
z3

24
+ . . . =

∞∑
i=1

zi

(i+ 1)!

and therefore we may write P (z)z = F ′(z) +G′(z) where F (z) = z2

4 and

G(z) =

∫ z

0

s2

6
+
s3

24
+

s4

120
+ . . . ds.

Further, we have

P (|Du|)Du = P (|Du|)|Du| Du

|Du|
=

∂

∂D
(F (Du) +G(Du)) .

Hence,

(4.1) (P (|Du|)Du− P (|Dv|)Dv) : (Du−Dv)

=

(
∂

∂D
F (|Du|)− ∂

∂D
F (|Dv|)

)
: (Du−Dv)

+

(
∂

∂D
G(|Du|)− ∂

∂D
G(|Dv|)

)
: (Du−Dv) .

Since F complies with the ∆2-condition, we can apply Lemma 21 from [4]
and deduce a lower bound for the first term in (4.1) as follows:

(4.2)

(
∂

∂D
F (|Du|)− ∂

∂D
F (|Dv|)

)
: (Du−Dv)

≥ CF ′′(|Du|+ |Dv|)|Du−Dv|2 ≥ C|Du−Dv|2
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The second term in (4.1) is non-negative. This follows since Du : Dv ≤
1
2 |Du|+ 1

2 |Dv| and thus

(
∂

∂D
G(|Du|)− ∂

∂D
G(|Dv|)

)
: (Du−Dv)

=

(
G′(|Du|)
|Du|

Du− G′(|Dv|)
|Dv|

Dv

)
: (Du−Dv)

=
G′(|Du|)
|Du|

Du : Du− G′(|Du|)
|Du|

Du : Dv

− G′(|Dv|)
|Dv|

Dv : Du +
G′(|Dv|)
|Dv|

Dv : Dv

≥ 1

2

G′(|Du|)
|Du|

|Du|2 − 1

2

G′(|Du|)
|Du|

|Dv|2

− 1

2

G′(|Dv|)
|Dv|

|Du|2 +
1

2

G′(|Dv|)
|Dv|

|Dv|2

=
1

2

(
G′(|Du|)
|Du|

− G′(|Dv|)
|Dv|

)(
|Du|2 − |Dv|2

)
≥ 0

where we used the fact that G′(z)/z is non-negative and increasing for z ≥ 0.

4.2. Further note on (1.11). In general, we claim that (1.11) is fulfilled
whenever P is a non-decreasing function satisfying

(4.3) P ′(z) ≥ 0 and there exists c > 0 such that P (z) ≥ czα

for all z ≥ 0 and some α > 0 .

In order to prove that (4.3) implies (1.11) we start with a generalization of
[3, Sect I.4., Lemma 4.4, p. 14]. The following holds for every U, V ∈ R3×3:

(P (|U |)U − P (|V |)V ) : (U − V )

=

(∫ 1

0

d

ds
[P (|sU + (1− s)V |)(sU + (1− s)V )] ds

)
: (U − V )

=

∫ 1

0
P (|sU + (1− s)V |)|U − V |2 ds

+

∫ 1

0

P ′(|sU + (1− s)V )|
|sU + (1− s)V |

|(sU + (1− s)V ) : (U − V )|2 ds

≥
∫ 1

0
P (|sU + (1− s)V |)|U − V |2 ds = (∗).
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Now, let us assume for a while that |U | ≥ |U − V |. Then

(∗) =

∫ 1

0
P (|U + (1− s)(V − U)|)|U − V |2 ds

≥
∫ 1

0
P (| |U | − (1− s)|V − U | |) |U − V |2 ds

≥
∫ 1

0
P (s|U − V |)|U − V |2 ds

= |U − V |
∫ |U−V |

0
P (z) dz ≥ c|U − V |2+α.

On the other hand, if |U | < |U − V |, we deduce that

(∗) = |U − V |2
∫ 1

0

P (|sU + (1− s)V |)|sU + (1− s)V |2

|sU + (1− s)V |2
ds = (1) .

Since

|sU + (1− s)V |2 = |U + (1− s)(V − U)|2 ≤ (2− s)2|V − U |2,

we derive

(1) ≥ |U − V |2
∫ 1

0

P (|sU + (1− s)V |)|sU + (1− s)V |2

(2− s)2|U − V |2
ds

≥ 1

4

∫ 1

0
P (|sU + (1− s)V |)|sU + (1− s)V |2 ds

≥ c
∫ 1

0
Q(|sU + (1− s)V |2)|sU + (1− s)V |2 ds = (2),

where Q(z) = zα/2. Since G := z1+α/2 is a convex and non-decreasing
function, we can use Jensen’s inequality to deduce

(2) ≥ C G
(∫ 1

0
|sU + (1− s)V |2 ds

)
= C G

(
1

3
(|U |2 + |V |2 + U : V )

)
= (3).

Further,

|U |2 < |U − V |2 ⇒ 2U : V < |V |2,
leads to

|U |2 + |V |2 + U : V

=
9

10
|U |2 +

9

10
|V |2 +

6

5
U : V +

1

10
|U |2 +

1

10
|V |2 − 2

10
U : V

≥ 9

10
|V |2 − 6

10
|V |2 +

1

10
(|U |2 + |V |2 − 2U : V ) ≥ 1

10
|U − V |2.
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Consequently,

(3) ≥ C G
(
c|U − V |2

)
= C|U − V |2+α.

We combine the two previous estimate to deduce that (4.3) implies (1.11)
with q = 2 + α.
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