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Abstract

In this paper we study the convergence rate of a finite volume approximation of the compressible
Navier—Stokes—Fourier system. To this end we first show the local existence of a highly regular unique
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1 Introduction

Numerical simulation of gas dynamics plays an important role in a wide range of modern industrial
and real life applications, such as vehicle engineering, engines design, aerospace or weather forecast. In
the past decades, lots of effort was put in the development of efficient (high order, high resolution and
parallel) and accurate (stable and convergent) numerical methods. Comparing to the great success in
the development of reliable numerical methods, the progress in their analysis is much slower.

In this paper, we study the convergence rate of a finite volume (FV) method proposed by Feireisl et
al. [0] for the compressible Navier—Stokes—Fourier system. Our main tool is the relative energy functional
originally proposed by Dafermos [2] in order to measure the distance of a weak and a classical solution.
The idea has been adapted to study the error between a numerical solution and a classical solution, see

Gallouét et al. [12] and Feireisl et al. [1]. These results are based on a discrete version of the relative
energy functional, where the target smooth solution is projected into the discrete space of numerical
solutions. Recently, Feireisl et al. [8] showed that using the continuous version of the relative energy

functional yields a better convergence rate compared to its discrete version. This new strategy directly
employs the consistency error of the numerical scheme and avoids lengthy calculations in the discrete
space. This approach has been already successfully applied for the error estimates of the compressible
Euler equations, see Feireisl et al. [7] for the barotropic case and see Lukdcova et al. [19] for the full
Euler system. In the present paper we use the continuous form of the relative energy and study the
convergence rate of a F'V method for the Navier—Stokes—Fourier system. To this end, we need a new
refined version of the consistency errors as well as stability estimates. As far as we know, this is the first
result in the literature, where the error estimates of a fully discrete numerical scheme for the compressible
viscous heat-conducting fluids are derived. In this paper we concentrate on theoretical error analysis,
numerical simulations illustrating reliability of the studied FV method were shown in [18].

The Navier—Stokes—Fourier system describes the motion of compressible, viscous, and heat conducting
fluids

Oro + divg(ou) =0, (1.1a)
Oi(ou) + div;(ou ® u) 4+ Vyp = div,S, (1.1b)
O(0e) + divy(oeu) — div,(kV,9) =S : Vyu — pdiveu (1.1c)

in the time-space cylinder (0,7) x Q, Q C R%, d = 2,3. Here, o, u, ¥, p, e are the fluid density, velocity,
absolute temperature, pressure and internal energy, respectively. Further, x > 0 is a heat conductivity
constant and S is the viscous stress tensor

_ Veu+ Viu

= 5 ,

where p > 0 and A > 0 are constant viscosity coefficients. We consider the standard pressure law of a
perfect gas

S =S(Vyu) =2uD(u) + Adivyul  with  D(u)

p=(y—1)oe, e=cyV,

where v > 1 is the adiabatic coefficient and ¢, = %1 is the specific heat per constant volume. For
simplicity, we consider periodic boundary conditions and identify the fluid domain with a flat torus, i.e.,

Q=T= ([O, 1][0,1])‘1. To close the system we impose the initial conditions

(0(0),u(0),9(0)) = (00, up, o) with gg > 0 and ¥y > 0. (1.2)



In view of the second law of thermodynamics, any solution to the system (1.1)—(1.2) satisfies the entropy
balance

0(0rs +u - Vgs) —divy <KV1919) =3 (S(qu) :Veu + mvl,f9|> >0, (1.3)

where s is the physical entropy

s(0,1) = log <§Qv> for p >0, ¥ > 0.

The rest of the paper is structured as follows. In Section 2 we show the existence of a strong solution.
Next, we introduce a FV method in Section. 3. Then, we show the stability and consistency of the FV
approximation in Section 4. Finally, we present the convergence rate of the FV method in Section 5.

2 Strong solution

In this section, we focus on the existence results to the Navier—Stokes—Fourier system (1.1) in the class
of strong solutions. In particular, we emphasize that the classical solution inherits the W*2-regularity
from the initial data for any k > 4, as a consequence of the fact that (1.1) can be seen as a symmetric
hyperbolic-parabolic system, cf. Theorem A.1. Moreover, due to the blow-up criterion established by
Huang, Li [11] and by Feireisl, Wen, Zhu [1 1], the solution exists globally in time, as long as it is bounded.

Proposition 2.1. Let k > 6 and let the initial data (1.2) be such that
00 >0, (0o, uo,d0) € WH (TR,
Let (0,u,9) be a weak solution to problem (1.1), (1.2) such that
0<9<0<p 0<¥9<V<I ae in(0,T)xT% (2.1)
Then (0, u,9) is a strong solution of (1.1), (1.2) in [0,T] x T? satisfying
(0w, 9) € C([0,T]; WE(T% R,
Moreover, the following estimate

[ (0s w, D)l e o,m;we2rayy + 11(0, w, D) o1 o,

(2.2)
+[1(8r0, Brw, 09) | (o 1wy + (87 0, O, 79) |l o, 1wy < Cll (00, w0, Vo) [lywri2

holds, where the positive constant C' depends solely on T, 0,0, 9,9 and ||(00, w0, J0)||yye.2-

Proof. Applying the local-existence result developed in Theorem A.1, there exists 77, 0 < T7 < T, such

that a unique strong solution (g, u, ) to problem (1.1), (1.2) exists on [0,77] and

(57 ﬂ, 5) S C([O, Tl], kaQ(Td; Rl-‘rd-‘rl)).



Moreover, from the Sobolev embedding W#=42(T4) < C(T%) whenever k > 6, from (A.2) we can deduce
that there exists a positive constant C' = C(71) such that
(0, w, D)oo, rupwr2(ray) + (0 @ 9l e (0,7 ey

- o (2.3)
+11(8:0, 0w, 0:9) || (0,71 xray + (878, O, 79[| e 0,11 xmey < Cll (005 w0, Do) |z

Now, from the weak-strong uniqueness principle proven in [, Theorem 2.1], the weak solution (o, u, )
must coincide with the strong solution (g,w,) in [0,T1] x T¢. According to the blow-up criterion

developed by Feireisl, Wen and Zhu [11, Theorem 1.4], if T} < T were the maximal time of existence,
then
limsup (||o(t)||zoe + [[9(#)[| L) = o0, (2.4)
=T,

which would lead to a contradiction due to hypothesis (2.1). Consequently 77 = T" which concludes the
proof. O

Remark 2.2. We point out that the compatibility condition (1.10) required for the initial data in [11]
is not necessary in this context as we are not allowing the presence of vacuum zones.

Remark 2.3. Proposition 2.1 still holds if we replace the boundedness of temperature with the one of
velocity; specifically, instead of having ¥ < 9 in (2.1), we could require |u| < w. Then, instead of (2.4),
we could use the Serrin-type blow-up criterion developed by Huang and Li [1/, Theorem 1.2]: if T is the
mazimal time of existence, then

limsup ([[o(t)][zo + u(t)] L) = co.
=T,

3 The finite volume method

In this section we introduce the finite volume method originally proposed in [6].

3.1 Notations

Mesh. Let 7; be a uniform structured mesh with the mesh size h formed by squares in 2D, and cubes
in 3D such that T = g K.

We denote by &£ the set of all faces of 7;, and by &; the set of all faces that are orthogonal to the
i basis vector e; of the canonical system. The set of all faces of an element K is denoted by &£(K).
Moreover, we write 0 = K|L if o € £ is the common face of elements K and L. Further, we denote by
|K| and |o| the Lebesgue measure of an element K € T;, and a face o € &, respectively. Moreover, g
and x, stand for the barycenter of K and o, respectively.

In what follows we shall use an abbreviated notation for the integrals,

/Td-da::: Z/K-da: and /g-de::C;g/a-de.

KeTh



Dual grid. For any 0 = K|L € &;, we define a dual cell D, := D, g U D, 1, where the polygon D, i
(resp. Dy, 1) is a half of K (resp. L), i.e.,

Dy ={x € K| z; € co{(zk)i, (5)i}},
co{A, B} = [min{ A, B}, max{A, B}],

see Figure 1 for a two-dimensional example of dual cells. Further, we denote the i*" dual grid D; as

D; = UDU.

o€e&;

Dyk TS D,r,

K ® o) ® ® L

TK Lo L

Figure 1: Dual cell D, = D g U D, for 2D structured mesh.

Function space. The symbol Q) stands for the set of piecewise constant functions on the grid 7.
Note that hereinafter v, € @), means that every component of a vector—valued function vy belongs to
the set @,. We define the following projection operators

Moo(a) = 3 1@8”) /K pdz, To(z) =S ID‘;(,”“’) / pdS,,

KeT, oe&;

1 zeD,
0 otherwise,
any ¢ € W1 (T4)

where 1p(z) = for D = K, D, being an element of 7} or D;, respectively. Note that for

(4)
H¢ B HW¢HLoo(qrd) < hllgllwrooza)- (3.1)
The average and jump operators are denoted as

(o (@) = S g o) - i),

where

v (x) = 6l_i>r(r)1+v(aj +6n), " (z)= 61_1)151+v($ —on),

whenever z € o € £ and n is the outer normal vector to o.



Discrete operators. The discrete gradient Vj and divergence divy, operators acting on the mesh 7,
are defined as follows,

(Vir) g ’ Z {r¥n, (divpw)g ‘ Z fol - n,

oe&(K) o€&(K)

Vur(z) = Z (Vir) g 1k (x), divyo(z) = Z (divyv) i 1x ().

KeTy KeTy,

We point out that Vj, and divy, are discrete variants of V, and div, on the cell K, respectively. Moreover,
we define

Viv + V?;v

Vv = (Vpot, ..., thd)T ;» Da(v) = 2

yielding divyv = tr(Vyv) = tr(Dy(v))

and the following difference operator for any r, € Qp

Vern(z) =Y (Vern), 1p,(z), (Vern), = bl

h
el
: ol « [ @Y
Ahrh(:z) = Z (Ahrh)}( 1K(ZL‘), (Ahrh)[( = (dthVg’l”h)K = |K| Z T
KeT, (K)
It is crucial that the following duality relationships between discrete operators hold
/ rhdivhvh dz = —/ Vhrh * Up, dx, (3.3&)
Td Td
/ Apry - fnde = —/ Very - Vefndr = / rn - Apfnde, (3.3b)
Td Td Td
/ rpdivee de = —/ Very - My¢dz  for ¢p € WH(T4RY), (3.3¢)
Td Td

where vy, Ty, frn € Qp and [y ¢ = (H%,)gbl, e H%?(bd). We refer to [7, Lemma 5 & Lemma 7] for proofs.

Time discretization. Given a time step At > 0 we divide the time interval [0,T] into Ny = T'/At
uniform parts and denote t* = kAt. Then vﬁ ~ vy (t*) is the approximation of a function vy, at time t*,
k=0,1,...,Np. By vy € La¢(0,T;Qp) we denote a piecewise constant in time function

op(t,-) =) for t < At, wpu(t,-)=of for te[kAt,(k+1)At), k=1,---, Nrp.
Further, we define the discrete time derivative by

vp(t) — vy,

Dtvh(t) = At

with vy = vp(t — At).



3.2 Numerical scheme

We are now ready to propose a FV method for the compressible Navier—Stokes-Fourier system (1.1) in
a weak form, see also [0].

Definition 3.1 (FV method). Given the initial data (1.2) we set (09, u),99) = (Ilgoo, Houo, Hovy).
We say that the triple (op, wn, ) € Lat(0,T;Qn X Qp X Q) is a finite volume approximation of the
Navier—Stokes—Fourier system (1.1), (1.2), if the following system of algebraic equations holds

[, eonénda = [ Fitonun) (941 a5, =0 for all 6, € Qs (3.40)
/ Di(onun) - n da — / FE (ontun, un) - [gn] S + / (Sh— ) : Vagnde =0 for all ¢y € O,
Td £ Td
(3.4b)
o [ Dlentnionde — e, [ Fiontnoun) [on] a5, + [ 7 194] 1] a5
= /11‘01 (Sp — prl) : Vyupondz,  for all ¢p € Qp, (3.4c)

where Sp, = 2uDy (up) + Adivyugl, the discrete pressure py, is given by
pr(t) = on()Un(t)  for On(t) >0 and pp(t) =0 for In(t) <O,

and Fy, e € (—1,1), is the so-called diffusive upwind flux

Fy (rhywp) = Up[rp, up] — b [rp], Uplrn, un] = {rnl} {unlt-n— %| {unl} - nllra].

Remark 3.2. Note that the ezistence of a solution (on,un,Vp) to the nonlinear algebraic system (3.4)
can be done using the fized point theorem [7, Theorem 15] in the same way as in [7, Lemma 11.3]. In
our recent paper [15] we have presented several numerical experiments obtained by the FV method (3.4)
that illustrate its reliability and robustness.

4 Stability and consistency of the FV method

In this section we discuss the stability and consistency of the FV method (3.4). To begin, we recall from
[6] the following structure-preserving properties of the method.

Lemma 4.1. Let (op,un, V) be a numerical solution of the F'V method (3.4) with positive initial data
Q?L >0 and 192 > 0. Then we have

e Positivity of the density.
on(t) >0 forall t € (0,T).

e Positivity of the temperature.

Ip(t) >0 forall t € (0,7).



o Mass conservation.
/ on(t) dx:/ Qh(O)dx:/ oodz > 0.
Td Td Td

e Energy balance.

1
Dy /Td <2Qh|uh|2+0th19h> dx+h€/g{{gh}}|[[uh]] 2ds,

At

L[
+ 5 [ apanfast g [ o ) nll fwlPas. =0 (@)
Td E

e Entropy balance.

/]l‘d Dt (ensn) ¢hd$—/€Up(Qh5h7uh) [¢n] dSac‘f‘/gZ[[??h]] H?ZH ds,

— [ Sp: thh% dz = Ds(¢n) + Rs(on), (4.2)
Td h

where ¢p, € Qn, Ds(dn) = D1(én) + Da(én) + D3(dp) and

Dion|?  coo5l| Dedp|?
D = At / (’ + =k dz,
1(n) Td \ 2&o,n 2(&9,n|? o

Da(n) = /5 1| L} - 1l [(ons pn)] - 2y 0 (—28) o - [0 pr)] dSi,

Ds(¢n) = h* /g {on} [(on,pn)] - Vi, (—08)lw; - [(on, pn)] S, (43)

Ra(0) = 1 [ [onl - (A9} Lol + (Tu(-ensn)} Il ) 455
gg,h GCO{QZ, Qh}a gﬁ,h € CO{’ﬁZa ﬂh}? ’UI, ’U; S CO{(Qi]?api}:l), (QZUtaszt)}'
Moreover, it holds that Dgs(¢p) > 0 for ¢p > 0.

Remark 4.2. We point out that the entropy Hessian matriz V%g p)(—gs) s symmetric positive definite
for (0,9) € (0,00)2, i.e.

1d+ey  _co
Vi (—es)=1| 2 2| >o0. (4.4)
(e:p) —%

Assuming that o, and 9y, are uniformly bounded from above and below by positive constants, see (4.5)
below, we obtain that the entropy Hessian matriz V2 . (—0s)(on, V) is uniformly bounded from above

(0,p)
and below by some positive constants, see Appendix B for details.

With the boundedness of the entropy Hessian matrix V%Q p)(—gs)(gh,ﬂh), we obtain the following

uniform bounds from the entropy balance (4.2) with test function ¢, = 1.



Corollary 4.3 (Uniform bounds). Let (on, un, V) be a numerical solution of the F'V method (3.4) with
positive initial data Q% >0 and 192 > 0. Under the assumption

0<¥ <9, <9, 0 <9< o, <0 uniformly for h— 0, (4.5)

there exist some constants s <5, 0 < p < p such that the entropy and pressure are bounded,

¥
IN

sp <5 and p < pp, <P uniformly for h — 0. (4.6)
Moreover, we have the following estimates
wnll oo 0,122 (ray) + IV eDnll 20,y xmay + IShll 220,y xmay ~ 1, (4.7a)
| [+ gund b (Lo + onl? + ] ) a5, e 1 (4.7)
Remark 4.4. It is easy to verify that

Wt | Veun |7 0 = hf/ | [wn] |*dS, ~ 1 (4.8)
&
and/ Vi, : VEiw, dzdt = ||divyup|[3e,2 > 0, which further implies
0 Jrd

<
IVhunl p2r2 = Dr(up)llp2r2 = ISl p2p2 ~ 1. (4.9)

Note that the notation “a ~b” means a ~b and b < a.
Now we are ready to analyse the consistency of the FV method (3.4).

Lemma 4.5 (Consistency formulation). Let (on,up,9y) be a numerical solution obtained by the FV
scheme (3.4) with (At,h) € (0,1)2, =1 < e < 1. Let the assumption (4.5) hold. Then,

[/ ond dx} = / / (0n0:P + onup, - Vi) dadt + ep(p, At, h,T) (4.10a)
Td t=0 0 Jrd
for any ¢ € L>(0,T; W»>(T)), 9o, 9 € L>((0,T) x T?) ;
[/ onu - ¢d$} = / / (onup - 0y + opup @ up, : Vo) drdt
Td t=0 0 JTd
+/ / (ppl — Sp) : Veddxdt + ey (@, At, h, 7) (4.10Db)
0o Jrd
Jor any ¢ € L>°(0,T; W2(T%R?)), ¢, 03¢p € L=((0,T) x T4 R?);

{/ thhgéd:c] 2/ / thh(6t¢+uh-vx¢)dxdt+/ / Sh:thhidxdt
Td =0 Jo Jrd o Jrd U,

+/ / OIZ? |V519h‘2 dadt — / / ivgﬂh V¢ dedt + es(¢; At, h, 7_)
0 JTd ﬁh Uy, o Jrd vy,

(4.10c)

9



for any ¢ € L>=(0,T; W2(T4)), d,¢,02¢ € L>=((0,T) x T%), ¢ > 0. Here

leo(d, AL, b, T)| < Cp (At + h+ h' ¢ + A1) (4.11a)
lem (@, AL, R, 7)< Co (At U724 159 (4.11b)
Ied¢,AmfuTﬂfEC;(At+Jr+hL*—%h“+””) (4.11c)

and the constants Cy, Cm, Cs are independent of the discretization parameters h, At.

The proof of the above lemma has been done in [6] with more regular test functions but without a clear
order of the consistency error. Here we present an optimal consistency errors with minimum regularity
assumptions on the test functions. We note that in the next section the exact strong solution will be
used as a test function for the error estimates. For completeness we provide the details of the proof in
Appendix C.

5 Error estimates

In this section we show the main result, that is the error estimate of the FV approximation (3.4).
To begin, we recall the relative energy functional which measures the distance between the numerical

solution (gp, up,Yp) and the strong solution (g, u, )

e ((onvun 0w | 0:5.9)) = [ (Genkun @ + En(0n 0@ ) ) @

with
e OH5(2,9) = =

Then it is straightforward to check

OH (0, - _OH5(8,9 P

ﬂ :Cyﬁ—ﬂ(S(Q,’lg)—l), QM—Hg(Q,ﬁ) =D

do de (5.1)
8H~(§7 19) ~ Y 1 ~
%44&7—+s@ﬂ:5@p y =tz

where we have denoted p = p(p, 5), s = s(o, 5)

Remark 5.1. Let n = ps. Taking (0,m) as independent variables, we reformulate EH((Q, 9)|(o, 19)) as

B0, 0)(@.9) = e - 222 (00~ 22

Due to the convezity of oe with respect to (0,n), we know that EH((Q, 19)\(5,19)) > 0. Moreover, it holds
under the assumption (4.5) that

(n—mn) — oe.

RE ((Qmuh,ﬁh) \ (@ﬁﬂ%) ~ llun — @l 22 gpay + lImn = 7|22 (pay + llon — 2ll72 e
(5.2)

~112
~ lfun = )2y + [0 — 7]

12(T4) + llon — oll72¢ray + Isn = sl 72(ray -

10



For more details, we refer to [19] and [10, Chapter 3.5].
Theorem 5.2 (Main result: Error estimates). Let v > 1 and the initial data (0o, wo, Vo) satisfy

Qo > 07 (QOaanﬂo) € Wk’2(Td;R1+d+1), k > 6.

Further, let (on,un, V) be a numerical solution obtained by the FV scheme (3.4) emanating from the
same initial data with (At,h) € (0,1)? and —1 < & < 1. In addition, let the numerical density o and
temperature Uy, be uniformly bounded, i.e. there exist ¥,v, 0,0 such that

0<¥ <9, <9, 0 <o < on <0 uniformly for h — 0. (5.3)
Then there exists a positive number
c=c(T,0,0,9,9, (00, w0, 0)llyyx.2)
such that _
sup Rp ((Qh,uh,ﬁh) | (0, ﬁ,%) + /OT /er 79;;;“|V519h — V0% dzdt

0<t<r
2)) = (5.4)

+ /T/ ﬁ 2

o Joa \ O \ "
< ¢(At + h) for all T € 10,7,

where A = min{(1 —¢)/2,(1+¢)/2} and (0,u, ) is a strong solution satisfying (2.2). In particular, we

have

2
+ A

thh)—%’f (@)

) ~
dthuh - ﬁhdivxu

lon = Bl gz + llen = @l pee + |00 = 9]|

+ [[Vhun — Vot f22 + vaﬁh — V0 < (A2 + hA?). (5.5)

)LQLQ
Remark 5.3.

e Recalling Proposition 2.1, the choice of initial data with k > 6 and the assumption (4.5) used in
Theorem 5.2 ensure the global ezistence of strong solution satisfying (2.2).

e By choosing € = 0 we obtain A =1/2, i.e. the optimal convergence rate in space.

Proof of Theorem 5.2. First, by choosing suitable test functions in the consistency formulation we get

[a|

2

/ (4.1) dt — (4.10C)‘¢:5 + (4.10&)’ a2 oHz@D) (4.10b)|¢:g +/ / Oyp dadt
0 b=F-——5g — 0 Jrd

and derive the relative energy inequality (see Appendix D for the detailed proof)

e ((enun o) | G30)]+ [ [ (m

_ 5
T kU ~

— Vel — Vo2 dedt < R R, — Rs — Ry,

+/0 /Tdﬁhﬁ?ft' e0n > dadt < Re + s — Ry

=1

2
+A

D, (un) — ?D@

2
) dxdt

(5.6)

divhuh — %}}divxﬂ

11



where

1,_, OHM:3,0 N ~
Rc =e, <2\u]2 - %(;)),At, h,7> + ey (u, At h, ) — es(9, At, h, T),

| [ et =9 - Vaddodt, Ra=- [ [ ovfwn @) o (w - @): Veade,
0 Td 0 Td

Ry = / / Oh — L (@ —up) - div,Sdz, Ry = / / (B — pn — 0oP(2 — on) — 09P(J — Vp))div, i dadt,
0o JTd 0 JTd

I L (“’" = Q)(sn = 3) + 2{sn =5 — 98(on — ) ~ oS0 — 5>>> (07 + @ - V,0) dudt,
0
Rs = / / (uh : diV:ﬁg + Viyuy : g) dzdt,
Td

D3I — Vo0 20— 99~
Ry = K/ /]rd < 19219}1190% |V ’l9| + Yy div, 5 + ﬁhﬁ?LUt Vxﬂ-v(gﬁh> dxdt.

Note that S = S(V, @) and S, = S(Vaup) = 2uDp (up) + Adivyupl
Next, we analyse the right hand side of (5.6). Recalling the consistency error (4.11) and thanks to
the triangular inequality we estimate Rc by

OM(3,9
€o (;’a‘? - 19(Q>7At7h77—>

Rl <
|Re| < 90

+ |ew(@, At b, 7)| + |es(9, At, b, 7)|

S At + h(179/2 4 p1+e)/2 for any ¢ € (—1,1).

Using Young’s inequality, the uniform bounds (4.7) and the relation (5.2) we estimate the rest terms

5

% = s + Dl = SWos + low — g + 00—,

) (5.7)
< /O R ((enwn ) | (2.8.9) ) (0t

Via Hoélder’s inequality, Young’s inequality, the uniform bounds (4.7) and the relation (5.2), we can
control Rg, Ry as follows (see Appendix E for details):

~|12
|, 68)

(3, 4, 5)) () dt+6 vaﬁh _

Rel & [ ewnl oo Bol & 1t [ R (e, 0n)
0

where i ||Veup|| 22 S h(1-€)/2 cf. (4.8). Choosing a small § € (0, ﬁﬁ/@Q), we obtain the desired version
of the energy inequality

2

) dxdt

[RE ((Qh,uh,ﬁh) | (0, u, 19 / /’Jl"i <2M

+/ / tyvgﬁh Vaﬁ\dedtiAt—i—h(l8)/2+h(1+5)/2+/ Ry ((gh,uh,ﬁh) | (5,6,{5)) (t)dt.
0 Td '19h190u 0

2

I, O .
D (ur) — 51D>( @)| + A|divyu, — %divmu
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Further, applying Gronwall’s lemma, together with the error estimate caused by regular initial data

R ((onsun 9n) | (2.,9)) (0) = /T (I = @O+ |95, = I(O) 2 + of, = 2(0) ) da S b
we obtain

R (o) | @a0) )+ [ [ (f}; <2u 2)) deds

T 29 N
+/ /d %’V‘gﬁh - Vxﬁ|2 dadt < At + p(1—¢)/2 + p(14e)/2 59)
0 JT h

2

]D)h(uh) - ?D(ﬁ) + A |divpuy, — ?divxﬂ

for any € € (—1, 1), which proves (5.4). Finally, (5.5) is a consequence of the uniform bounds of density
and temperature, (5.4) and (5.2). O

Remark 5.4. From the consistency proof and the error estimates proof above, we know that the error
of order W(1=9)/2 in (5.9) is indeed h ||Veup|| 2p2.
Inspired by [5], let us add some additional artificial viscosity in the momentum equation (3.4b), i.e.

/ Dy(onun) - o da — / Fy (onun, up) - [@n] dSe +/ (Sh —pl) : Viop dz
T ¢

Td

= —h“ Veuyp, : Ve(opp)dx, ao>0.
Td

Then we obtain one more dissipation in the energy balance, i.e.

1
o <29h'“h|2+0vw9h) do+ 1 [ o} lwnd S, +4 [ [VeunP do
Td P 1

At 1 [ .
+4 | onlDiuy|?da + / o’ fun}y - nfl [un] |2 dS, = 0,
2 Td 2 £

yielding a priori bound on the velocity gradient
2 < 45—
IVeunl|zops ~h™"

and a new consistency error in momentum equality, i.e. |e]<®| < lem| + h*.

Letting a < € + 1 we obtain a better estimate of |Veup| ;272 than (4.8). Hence, we obtain a new
formula of A, i.e. A = min{l — «/2,«,(1 +¢€)/2}. This yields the optimal rate A = 2/3 by choosing
a=2/3e=1/3.
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A Local existence of strong solution

The goal of this section is to prove the existence of local-in-time highly-regular strong solutions for the
Navier—Stokes—Fourier system (1.1). We pursue the same ideas developed by Kawashima [16] and by
Breit, Feireisl, Hofmanova [1]: equations (1.1) can be seen as a symmetric hyperbolic-parabolic system
and therefore, all the necessary bounds can be deduced from the Moser-type calculus inequalities. We
can consider more general pressure p = p(p,?) and internal energy e = e(p, ) to be smooth functions of
o and ¢ satisfying

Ip(e, ) de(o,V)
/> — > . Al
8@ _£Q>07 819 _§ﬁ>0 ( )
Note that condition (A.1) implies that the thermodynamic stability condition holds. In particular,
for the perfect gas we have %ﬁ;’ﬂ) =19 >19>0and % =c¢, =1/(y—1) > 0. We can now state our

main result.

Theorem A.1. Let k > 4 and let the initial data (1.2) be such that
00 >0, (00, u0, %) € WH(TH R,
Then there exists T* > 0 and a unique strong solution (o, w, V) to problem (1.1), (1.2) such that
(0, u,9) € C([0, T*); WH(TH RIFH),

Moreover, the following estimate

Zup (e ) Ollwee + [02®lwa-v + (012 20) O -2 )
e *
! (A.2)

+ sup (I0Fe(®)llwesa -+ 110w, F0)Ollw-s2) < Cllen, s 90 s
tefo,T*
holds, where the positive constant C' depends solely on T*, inf oy, ey, and ||(0o, w0, o) |lyyk.2-

Before proving Theorem A.1, we briefly recall some estimates which are a straightforward consequence
of the Moser-type calculus, see e.g. [10, Lemmas 2.3, 2.4 and 2.5].

Lemma A.2.
(i) Let k >2 and 0 <m < k. Ifu € WF2(T%) and v € W™2(T9), then uv € W™2(T?) and
[wvllwm2 < cllullynzl[v]lwm.. (A.3)
(ii) Let k > 1 and let F = F(u) be a C®- function of u. If u € (W"2 N L®)(T?) then V,F(u) €

Wk_l’Q(Td) and
Vo F () |[i-12 < eM(1+ [l o) Vaullyr-re, (A4)

with M = Z\ka|:1 sup,, |0$F (u)| (sup, is taken over all u such that |u| < ||ul/z ).

15



(i4i) Let k>4 and 1 <m < k. Ifu € (WH2NL>®)(T?) and v € W™ 12(T%), then
[0%, u]v == 8% (uv) — udtv € L*(T?), (A.5)

and

m
> g ulvlle < el Voulwr-rzffowm-1e. (A.6)
|ae]=0

Proof of Theorem A.1. As shown by Kawashima and Shizuta [17, Section 4], the Navier—Stokes—Fourier
system (1.1) can be seen as a symmetric hyperbolic-parabolic system, i.e. as a coupled system of a
hyperbolic equation for ¢ and a symmetric strongly parabolic system for (u,}). More precisely, system
(1.1) can be written as

Oro+u-Vyo = fl(Qa vx“)» (A7)
00iu — [,u,AgCu + (pu+ )\)dinV;—’u] = falo,u, V¥, Vy0,Viu, V,0) (A.8)
00ge ¥ — kALY = f3(o,u, ¥, Vyu, V,09), (A.9)

with
fl(Q7 vxu) = QdiVI’U,,
fQ(Qa u, 9, V0, Vau, vxﬁ) = (8gpvx9 + OypV 0 + ou - vxu)y
f3(0,u, 9, Vyu, V1) = %]qu + Vo ul? + A(divyu)? — (99gp diveu + 0dge u - Vi0).

For any T > 0, we define the Banach space X (T') := X,(T) x Xy, 4(T) with

X,(T) := C([0, T]; Wh2(T4)) n ¢ ([0, T]; Wr=12(T?)),
Xuo(T) := C(0, T); WF2(T RE1)) 0 CL([0, T); Wh22(T4 RN
L*(0,T; Wk+1,2(Td; Rd+1)) N W20, T; qu,z(p]rd; Rd+1))7

and the set

sup (o, w, D) () lwr2 + [[(w, 9)|| 212 < M,
R(T7 M7 Mt) = (Q, u, 19) S X(T) t€[0,7]
||(8tgu 8t’ll,, 8t19) (t) HL2wk—1,2 S Mt)

Let us now consider the map

(0,u,9) = G(p,u,?) = (0, u, ), (A.10)

where the trio (g, u, ) satisfies the linearized system associated to (A.7)—(A.9),

at5+u'vz§: fl(Qv VI’U/), (A'll)
00t — [y + (p+ N)div, V] = fa(0, u, 9, Vao, Vau, V1) (A.12)
00ge 019 — kA = f3(0,u, 9, Vau, V1) (A.13)
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Step 1. Our first goal is to determine 7' = Ty, M, M; > 0 in such a way that G : R(To, M, M) —
R(Ty, M, My) is well-defined. Let (o, u,?) € R(Ty, M, M) be fixed. We can deduce in particular that

(1, f2, f3) € L0, To; WHHH(TH RN, fy € L2(0, To; WH(TY), (A14)
and that there exists a constant ¢; = ¢;(M) > 0 such that
sup |[(f1, f2, f3) () [wr-1.2 < 1 M. (A.15)
te[0,To]

The existence of a solution (g, ﬁ,z?) € X(Tp) for any Tp > 0 of the linearized problem follows from
already existing results that can be found in literature, see e.g. Kato [15, Theorem I]. We point out that
the strict positivity of the initial density g is sufficient to guarantee that

0>0>0.

In order to prove that (g, u, 5) € R(Ty, M, M), we need to deduce some energy estimates. Applying 0%
with |a| < k to equations (A.11)—(A.13), we obtain

80%0 +u - V000 = FY, (A.16)
0 8,026 — [pAO%u + (u + N)div, V] 9%u| = Fy, (A.17)
0dge 0,0%0 — kALOMY = FY, (A.18)

with
Fla = 8:)?.}01 - [ aau]vl’§7

FS =0 8° <f2> +o ([ag, “} AL+ [aa, ““] div, V] )
0 0 0
a . o f3 « K 9.
F3' := p0ye 05 <98,96) + 00yge [896, Q819€:| AU,

the commutator [0F, - ] - is defined as in (A.5). We now multiply equations (A.16), (A.17) and (A.18)
by 020, 0%u and 029, respectively, integrate over T¢ and sum over 0 < |a| < k; from hypothesis
(A.1), Garding’s inequality for strongly elliptic operators, Holder and Young’s inequalities, the Sobolev
embedding W*=12(T9) «— L*>(T9), and from (A.3), (A.4), (A.6), (A.14), we find constants cz > 0,
c3 = c3(0,e9, M) > 0 and ¢4 = c4(0, €9, M) > 0 such that

d, - ~
llelwre < c2 (lfillwrz + Mllellwe2) (A.19)

d

a||(17’75)”12/]/k,2 +eall (@, )[Fprrie < e | (L4 1100, 000) lwr-r2) (@ D) [[Fynz + 1 (F2s f)lFpnr2]

(A.20)

Integrating (A.19), (A.20) over [0, 7], from Hélder’s inequality and the Gronwall argument, there exist
cs = c5(0,e9) > 0 and cg = cg(0, €9, M) > 0 such that

1@, &, 9)(7) e + / 1@ D)) 2rrne dt

T (A.21)
c5eCG<T“ ) [Il<go,uo,ﬁo>||%vk,2+ce /0 (I A@IGyz +1(F2: ) Olligz) ]

IA
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From (A.3), (A.4) and (A.15), we can finally conclude that there exist C1 = C1(0,e9) > 1 and Cy =
Ca(p,e9, M) > 0 such that

1
~ ~ ~ 7 Co(T7+72 M,
12, @, ) (1) [fy2 + 1@, 9) [ Foypasns < Cie 2(rerean) [11(20, w0, Do) 5k + CoaM*(1 + 7)7] .

Moreover, directly from equations (A.7)-(A.9), we deduce that there exists a constant C3 = C3(M) > 0
such that

| 1020 00) O R s-rs e < AP+ 7),
0

To get that (g, u, ) € R(Ty, M, M,), it is now enough to choose M, M; and T such that

M :=2C1||(00, w0, Jo)|lye.2,
Mt = 40103”(&)07/”07190)”“/1“2’

1
02<T0+T?Mt)
e ’ <2, CoM*(1+To)To < |[(0, w0, 90)[[ywss  To < 3.

Step 2. Let us now consider the approximation sequence {(¢", u",9")},en such that

(QO’uO,ﬁO) = (907u07190)7 A22)
(" u™ 9" = G(e" w9, n>1, (A.23)

—

and take the difference of two subsequent solutions:
B(0™ = 0") + U V(0" = 0") = T,
OO — ™) — pA (" — ") = (A N)div, V (u - ") = fF
Q" g™ D (0" —9") — kAL (VT —9") = fF,
where, from the fact that (0", u™,9") € R(Ty, M, My) for any n € N, it is not difficult to show that there

exists a constant C' = C(g, ey, || (00, w0, Y0)|yyr.2) > 0 such that

£ lwrr2 < C (lle" = 0" Hiwn-r2 + [[(w" — a1 9" =" lyns)
12 f) w2z < Cll(e" = "™ —u"H 0" = 9" [paere.

Therefore, the trio (o™ — o, T —u™ Y7+ —Y") satisfies the linearized equations (A.11)—(A.13) with
(f1, fo, f3) replaced by (I, £, f3) and (o™t — 0", u™*! — ™ Y"1 — 97)(0) = 0; hence an analogous
of (A.21) holds with k replaced by k — 1:

’
sup [| (0" — 0" u" T = 9 =0 (1) [fre +/ 1w —u™, 9" —9") (1) .2 dt
te[0,7] 0

1
< 04(1 4 7_)7_66’4 (T+Mm—2) |: sup H(Qn _ Qnil,’un _ unflj 9" — 19”71)@)”%4/1@—1,2
te[0,7]

4 / (" — w9 = )0 e ]
0
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where Cy = C4(p, ey, ||(00, w0, J0)||yr.2) > 0 is a constant independent of n. Taking 0 < Ty < Ty such
that

1
CaTi(1 4 Ty)eCrTTMTE)

we get that {(0",u",9")}nen is a Cauchy sequence in C([0,7}]; W*=12(T4; R1*T4+1)). Consequently,
there exists (o, u, 1) such that

(Q”,u"’ 797’&) — (Q,’U/,ﬁ) in C([O,Tl]’ Wk_l’Q(']I‘d;RHdH))_

Furthermore, {(o", u",9")}nen € R(To, M, My) C R(T1, M, M) is uniformly bounded and therefore
there exists a subsequence, not relabeled, such that

(Qn, ’U,n’ 19”) * (Q; u, ,(9) in LOO(O, Tl, Wk’2(Td; R1+d+1)),
Moreover, we obtain that
(Oro, Oyu, O9) € L™°(0,T1; Wk_l’Q(Td) X Wk_2:2(Td;Rd+l))‘

Step 3. Finally, to show that (o, u,?) € C([0,Ti]; W*2(T9; R*4+1)) it is enough to consider a
family of mollifiers {¢s}s>0 and define (g5, us,s) := (0 * ¢d5,u * ¢g5,9 * ¢s5). Clearly, (o5, us,Vs) €
CO(0, T1); WF=12(T4)) for any § > 0. Applying ¢s * to system (A.11)—(A.13) and proceeding as in the
previous step, the differences (05 — 0s7, us — usr, 95 — V) satisfy the linearized equations (A.11)—(A.13)
with (f1, f2, f3) replaced by some (£, £, f3). Therefore, an analogous of (A.21) holds and it is easy to
check that {(os,us,9s5)}s>0 is a Cauchy sequence in C([0, T1]; WH2(T?; R!*4+1)). Consequently,

(9ho, B, 009) € 0, T W2 < W22 RO)),
and, differentiating (A.7)—(A.9) in time, we can deduce that
(820, 07, 020) € C([0, Ty)s WE—32(T4) x Wh—42(T% RI+1)),

To conclude the proof, it is sufficient to choose T™ := T7. O

B Boundedness of the entropy Hessian matrix

In this section we derive the lower and upper bounds of the eigenvalues of the entropy Hessian matrix
v%gp)(_gs) with (Qa 19) € (0700)2. Denote

ey + (1 + ¢y)0?
0192 Q2792

FO) = |9,y (—es) — 21| = X2

and let A\; < A2 be the roots of f(A) = 0.
It is easy to check that
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and

1Y [1—a(l+ce)]d? +ala—1)c 1 _[eB— 1+ )B4+ (1 — )
/ (w) N a2y S (5QT92> - 32029 '

Hence, we take a« =2 + ¢, 8 = QJCF% and obtain

1—(2+c)a+a?)e,
( )

1—a(l+e¢) <0, f(alg) > 2T >0 if 92 < ¢,
1y 1 (B - @4e)as -
o — (1 +¢,) >0, f(W) 5270 >0 if 92 > c¢,.
Hence, it holds
0 < min <(2 +1C’U)Q’ (2+CCZ)9192> <A < W <A < W

C Consistency proof

In order to prove the consistency, we integrate (3.4a), (3.4b), and (4.2) from ¢t = 0 to t = t"*! and choose
¢n = I as the test function for any ¢ € L2(0,T; W2°(T4)), 9,9, 0}¢ € L>=((0,T) x T?). We estimate
all resulting terms in six steps.

Step 1 — time derivative terms

Let rp, stand for gp, opup or opsp. Recalling [3, (2.17)] and the estimates (4.5), (4.6), and (4.7a) we

d t=0 0

S AH|020| oo oo + 1000 poe poo) [I70l] oo 1 < A

for any 7 € [tn, tnt1)-
In what follows we shall also need some standard interpolation inequalities used in the numerical

tn+1

/Td (Dern(t)Hgé(t) + ra(t)Ore(t)) dodt

analysis of finite volume methods, see, e.g. [3, 12, 13]. For completeness, we list them below.
For ¢ € W2>°(T%) we have the following estimates,
< <
[ [TTgo] | = A Vadll oo ragay, Too — ool | < hl|Vadl| L~ (raga for o €& (C.1)

and for all 1 < p < oo,

Va0 — Ve (o) HLp s h”V?EQSHLoo(Td), V20 — Vi (IIgo) HLp S h||vi¢”Loo(1rd),

< (C.2)
¢ — HQ¢||Lp(Td) ~ hHV:cébHLoo(Td;Rdy
Moreover, the discrete version of product rule holds
[fngn] = [fa] Lon}t + {fnB lonl . fno9n € Qn. (C.3)
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Step 2 — convective terms

To deal with the convective terms, it is convenient to recall [, Lemma 2.5],

/ / rhuh-Vw(bdxdt—/
0 Td 0

1 thrl
Ei(ry,) = 2/
0
1
Es(ry) = 4/
0

tn+1
Eg (Th) = /
0

Ey(rp) = he/o

Error terms Fi(rp)

tn+1 tn+1

4
/5 Fylrn, up] [Mod] dS. dt =Y Ej(rs)
j=1

with

/g | un) -l [r4] o] dS, dt,

/g [un] - 7 [r] [TTgg] dS dt,

/T Tup - (Vx(;b —v, (HQ¢)> dz dt,

¢+l tn+1

/ [ru] [Mge] dS, dt = —h'** / / raApTlge da dt.
£ 0 Td

Directly recalling the proof of [7, Theorem 11.2] we have

d
By ()] = h}zj/o

< <
~h ”ThHL%? (HviﬁbHLme HuhHL2L2 + va¢||L°°Loo thuh”mm) ~h

tn+1

e (8 ooTiol s} + (M0 Mgo)0| {usn} 1) da

for r;, = op, 0nuin Or 0pSk, Where Agj) = 5%2)5?) and 52”,6%2) are the j™-component of Vg and Vj,
respectively.

Error terms E3(rp)

To deal with Fs(ry) we first set rp, = g and obtain

1/2 g+l 1/2
/e Lun] [ dS. dt) </0 /g [on]? dS, dt) SO Veup | o0

due to (C.1), (4.7b) and Holder’s inequality.
Then, inserting 7, = gpu; into Ea(ry,) and taking into account (C.1), the assumption (4.5) and the

tn+1

E S hVeoll oo e
Ex(o)] = 1 [ Vadl ooy (/O
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estimate (4.7b) with (C.3) we get

tn+1

| E2(onuipn)| Sh vaﬁb‘LwLoo/O

tn+1
= h/
0
1/2 it 1/2
< 2 2 2 2
~ h (/ / | {unl}|”dSy dt) (/ / | [wr] |* dS, dt) + b7 ||Veup|| 7272
0 & 0 &

S|\ Veun|lpape + B2 | Veun|Fare -

[Tl i + o o) 0.

[ Vel | Tur] -l un |2t 1 [
€ 0

t"+1

/g {on} | [un] |2 dS, dt

From the Taylor expansion

| Tonsnl | = 19o(—05)(v") [on] + Op(—08)(v") [pall | ~ | [n] | + | [pa] |

with v* € co{(ol", piP), (02, p3"*)}. As [pp] has the same bound as [g4], see (4.7b), we know that
E5(onsn) has the same estimate as Ea(gp,), meaning

| Es(onsn)| <~ h®2/2 ||V eup | page -

Error terms Fs3(rp)

The estimates of the third error terms are straightforward due to (C.2), and the uniform bounds (4.5) —
(4.7a). Indeed,

tn+1

[Es(on)| = B V20| o /0 /T lovun|dadt = h[fup ]| o 2 ~ b,

tn+1

| Bs(onuin)| ~ || V2d|| o oo / /d |onui nun| dz dt = b ||up|[] 2 < by
0 T

tn+1

]Eg(ghsh)] SJ h HVigﬁHLmLm / /d \thhuh| dxdt /5 h HuhHLooLQ "S h.
0 T

Error terms FEy(rp)

Finally, we treat the fourth error terms. For r;, = gpsy, the term is not present, i.e. Ey4(opsp) = 0. For
Th = Oh, Opui p We have

< <
|E4(rh)| ~ h1+€ vangLooLoo HThHLlLl ~ h1+€.

Similarly as in the first step, recalling (4.5) and (4.7a) we realize that

/

for 71, € {on, ontin, onsn}. Collecting the above estimates of Fj(ry),j =1,...,4, and (C.4) we get

tn+l

< <
~ AtV Loopos [unll Lo 2 7nl oo 2 ~ At (C.4)

/ rpwp - Ve do dt
Td
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tn+1

/ / rhuh-Vgcqﬁdxdtdt—/
0o Jrd 0

c(rp) ~ WG/ || Veup| a2 ~ B for v, = on, onsn,
W Veunll 2z + B2 | VeuplFape = hO79/2 4 h17¢ for ry = gpu;p.

/ FElrm, ) [Too] dSe dt| & At +h+ b + c(rp),
£

(C.5)

Step 3 — viscosity terms in the momentum equation

The interpolation error estimate (C.2) and the a priori bound (4.7a) are enough to control the consistency
error of the viscosity terms in the momentum equation. Indeed, we have

/ Sy, : Ve dadt — /
0 Td 0

tn+1

/0 Sy : (V:p¢ — Vh(HQ(b)) dx dt| +

’]I‘d
/’7’

/ Uy, - dthHQS(vx(b) dx
Td

tn+l

/ S : Vi (llge) da dt
Td

tn+l

—/ Sy Ve da
T Td

<

tn+l

S hlShll 2z (| Va@|| oo poo +

/

< <
ShA (" = 1) | oo g2 @] pooryzce ~ h 4 At

/ thh . HQS(VI¢) dzx
Td

t'n+1

Sh+

where we have used the fact that S;, is piecewise constant and the identity
Sh : qub = thh : S(Vx(ﬁ) (06)

due to the symmetry of S, and S(V,¢).

Step 4 — pressure term in the momentum equation

The consistency error of the pressure term in the momentum equation is controlled, thanks to the
interpolation estimate (C.2) and the uniform bound on pressure (4.6), and the triangular inequality.

‘ / / prdivy ¢ dx dt — / / prdivy, (llge) dx dt’
0 JTd 0 Td
tn+1

/ / DPh (divx(b — dth(HQ¢)) dzx /
0 Td T

. <
< |lpnllpocpr b “v926¢“L®Lm + (" =) Ipall po 1 |1 diva@ | oo oo ~ At + h.

tn+1

tn+1

< +

/ ppdiv, ¢ dz di
Td
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Step 5 — k-term in the entropy inequality

Using the product rule (C.3), i.e. [{H‘WH [Mgé] {{ }}+{{HQ¢}} [[ﬂhﬂ = [Mg¢] {{ﬁ}}—{{HQqﬁ}} 19%1‘2?1}9];1’

we can write the consistency error of the x-term in the following way

_/O / o] |[HQ¢H 48, dt — (/ /Td g Vgﬂh|2dxdt_/0T/Tdg;vsﬁh-vzéf)dxdt)

:/{/ {{HW}}W Op? dw dt + & / Mlvgﬁﬁdxdtdt

19 out 0 Td 19 h ﬂzut

T 1
/ /Td ﬂ—hvﬁ?h (Va¢p — Vellgg) dzdt + ﬁ/o /Td <19 {{ o }}) Vedp - Vellgp dzdt
trtl
— /1/7 /'er {{ﬁh}} Vedy, - Vellgpdx dt

¢+l 4
= H/T /qrd {{HQ¢}}|Vgi9h|2dxdt+ ZL’.

out
Uny i=1
I
Note that /ﬁ}f de {;{9 goﬁ}|ng9h]2dx dt > 0 contributes to the “ > 7 sign of (4.10c). The I;, i =
1,...,4, terms contribute to the consistency error, and can be controlled by using Hoélder’s inequality,

the uniform bounds (4.5) and (4.7), and the integration by part formula (3.3b), i.e
11 S BNl porroe [IVebnllpage ~ Ry (T2 S R 10] p2ypace IVl 2p2 ~ b,

tn+1

hk Vet
T3] = > /0 » ﬁoftﬁhh Vedy - Vellgg dzdt| < h (||l ooy IVeDnlT2p2 < b,
tn+1 tn+1
|14 = / Ve, - Vellgpdr dt| = / O, - Apllgep dz dt| < AL ||| coqpze ~ At.

Step 6 — entropy production terms in the entropy inequality

Thanks to ¥, > 0 and ¢ > 0 the entropy production terms are non-negative, i.e.
tn+1

/ Dl(HQ¢) + Do(Ilg¢) + D3(Ilg¢) dzdt > 0,
tn+1
/ / Sh thh dx dt —/ / Sh thh—dxdt dt
Td Td
tnt1 trn+t1 ¢
/ / Sh thh— dzdt = / / (QN’]D)h(uh”Q + )\]divhuh\2) —dxdt > 0,
Td T Td Un
which again contribute to the “ > " sign of (4.10c).

In addltlon by (C.1), (4.7b) and Holder’s inequality, we estimate the residual term in the entropy
balance (

tn+1

/ R (Mo¢) dz

£ Vol o / / (Len] + [pa]) dS. dt S AEFD/2 1 et
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Finally, collecting the estimates of the six steps above, we obtain the consistency formulation (4.10a),
(4.10b), and (4.10c) from (3.4a), (3.4b), and (4.2), respectively. This proves Lemma 4.5.

D Relative energy inequality

In this section we derive the relative energy inequality (5.6). More precisely, we want to prove

[RE ((Q}uuhﬂgh) | (0, u, 19 / /’JI‘d (ﬁh <2u

Ve, — VO dadt < R Ri—Rs—R D.1

—|—)\

D), (t4n) — fg (@)

)

0
dth’uh — jhdivmu

OH=(3,9 _ N
Ro=e, <;|ﬁ]2 _ %(;’),At, h,T> eulT, AL 7) — es(0, At b7,

—/ / on(sn — 3)(un — @) - Vo derdlt, RF_/ / on(un — @) ® (up — @) : Vyada,
0 Td 0 Td

Rs = / / Qh: Q(ﬂ —up) - divxgdx, Ry = / / (p—pn — Opp(0 — 0n) — 8191'5(5— Up))div,u dzdt,
Td 0 Td

/ / < h—Q Sh—A>—|—Q( h—S—ags( h—@ 819§(19h—5)))(8t5+ﬂ-vx1§)dxdt,
Rs = / / uh-divxS—l—thhzg) dzdt,
Td

792 790ut J 929 — gout -
Ry=r / / ( yv 012 + 9pdiv, Vil | h 7,9 - Vg§h> dzdt.
Td

792§h190ut J ﬁhﬁzm
(D.2)

Step 1. Our first goal is to obtain a relative energy inequality directly from the consistency formulation
(4.10) and the energy balance (4.1). We reformulate the relative energy as

RE <(Qh,’uh,19h) Q,’u, 19 ) ZTZ, (D.3)

where

_ 1 2 _ 1, OHz8.9)
= /Td (QQh\Uh\ +Hﬁ(gh7uh)> de, Ty = /Td On <2|u| 90 du,

OH~(3,9 ~
t=- [ o -ads, 7= [ (519@)—%(@1@9)) do= [
Td Td do Td
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Hence, for the first term 77, by integrating (4.1) from ¢ = 0 to t = 7 and subtracting (4.10c) with ¢ = 9,
we obtain

T g T 9
T, < - Vv92dxdt—/ Sy : Viyup, — dzdt
Tilemo < /0 /Td ﬁzutﬂh’ evnl 0 Jrd b,

T T (D4)
— / / thh((?tg—k uy, - Vxﬁ) dxdt + / / ngﬁh V0 dadt — e, <1§, At, h, 7') .
0 Jrd o Jrd Un
For the second term T, by taking ¢ = 5 |u|* — 8?—1%7(95,19) in (4.10a) we obtain
T, = / / (onDyit - T+ oni @ wy, = Vi) dar It + / / on3(OT + wp - Vo 0) dar dt
0 JTd 0o Jtd
_ = D.5)
- 1, OM(5,0 (
—/ / Qf}b(@tﬁ—l—uhviﬁ)dxdt—l—eg *’U‘Q—M,At,h,’f .
0 Jr¢ 0 2 do
For the third term T3, by setting ¢ = u in (4.10b) we obtain
[Ts]i—g = —/ /d (onwn - Ot + opup @ wy, = V) dadt
0o JT
+ / / (Sp — prl) : Vyudadt — ey, (w, At h, 7). (D.6)
0 Jrd
For the fourth the term 7T we simply write
Ty, = / 0, dadt. (D.7)
0 Jrd

Now, summing up (D.4)~(D.7) we obtain from [RE ((Qh,uh,ﬁh) | (5,&,{9’))}; = L [T, that

[RE ((Qh,uh,ﬂh) | (57575))}0 + = < Rc — /0 /Jl‘d on(sn — 3)(up — @) - V0 dedt + 2, (D.8)

with

El = / / Sh : thhi — Sh : fol: dxdt -l-/ / #‘Vgﬁhp - ng’l?h . Vﬂ? dxdt,
0 Jrd Un o Jra \ U3y Up

By = / / (on(w —up) - Oyu + op(u — up) @uyp, = Vyu) dadt + / / on(5 = s1)(009 + @ - Vo0) dadt
0 JTd 0 JTd
+ / / (&fﬁ— phdivxﬁ) dxdt dt — / / @(8tﬁ+ up - ij dz.
0 Jrd o Jrd @

We point out that the derivative-terms of =, are the first order derivative-terms of the exact solution

(0,u,v) so that all of them could be bounded by some constants.
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Step 2. The second goal is to reformulate =, into the difference between (op, up,9p) and (o, u, 5) SO
that it can be controlled by the relative energy with (5.2).
The key is to utilize that (o, u,?) is the strong solution satisfying

0o+ TU-Vaeo = —0odivaw, 0(8+ U V) + Vup = div,S,

~ ~ 1 ~ x 2 17~
o +u -V + Cﬁdivxﬂ = — <S :Veu + W + ¥div, (/ﬂ%ﬂ)) .

Cyo

Firstly, with
/d (on(u —up) - Oyu+ op(u — up) @uy : Vyu) do
T

:/ on(@ — wn) - (Ot + @ - Void) dx—/ on(un — ) @ (wn — @) : Vi da
Td Td

— [ % ) @ S(V) = V) do = [ oyl =) @ (= ) Vi

and [rq (@ - V,p + pdivew) doz = 0, we obtain

/ / on(up —u) ® (up —u) : Vmﬁdxdt+/ / Q—ff('ﬁ —uy) - div,S dzdt +/ / =1 dzdt,
Td Td 0 Jrd

: gh(s — Sh>(aﬂ9 +u-V 79)

(@p + - Vyp) + (p — pp)diveu.

Secondly, applying the product rule for p and s as functions of (g, 5)

(OiP+ - Vup) = (010 + U - Vid)Oph + (840 + 0 - V,0) 9P = —0div,wd,p + (840 + @ - V1)
on(sn —3) = (on — 0)(sn — 3) + 0(sn — 5 — 0,8(0 — 8) — Do3(In — V) + 8(Dp3(0n — 8) + 3(Ih — V)

we have
= (5— Pr— (0 — Qh))divxﬁ + (Qh(g_ sp) + (0 — Qh)> (00 + @ - V,.0)
= <ﬁ— Ph — 0oB(2 — on) — Op(V — 19h)>divm17
~ (ton = 2)0on = 5)+ 8w - 0,50 — 2) ~ 005001, — ) ) (0T + @+ V.0)
— (9 — V) (aaﬂ'g(atﬁ + @ Va0) + 8gﬁdivxﬂ> .

With 9ys = %}’, Oyp = 0, the last term above can be rewritten as

~ ~ - o Op—10 [~ _ _ L0 20
—(ﬁh—ﬁ)<§8§§(8t19+u‘vx19)—i-agpdivzu) = (S:qu |V19 ‘ + ddiv (/@V{g ))

v
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Thanks to

2
/(u div,S + 8 : vu //”’v V) + ddiv, V.V dadt = 0,
Td Td 19

finally we reformulate =, as

—/ / on(up — ) @ (up, — ) : Vyudedt +/ / Oh ~ 8 (5 — wy) - diveSdadt
0 Jrd o Jra 0
+ / /d (ﬁ—ph — 0pp(0 — on) — 8195(5— ﬁh))divzﬂ dzdt

0 Jr

_ /DT /Td ((Qh —0)(sn — 3) + 0(sn — 3 — 9,3(on — 0) — Dy (Ip, — 5))) (00 + @ - V0 dadt — =,

T . " T ~2 . ~
Hp = / / (%S:Vxﬂ+uh~divx8> dadt + / / In (VO G, (5V2Y) ) daat.
0o Jre \ ¥ 0o Jre ¢ Y 9

Step 3. Back to the relative energy inequality (D.8), the rest is to reformulate =; + Z, ;. We split
E; + =,,1 into the velocity-gradient-terms and temperature-gradient-terms:

B +E1 =Ts + Ty,
Uy,

T el K K|V 19\2 HVIE
Ty = T Veh|? — LV ey - V) + + ddiv, - dzdt.
! /o/wzuwh’ el =, Vet 19< J ( 9 >>

Term Ts: Denoting Rs = [ [ra (uh ~div,S+ Sy, : Vxﬂ) dxdt, we have
T 0 _ Ohs o
Ts = —Sp : Vaup, — 2Sy, : Veu + =S : Veu | dedt + R
o Jra \ Un )

T 9
= — | 2
/()/11““9h<u

Term Ty: We straightforward reformulate T} as

T K0 ~
=Ty — — |V -V, 2 .
Ry 9 /0 /]rd 75‘]119?Lut| e I|* dedt

Finally, collecting the above and going back to (D.8) we obtain the relative energy inequality (D.1).

Ts = / / (Sh : thhﬂ -8y : Veu + %g : Ve + uy, - diVmS/) dzdt,
0 Td

I |?
Dy (up) — ﬁD(u) + A

9 ~
dthuh — ﬁhdiVm’u,

2
) dxdt + Rs.

E Estimates on Rs and Ry

In this part we prove (5.8), namely the following estimate.

Rel & hVeunllpoge s [Rol & 0+ [ R ((onwn,0) | (2.8.9)) ()t + ]| Vevn -
0

r2r2’
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Estimate of Rg Noticing the fact that Vjuy is piecewise constant, we have

']I‘d 0 JTd

/ Zuh\x Z / {nes}) -nas, a
--[ / funl - (8 - {1168} s @t S hlrge [ [ 1Tl 05,
<h (/0 /glﬂ“hﬂ ‘stmdt>1/2 </OT/€1dszdt>1/2 B | Veunll e

Estimate of Ry We start with the reformulation Ry = Z?:1 Ry i, where

Rﬁl :Fd/ / ﬁhdlvx ~19 ng?h Lﬂ dl’dt
Td Y J

11 ~
_ 9 Y 20| dzdt dt,
o= [ [ (%5 G g et
T 1 (v, 9 _
Ros =k /O /T T <~ ﬁh> (v J— vgﬁh) V.0 dadt,
o911 ~ ~
R1974 —:‘i/ /Td ’197}1 <,{9v — 192“) (Vﬂ? — vg”&h) . Vxﬁ dxdt,

~ T 1 ~
Rys = — 1) V¥, - Vyodzdt = —h - Ve, |2V 09 dzdt.
9.5 ff/ /ﬂ‘dﬁ<ﬂout ) eVn x K/o /waqu XU T

Hence, with (3.3b), the assumption (4.5), the projection error (3.1) and the a priori bound on temperature
(4.7a) we have

v 2 A ~
|Rﬂ,1|=m/ / Vgﬁh-< z —HW< z )) dzdt| S h||Vedp 120 ‘LQWM,
L Y Vo AR TES T YT LR X
R,z H h L2L2 r2r2’ |R193| h L2L2 TO||Vedn L2L2
(Roal &5 o2 =+ 6]|Veon a3, | 1Rosl S RIVeDIZare
Moreover, ‘19‘,’1“‘3 — 19H can be controlled as
out out in||2 12 2 2 < ~I1? 2
L P (U I e P L I ] D

Consequently, with (5.2) we have

Rol S0+ [ R ((onswn00) | @.0) (0t +5 | Veon -
0

r2r?’

Collecting the above estimates, we complete the proof.
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