INSTITUTE OF MATHEMATICS

Liftings and dilations of commuting systems of linear mappings on vector spaces

Vladimír Müller

ぁACADEMY
펀
THE

Preprint No. 72-2022
PRAHA 2022

LIFTINGS AND DILATIONS OF COMMUTING SYSTEMS OF LINEAR MAPPINGS ON VECTOR SPACES

VLADIMIR MÜLLER

Abstract

We show that each set of commuting linear mappings on a vector space has a lifting consistion of commuting injective mappings and a dilation consisting of commuting bijective mappings.

1. Introduction

The dilation theory of Hilbert space operators is an important part of operator theory. The most important result is that each Hilbert space contraction has a unitary dilation, i.e., if T is a contraction acting on a Hilbert space H, then there exists a Hilbert space $K \supset H$ and a unitary operator $U \in B(K)$ such that $T^{n}=$ $P_{H} U^{n} \mid H$ for all $n \geq 0$, where P_{H} is the orthogonal projection onto H.

A closely related result is the existence of isometrical liftings of Hilbert space contractions. For each contraction $T \in B(H)$ there exists a Hilbert space $L \supset H$ and an isometry $V \in B(L)$ such that $T^{*}=V^{*} \mid H$. Clearly V is an isometrical dilation of T.

The isometrical and unitary dilations proved to be a very useful tool in operator theory with many applications in various situations.

Apart from the dilations of single operators, dilations of commuting tuples have also been considered intensely. By the Ando theorem, every pair of commuting Hilbert space contractions has a dilation consisting of two commuting unitary operators. For more than two contractions this is not true in general, but there are many results giving dilations in important particular situations.

The standard reference for the dilation theory is the monograph of B. Sz.-Nagy and C. Foias [4].

In a recent paper [1], Bhat, De and Rakshit proved analogous dilation results for mappings on sets. The dilations in the category of vector spaces and linear mapping among them was considered in [2] and [3].

The main result of [2] was that each linear mapping on a vector space has a bijective dilation. In [3], it was proved an Ando type result and shown that each pair of commuting linear mapping has a dilation consisting of two commuting injective linear mapping.

In the present paper we improve these results and show that any set (finite or infinite) of mutually commuting linear mappings on a vector space has a commuting lifting consisting of injective mappings, and a dilation consisting of bijective mappings. This gives also an answer to some questions posed in [3]

[^0]
2. Liftings of Linear mappings

We use the following notations.
Notations. Let J be a set and $\mathcal{T}=\left\{T_{j}: j \in J\right\}$ a system of mutually commuting linear mappings on a vector space X. Let Y be a vector space, $X \subset Y$, and let $\mathcal{S}=\left\{S_{j}: j \in J\right\}$ be a system of mutually commuting linear mappings on Y. We say that \mathcal{S} is an extension of \mathcal{T} if $T_{j}=S_{j} \mid X$ for all $j \in J$.

Let $P: Y \rightarrow Y$ be a projection onto X (i.e., P is a linear mapping such that $P^{2}=P$ and $\left.P Y=X\right)$. Then \mathcal{S} is an extension of \mathcal{T} if and only if each S_{j} has the form

$$
S_{j}=\left(\begin{array}{cc}
T_{j} & * \\
0 & *
\end{array}\right)
$$

in the decomposition $Y=X \oplus(I-P) Y$.
We say that \mathcal{S} is a lifting of \mathcal{T} if there exists a projection P onto X such that each S_{j} has the form

$$
S_{j}=\left(\begin{array}{cc}
T_{j} & 0 \\
* & *
\end{array}\right)
$$

in the same decomposition.
We say that \mathcal{S} is a power dilation of \mathcal{T} if there exists a projection P onto X such that

$$
S_{j_{k}} \cdots S_{j_{2}} S_{j_{1}}=\left(\begin{array}{ccc}
T_{j_{k}} \cdots T_{j_{1}} & * \\
* & *
\end{array}\right)
$$

for all $k \in \mathbb{N}$ and $j_{1}, \ldots, j_{k} \in J$. Equivalently, $T_{j_{k}} \cdots T_{j_{1}}=P S_{j_{k}} \cdots S_{j_{1}} \mid X$ for all $j_{1}, \ldots, j_{k} \in J$.

Clearly if \mathcal{S} is either an extension or a lifting of \mathcal{T}, then \mathcal{S} is a power dilation of \mathcal{T}.

We show first that each commuting system of linear mappings has a lifting consisting of mutually commuting injective linear mappings.

We start with the following lemma.
Lemma 1. Let $\mathcal{T}=\left\{T_{j}: j \in J\right\}$ be a system of mutually commuting linear mappings on a vector space X. Let $j_{0} \in J$. Then there exists a vector space $Y \supset X$ and a system $\mathcal{S}=\left\{S_{j}: j \in J\right\}$ of mutually commuting linear mappings on Y such that
(i) \mathcal{S} is a lifting of \mathcal{T};
(ii) $S_{j_{0}}$ is injective;
(iii) if $j \in J$ and T_{j} is injective then S_{j} is injective.

Proof. Let Y be the vector space of all sequences $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of X with finite support.

Define the linear mapping $S_{j_{0}}: Y \rightarrow Y$ by

$$
S_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=\left(T_{j_{0}} x_{0}, x_{0}, x_{1}, x_{2}, \ldots\right)
$$

For $j \in J, j \neq j_{0}$ define mapping $S_{j}: Y \rightarrow Y$ by

$$
S_{j}\left(x_{0}, x_{1}, \ldots\right)=\left(T_{j} x_{0}, T_{j} x_{1}, T_{j} x_{2}, \ldots\right)
$$

Clearly $S_{j} S_{j^{\prime}}=S_{j^{\prime}} S_{j}$ for all $j, j^{\prime} \in J, j \neq j_{0} \neq j^{\prime}$.
Let $j \in J, j \neq j_{0}$. Then

$$
S_{j_{0}} S_{j}\left(x_{0}, x_{1}, \ldots\right)=S_{j_{0}}\left(T_{j} x_{0}, T_{j} x_{1}, T_{j} x_{2}, \ldots\right)=\left(T_{j_{0}} T_{j} x_{0}, T_{j} x_{0}, T_{j} x_{1}, \ldots\right)
$$

and

$$
S_{j} S_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=S_{j}\left(T_{j_{0}} x_{0}, x_{0}, x_{1}, \ldots\right)=\left(T_{j} T_{j_{0}} x_{0}, T_{j} x_{0}, T_{j} x_{1}, \ldots\right)
$$

Since $T_{j} T_{j_{0}}=T_{j_{0}} T_{j}$, we have $S_{j} S_{j_{0}}=S_{j_{0}} S_{j}$ and the mappings $S_{j} \quad(j \in J)$ are mutually commuting.

If we identify each vector $x \in X$ with the sequence $(x, 0,0, \ldots) \in Y$, then $X \subset Y$. Let $P: Y \rightarrow Y$ be the projection defined by $S\left(x_{0}, x_{1}, x_{2}, \ldots\right)=(x, 0,0, \ldots)$. Then clearly each $S_{j} \quad(j \in J)$ is a lifting of T_{j} with respect to this projection.

Let $j \in J, j \neq j_{0}$ and let T_{j} be injective. Then clearly S_{j} is injective.
Suppose that $S_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=(0,0, \ldots)$. Since $S_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=\left(T_{j_{0}} x_{0}, x_{0}, x_{1}, \ldots\right)$, we have $x_{i}=0$ for all $i \geq 0$. So $S_{j_{0}}$ is injective.

This finishes the proof.
Corollary 2. Let $\mathcal{T}=\left\{T_{j}: j \in J\right\}$ be a system of mutually commuting linear mappings on a vector space X. Then there exists a vector space $Y \supset X$ and a system $\mathcal{S}=\left\{S_{j}: j \in J\right\}$ of mutually commuting injective linear mappings on Y such that \mathcal{S} is a lifting of \mathcal{T}.
Proof. If the set J is finite, then we can apply the previous lemma finitely many times, in each step increasing the number of injective mappings. If the set J is countable then the required lifting can be constructed by induction.

If the set J is uncountable then we can proceed similarly, using the transfinite induction. We may assume that the set J is well ordered, $J=\left\{j_{\alpha}: \alpha<\beta\right\}$ for some ordinal nummber β. By transfinite induction we can construct vector spaces $Y_{\alpha} \quad(\alpha \leq \beta)$ such that $Y_{0}=X$ and $Y_{\alpha} \subset Y_{\alpha^{\prime}}$ whenever $\alpha<\alpha^{\prime} \leq \beta$, and commuting systems $\mathcal{S}^{(\alpha)}=\left\{S_{\gamma}^{(\alpha)}: \gamma<\beta\right\}$ on Y_{α} such that the mappings $S_{\gamma}^{(\alpha)}$ are injective for all $\gamma<\alpha$ and $\mathcal{S}^{\left(\alpha^{\prime}\right)}$ is a lifting of $\mathcal{S}^{(\alpha)}$ whenever $\alpha<\alpha^{\prime} \leq \beta$.

Setting $Y=Y_{\beta}$ and $\mathcal{S}=\mathcal{S}^{(\beta)}$, we get the required lifting of \mathcal{T} consisting of injective mappings.

3. Dilations of linear mappings

Next we show that any commuting system of injective mappings may be extended to a system consisting of bijective mappings.

Lemma 3. Let $\mathcal{T}=\left\{T_{j}: j \in J\right\}$ be a system of mutually commuting injective linear mappings on a vector space X. Let $j_{0} \in J$. Then there exists a vector space $Y \supset X$ and a system $\mathcal{S}=\left\{S_{j}: j \in J\right\}$ of mutually commuting injective linear mappings on Y such that
(i) \mathcal{S} is an extension of \mathcal{T};
(i) $S_{j_{0}}$ is a bijection;
(ii) if $j \in J$ and T_{j} is a bijection then S_{j} is a bijection.

Proof. Let Z be the vector space of all sequences $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ of elements of X with finite support.

Define the linear mapping $V_{j_{0}}: Z \rightarrow Z$ by

$$
V_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=\left(T_{j_{0}} x_{0}+x_{1}, x_{2}, x_{3}, \ldots\right)
$$

For $j \in J, j \neq j_{0}$ define mappings $V_{j}: Z \rightarrow Z$ by

$$
V_{j}\left(x_{0}, x_{1}, \ldots\right)=\left(T_{j} x_{0}, T_{j} x_{1}, T_{j} x_{2}, \ldots\right)
$$

Clearly $V_{j} V_{j^{\prime}}=V_{j^{\prime}} V_{j}$ for all $j, j^{\prime} \in J, j \neq j_{0} \neq j^{\prime}$.

Let $j \in J, j \neq j_{0}$. Then
$V_{j} V_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=V_{j}\left(T_{j_{0}} x_{0}+x_{1}, x_{2}, x_{3}, \ldots\right)=\left(T_{j} T_{j_{0}} x_{0}+T_{j} x_{1}, T_{j} x_{2}, T_{j} x_{3}, \ldots\right)$
and

$$
V_{j_{0}} V_{j}\left(x_{0}, x_{1}, \ldots\right)=V_{j_{0}}\left(T_{j} x_{0}, T_{j} x_{1}, T_{j} x_{2}, \ldots\right)=\left(T_{j_{0}} T_{j} x_{0}+T_{j} x_{1}, T_{j} x_{2}, \ldots\right)
$$

So $V_{j} V_{j_{0}}=V_{j_{0}} V_{j}$ and the mappings $V_{j} \quad(j \in J)$ are mutually commuting.
Let Z_{0} be the subspace of Z formed by all sequences $\left(x_{0}, x_{1}, \ldots\right) \in Z$ such that there exists $k \in \mathbb{N}$ with $x_{i}=0$ for all $i>k$ and $\sum_{i=0}^{k} T_{j_{0}}^{k-j} x_{j}=0$.

Clearly $V_{j} Z_{0} \subset Z_{0}$ for all $j \in J, j \neq j_{0}$.
If $\left(x_{0}, x_{1}, \ldots\right) \in Z_{0}$, i.e., $\sum_{i=0}^{k} T_{j_{0}}^{k-i} x_{i}=0$ for some k, then $V_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=$ $\left(T_{j_{0}} x_{0}+x_{1}, x_{2}, \ldots\right)$ and

$$
T_{j_{0}}^{k-1}\left(T_{j_{0}} x_{0}+x_{1}\right)+\sum_{i=2}^{k} T_{j_{0}}^{k-i} x_{i}=0
$$

and so $V_{j_{0}}\left(x_{0}, x_{1}, \ldots\right) \in Z_{0}$. Hence $V_{j_{0}} Z_{0} \subset Z_{0}$.
Let $Y=Z / Z_{0}$ and let $S_{j}: Y \rightarrow Y$ be the quotient mappings induced by $V_{j} \quad(j \in J)$. Clearly the mappings $S_{j} \quad(j \in J)$ are mutually commuting.

Let us identify a vector $x \in X$ with the class $(x, 0,0, \ldots)+Z_{0} \in Y$. Note that if $x \neq 0$ then $(x, 0,0, \ldots) \notin Z_{0}$ since $T_{j_{0}}$ is injective. With this identification X will become a subspace of Y and each $S_{j} \quad(j \in J)$ is an extension of T_{j}.

The mapping $V_{j_{0}}$ is surjective, and so is $S_{j_{0}}$.
If $j \in J$ and T_{j} is surjective, then V_{j} is surjective, and so is S_{j}.
It remains to show that the mappings S_{j} are injective.
Let $j \in J, j \neq j_{0}$ and let $S_{j}\left(\left(x_{0}, x_{1}, \ldots\right)+Z_{0}\right)=Z_{0}$. Then $S_{j}\left(x_{0}, x_{1}, \ldots\right)=$ $\left(T_{j} x_{0}, T_{j} x_{1}, \ldots\right) \in Z_{0}$, and so

$$
\sum_{i=0}^{k} T_{j_{0}}^{k-i} T_{j} x_{i}=0
$$

for some $k \in \mathbb{N}$ with $x_{i}=0$ for all $i>k$. Since T_{j} is injective and commutes with $T_{j_{0}}$, we have $\sum_{i=0}^{k} T_{j_{0}}^{k-i} x_{i}=0$, and so $\left(x_{0}, x_{1}, \ldots\right) \in Z_{0}$. Hence S_{j} is injective.

Let $S_{j_{0}}\left(\left(x_{0}, x_{1}, \ldots\right)+Z_{0}\right)=Z_{0}$, i.e., $S_{j_{0}}\left(x_{0}, x_{1}, \ldots\right)=\left(T_{j_{0}} x_{0}+x_{1}, x_{2}, \ldots\right) \in Z_{0}$.
Then

$$
\sum_{i=0}^{k+1} T_{j_{0}}^{k+1-i} x_{i}=T_{j_{0}}^{k}\left(T_{j_{0}} x_{0}+x_{1}\right)+\sum_{i=2}^{k} T_{j_{0}}^{k-i+1} x_{i}=0
$$

for all k large enough. So $\left(x_{0}, x_{1}, \ldots\right) \in Z_{0}$ and $S_{j_{0}}$ is injective.
This finishes the proof.
Corollary 4. Let $\mathcal{T}=\left\{T_{j}: j \in J\right\}$ be a system of mutually commuting injective linear mappings on a vector space X. Then there exists a vector space $Y \supset X$ and a system $\mathcal{S}=\left\{S_{j}: j \in J\right\}$ of mutually commuting bijective linear mappings on Y such that \mathcal{S} is an extension of \mathcal{T}.

Proof. As in the proof of Corollary 2 we can use the previous lemma and construct the required extension \mathcal{S} by transfinite induction.

Corollary 5. Let $\mathcal{T}=\left\{T_{j}: j \in J\right\}$ be a system of mutually commuting linear mappings on a vector space X. Then there exists a vector space $Y \supset X$ and a
system $\mathcal{S}=\left\{S_{j}: j \in J\right\}$ of mutually commuting bijective linear mappings on Y such that \mathcal{S} is a power dilation of \mathcal{T} (with respect to some projection $P: Y \rightarrow Y$ onto X).

Proof. By Corollary 2, there exists a vector space $Z \supset X$ and a commuting system $\mathcal{V}=\left\{V_{j}: j \in J\right\}$ of injective mappings on Z, which is a lifting of \mathcal{T}.

By Corollary 4, it is possible to extend the system \mathcal{V} to a commuting system $\mathcal{S}=\left\{S_{j}: j \in J\right\}$ on a space $Y \supset Z$, which consists of bijective mappings.

Clearly \mathcal{S} is a power dilation of \mathcal{T}.

References

[1] B.V.R. Bhat, S. De, N. Rakshit, A caricature of dilation theory, adv. Oper. Theory 6 (2021), Paper No. 63, 20.
[2] K.M. Krishna, P.S. Johnson, Dilation of linear maps on vector spaces, Oper. Matrices 16 (2022), 465-477.
[3] K.M. Krishna, Algebraic Ando dilation, arxiv:2210.11310.
[4] B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Spaces. Translated from the French and revised North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadmiai Kiad, Budapest 1970.

Institute of Mathematics, Czech Academy of Sciences, ul. Žitna 25, Prague, Czech Republic

E-mail address: muller@math.cas.cz

[^0]: Date: November 23, 2022.
 1991 Mathematics Subject Classification. 47A20, 15A03, 15A04.
 Key words and phrases. Lifting, Dilation, Linear mappings, Vector spaces. The work was supported by grant No. 20-22230L of GA CR and RVO:67985840.

