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Abstract

We show that solutions of the complete Euler system of gas dynamics perturbed by a
friction term converge to a solution of the porous medium equation in the high friction/long
time limit. The result holds in the largest possible class of generalized solutions – the measure–
valued solutions of the Euler system.
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1 Introduction

In a recent paper, Lattanzio and Tzavaras [12] consider the singular limit of the isentropic Euler
system perturbed by a high friction term. Our goal is to extend this result to the physically more
adequate setting of the complete Euler system of gas dynamics, where temperature changes as well
as possible singularities resulting in the increase of the total entropy of the system are allowed.
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‡The work of A. Ś-G. and P.G. was partially supported by National Science Centre (Poland), agreement no

2021/43/B/ST1/02851.

1



1.1 Euler system of gas dynamics

We consider a scaled Euler system of gas dynamics in the form:

Equation of continuity:

ε∂t%+ divxm = 0. (1.1)

Momentum equation:

ε∂tm + divx

(
m⊗m

%

)
+∇xp = −1

ε
m. (1.2)

Energy balance:

ε∂t

(
1

2

|m|2

%
+ %e

)
+ divx

[(
1

2

|m|2

%
+ %e+ p

)
m

%

]
= −1

ε

|m|2

%
. (1.3)

The pressure p and the internal energy e are thermodynamic functions interrelated through
Gibbs’ equation

ϑDs = De+ pD

(
1

%

)
, (1.4)

where ϑ is the (absolute) temperature and s the (specific) entropy. We consider the fluid mass
density % = %(t, x), the momentum m = m(t, x), together with the total entropy S = (%s)(t, x) as
the basic state variables (unknowns) in the system of equations (1.1)–(1.3). The fluid is confined
to a bounded domains Ω ⊂ Rd and the problem is formally closed by imposing the impermeability
boundary conditions

m · n|∂Ω = 0, (1.5)

and the initial conditions

%(0, ·) = %0, m(0, ·) = m0, S(0, ·) = S0. (1.6)

1.2 Large friction limit

Smooth solutions of the Euler system (1.1) – (1.3) conserve entropy, specifically, it follows from
Gibbs’ relation (1.4)

ε∂tS + divx

(
S

m

%

)
= 0. (1.7)

In particular, if s0 = s(0, ·) = s is constant, it follows from (1.7) s(t, ·) = s as long as the solution
remains smooth and (1.1)–(1.3) reduces to the so-called isentropic Euler system for only two
unknowns % and m.

The term 1
ε
m in the momentum equation, together with its counterpart 1

ε
|m|2
%

in the energy
balance, represent the effect of “friction” on the gas motion. High friction regularization of the
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simplified Euler system has been studied by several authors, see Dafermos and Pan [6], Sideris,
Thomases, and Wang [13], and the references cited therein.

Lattanzio and Tzavaras [12] identified the high friction limit ε → 0 in the isentropic Euler
system as the porous medium equation:

%ε → r, where ∂tr −∆xp(r, rs) = 0, s− constant. (1.8)

The proof in [12] is formal, conditioned by the existence of weak solutions to the scaled isentropic
Euler system with the life span independent of the scaling parameter ε.

The motion of a gas obeying the physically relevant complete Euler system (1.1)–(1.3) is not
likely to be isentropic, with possible shocks developed in a finite time violating the entropy equation
(1.7). A suitable admissibility condition for the general weak solutions is then formulated in terms
of the entropy inequality

ε∂tS + divx

(
S

m

%

)
≥ 0,

or its renormalized variant (see e.g. Chen and Frid [5])

ε∂t

(
%χ

(
S

%

))
+ divx

[
χ

(
S

%

)
m

]
≥ 0 (1.9)

for any χ concave, χ′ ≥ 0, χ bounded above.
Our main goal is to extend the result of Lattanzio and Tzavaras [12] to the complete Euler

system. The limit density profile r and the entropy s = S
r

(formally) satisfy the following system
of equations:

∂tr −∆xp(r, rs) = 0, (1.10)

∂ts−
1

r
∇xp(r, rs) · ∇xs = 0, (1.11)

supplemented with the initial and boundary data

r(0, ·) = r0, s(0, ·) = s0, ∇xp(r, rs) · n|∂Ω = 0. (1.12)

Accordingly, we suppose that the initial data of the Euler system converge to the initial conditions
of (1.10), (1.11) specifically,

%0 = %0,ε → r0, S0 = S0,ε → r0s0, and m0 = m0,ε → 0. (1.13)

Solvability of the problem (1.10), (1.11) is discussed in the forthcoming section.
Although the recent results based on the method of convex integration provide weak solutions

(even infinitely many) for a large class of initial data, see e.g. [9], a general existence result that
would cover all finite energy initial data is not available so far. For this reason, we consider a
larger class of measure–valued solutions in the spirit of [3]. The advantage of considering the
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measure–valued solutions of the Euler system is not only their existence that may be shown for all
physically admissible data, see e.g. Kröner and Zaja̧czkowski [11] or the more recent adaptation
of the same method of construction in [1]. The measure–valued solutions capture a large variety
of singular limits including the low diffusion limit of the Navier–Stokes–Fourier system [2] as well
as the alternative model proposed by Brenner, see [10, Chapter 10]. The truly measure–valued
solutions, unlike the Euler system, can also mimick the behaviour of complete fluid systems in
highly turbulent regime, see [7].

The paper is organized as follows. In Section 2, we introduce the concept of measure–valued
solution and state the main result concerning the high friction limit. In Section 3, we recall the
relative energy inequality introduced in [3] and further developed in [10] and prove the desired
convergence.

2 Measure–valued solutions, main result

Besides the general Gibbs’ relation (1.4), we suppose that the thermodynamic functions p, e, and
s satisfy the hypothesis of thermodynamic stability. This can be conveniently formulated in terms
of the variables (%, S) as convexity of the internal energy:

Eint : (%, S) ∈ R2 7→ %e(%, S) ∈ [0,∞] is a convex l.s.c function,

Eint ∈ C2 (int(dom)[Eint]) , ∇2Eint > 0, (2.1)

cf. [10, Chapter 4, Section 4.1.6]. Note that for the standard Boyle-Mariotte equation of state

p = (γ − 1)%e, e = cvϑ, cv =
1

γ − 1
, γ > 1,

we have

p(%, S) = (γ − 1)Eint(%, S) =


%γ exp

(
S
cv%

)
if % > 0,

0 if % = 0, S ≤ 0,
∞ otherwise,

see [10, Chapter 2, Section 2.2.4].
Similarly, we define the kinetic energy,

Ekin : (%,m) 7→


1
2
|m|2
%

if % > 0,

0 if % = 0, m = 0,
∞ otherwise,

and the total energy

E(%, S,m) = Ekin(%,m) + Eint(%, S)

a convex l.s.c. function on R2+d, strictly convex on its domain.
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2.1 Measure–valued solutions

Following [3], we define measure–valued solution of the Euler system (1.1)–(1.3), (1.9), (1.5) a
weakly measurable family of Borel probability measures,

V : (t, x) ∈ (0, T )× Ω 7→ Vt,x ∈ P[R×R×Rd].

Moreover, we denote 〈
Vt,x;F (%̃, S̃, m̃)

〉
=

∫
R2+d

F (%̃, S̃, m̃) dVt,x,

for any Borel measurable function F of the “dummy” variables (%̃, S̃, m̃) ∈ R2+d.

Definition 2.1. (Measure–valued solution of the Euler system)
We say that a parametrized family (Vt,x)(t,x)∈(0,T )×Ω of probability measures on the Euclidean space
R2+d is a measure–valued solution to the Euler system (1.1)–(1.3), with the boundary conditions
(1.5), and the initial data (1.6), if the following holds:

• Compatibility:

Vt,x {%̃ ≥ 0} = Vt,x
{
%̃ = 0, S̃ ≥ 0

}
= 1 for a.a. (t, x) ∈ (0, T )× Ω. (2.2)

• Equation of continuity:∫ T

0

∫
Ω

(
ε 〈Vt,x; %̃〉 ∂tϕ(t, x) + 〈Vt,x; m̃〉 · ∇xϕ(t, x)

)
dx dt = −ε

∫
Ω

%0ϕ(0, x) dx; (2.3)

for any ϕ ∈ C1
c ([0, T )× Ω).

• Momentum equation: There exists a tensor–valued measure

R ∈ L∞weak(0, T ;M+
sym(Ω;Rd×d))

such that the integral identity∫ T

0

∫
Ω

(
ε 〈Vt,x; m̃〉 ∂tϕ(t, x) +

〈
Vt,x;1%̃>0

m̃⊗ m̃

%̃

〉
: ∇xϕ(t, x)

)
dx dt

+

∫ T

0

∫
Ω

〈
Vt,x; p(%̃, S̃)

〉
divxϕ(t, x) dx dt

=

∫ T

0

∫
Ω

1

ε
〈Vt,x; m̃〉 ·ϕ(t, x) dx dt−

∫ T

0

∫
Ω

∇xϕ(t, x) : dR dt

− ε
∫

Ω

m0(x) ·ϕ(0, x) dx; (2.4)

holds for any ϕ ∈ C1
c ([0, T )× Ω;Rd), ϕ · n|∂Ω = 0.
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• Entropy inequality:∫ T

0

∫
Ω

(
ε

〈
Vt,x; %̃χ

(
S̃

%̃

)〉
∂tϕ(t, x) +

〈
Vt,x; %̃χ

(
S̃

%̃

)
m̃

%̃

〉
· ∇xϕ(t, x)

)
dx dt

≤ −ε
∫

Ω

%0(x)χ

(
S0(x)

%0(x)

)
ϕ(0, x) dx (2.5)

for any ϕ ∈ C1
c ([0, T )× Ω), ϕ ≥ 0, and any χ ∈ C(R) concave, χ′ ≥ 0, χ ≤ χ ∈ R.

• Energy inequality: There exists a constant Λ > 0 such that∫
Ω

〈
Vτ,x;E(%̃, S̃, m̃)

〉
dx+ Λ

∫
Ω

d trace[R(τ, ·)] +
1

ε2

∫ τ

0

∫
Ω

〈
Vt,x;

|m̃|2

%̃

〉
dx dt

≤
∫

Ω

E(%0, S0,m0) dx (2.6)

for a.a. τ ∈ (0, T ).

2.2 Solvability of the limit problem

We point out that the hypothesis of thermodynamic stability enforced through strict convexity of
Eint = Eint(%, S) has important consequence on solvability of the system (1.10), (1.11) at least in
the case of constant initial entropy s0 = s. Indeed the entropy balance (1.11) implies s(t, x) = s
for any t, x independently of r. Accordingly, the density profile r can be determined as a solution
of the problem

∂tr − divx

[(
∂%p(r, rs) + s∂Sp(r, rs)

)
∇xr

]
, r(0, ·) = r0, ∇xr · n|∂Ω = 0. (2.7)

It follows form Gibbs’ equation (1.4) that

p(%, S) =
∂(%e(%, S))

∂%
%+

∂(%e(%, S))

∂S
S − %e(%, S).

Consequently,
∂p(%, S)

∂%
=
∂2(%e(%, S))

∂2%
%+

∂2(%e(%, S))

∂%∂S
S,

and, similarly,
∂p(%, S)

∂S
=
∂2(%e(%, S))

∂%∂S
%+

∂2(%e(%, S))

∂2S
S.

Thus we compute

∂%p(r, rs) + s∂Sp(r, rs) = r

(
∂2(re(r, rs))

∂2%
+ 2

∂2(re(r, rs))

∂%∂S
s+

∂2(re(r, rs))

∂2S
|s|2
)
. (2.8)
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Since the internal energy Eint is a strictly convex function of (%, S), we get

∂2(re(r, rs))

∂2%
> 0,

∂2(re(r, rs))

∂2S
> 0,

and
∂2(re(r, rs))

∂2%

∂2(re(r, rs))

∂2S
>

∣∣∣∣∂2(re(r, rs))

∂%∂S

∣∣∣∣2 .
This yields (

∂%p(r, rs) + s∂Sp(r, rs)
)
> 0 whenever r > 0, (2.9)

and, consequently, (2.7) is a non–degenerate parabolic equation as soon as r0 > 0.

2.3 Main result, high friction limit

We are ready to state our main result concerning the high friction limit.

Theorem 2.2. (High friction asymptotic limit)
Let Ω ⊂ Rd be a bounded domain of class C2+ν. In addition to Gibbs’ relation (1.4) and the
hypothesis of thermodynamics stability (2.1), let the thermodynamic functions p, e satisfy

p ≤ p(1 + %e) for some constant p. (2.10)

Finally, suppose that the initial data satisfy

%0,ε > 0, S0,ε ≥ %0,εs for some s ∈ R,∫
Ω

E
(
%0,ε, S0,ε,m0,ε

∣∣∣ r0, r0s0, 0
)

dx→ 0 as ε→ 0, (2.11)

where
r0, s0 ∈ C2(Ω), (r0, r0s0) ∈ int(domEint). (2.12)

Let (Vεt,x)ε>0 be a family of measure–valued solutions of the Euler system with the initial data
(%0,ε, S0,ε,m0,ε)ε>0 in the sense of Definition 2.1. Suppose that the limit system (1.10), (1.11),
(1.12) admits a C2−solution r, s such that

(r, rs) ∈ int(domEint) for any t ∈ [0, T ]. (2.13)

Then

ess sup
τ∈(0,T )

∫
Ω

〈
Vετ,x;E

(
%̃, S̃, m̃

∣∣∣ r(τ, x), rs(τ, x), 0
)〉

dx→ 0 as ε→ 0. (2.14)

The remaining part of the paper is devoted to the proof of Theorem 2.2.
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Remark 2.3. Noticing that the total energy is stricly convex, meaning the relative energy rep-
resents a Bregman distance, we can reformulate the convergence statement (2.14) in terms of
probability theory:

ess sup
τ∈(0,T )

∫
Ω

W1

[
Vετ,x; δ(r(τ,x),rs(τ,x),0)

]
dx→ 0 as ε→ 0,

where W1 denotes the Monge–Kantorowich (Wasserstein – 1) distance between probability mea-
sures, and δX stands for the Dirac mass at X.

Remark 2.4. Solvability of the limit problem (1.10), (1.11), (1.12) has been discussed in Section
2.2 on condition that the initial entropy s0 is constant. Note that in this case (2.13) follows from
(2.12) by the maximum principle. Another, a rather trivial situation when the limit problem is
solvable globally in time, is the choice of the initial data

p(r0, r0s0) = p – a positive constant.

Indeed r = r0, s = s0 then obviously solve the problem. Unlike in Section 2.2, the initial entropy
distribution may effectively depend on x.

Remark 2.5. The proof of Theorem 2.2 presented below will actually yield a more exact rate of
convergence (2.14):

ess sup
τ∈(0,T )

∫
Ω

〈
Vετ,x;E

(
%̃, S̃, m̃

∣∣∣ r(τ, x), rs(τ, x), 0
)〉

dx

≤
∫

Ω

E
(
%0,ε, S0,ε,m0,ε

∣∣∣ r0, r0s0, 0
)

dx+ cε. (2.15)

3 High friction limit, proof of the main result

Similarly to Lattanzio and Tzavaras [12], the proof of Theorem 2.2 leans on stability on the limit
solution expressed by means of the relative energy inequality. The relevant version of the latter
for the complete Euler system was introduced in [3]. The relative energy inequality in the context
of measure-valued solutions for isentropic Euler with friction and also nonlocal terms was studied
in [4]. Note that the current studies on complete Euler system do not fall into the general framework
of hyperbolic systems studied in [8].

3.1 Entropy minimum principle

We start by exploiting boundedness of the initial entropy, namely

S0,ε ≥ %0,εs,
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yielding the entropy minimum principle in the form

Vεt,x
{
S̃ ≥ %̃s

∣∣∣ %̃ > 0
}

= 1. (3.1)

Indeed we may choose χ in the renormalized entropy inequality (2.5) as

χ(Z) < 0 for Z ≤ s, χ(Z) = 0 for Z ≥ s.

Considering spatially homogeneous test function ϕ in (2.5) we deduce∫
Ω

〈
Vετ,x; %̃χ

(
S̃

%̃

)〉
dx ≥ 0 for a.a. τ ≥ 0,

which yields the desired conclusion.
Finally, relation (3.1) together with the compatibility condition (2.2) converts (3.1) to an

unconditional results
Vεt,x

{
S̃ ≥ %̃s

}
= 1. (3.2)

3.2 Relative energy inequality

To begin, we introduce the relative energy expressed in the variables (%, S,m),

E
(
%, S,m

∣∣∣r, Ŝ, rU)
= %

∣∣∣∣m% −U

∣∣∣∣2 + %e(%, S)− ∂(%e(%, S))

∂%
(r, Ŝ)(%− r)− ∂(%e(%, S))

∂S
(r, Ŝ)(S − Ŝ)− re(r, Ŝ).

(3.3)

More precisely, the relative energy for fixed values of the parameters (r, Ŝ,U) is a convex l.s.c.
function of (%, S,m) defined as

E
(
%, S,m

∣∣∣r, Ŝ, rU) = E(%, S,m)− ∂%,S,mE(r, Ŝ, rU) · (%− r, S − Ŝ,m− rU)− E(r, Ŝ, rU).

In particular, if (r, S̃, rU) ∈ int(dom(E)), then

E
(
%, S,m

∣∣∣r, Ŝ, rU) = 0 ⇔ % = r, S = Ŝ, m = rU,

see [10, Chapter 4, Section 4.1.6] for details.

Now, let us introduce the temperature Θ evaluated by means of the variables r and Ŝ through
the implicit relation

Ŝ = rs(r,Θ). (3.4)
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Under the condition (3.2), the relative energy inequality associated to the Euler system reads, see
[3] or [10, Chapter 4, Section 4.1.7, Chapter 6, Section 6.2]:

∫
Ω

〈
Vτ,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rU) (τ, x)
〉

dx+ Λ

∫
Ω

d trace[R](τ, ·)

+
1

ε2

∫ τ

0

∫
Ω

〈
Vt,x; %̃

∣∣∣∣m̃%̃ −U(t, x)

∣∣∣∣2
〉

dx dt

≤
∫

Ω

E
(
%0, S0,m0

∣∣∣ r, Ŝ, rU) (0, x) dx

− 1

ε

∫ τ

0

∫
Ω

〈
Vt,x;1%̃>0

(%̃U(t, x)− m̃)⊗ (%̃U(t, x)− m̃)

%̃
: ∇xU(t, x)

〉
dx dt

− 1

ε

∫ τ

0

∫
Ω

〈
Vt,x;

(
p(%̃, S̃)− (%̃− r)∂%p(r, Ŝ)− (S̃ − Ŝ)∂Sp(r, Ŝ)− p(r, Ŝ)

)
(t, x)

〉
divxU(t, x) dx dt

+

∫ τ

0

∫
Td

〈Vt,x; %̃U(t, x)− m̃〉
(
∂tU +

1

ε
U · ∇xU +

1

εr
∇xp(r, Ŝ)

)
(t, x) dx dt

+

∫ τ

0

∫
Ω

〈Vt,x; r(t, x)− %̃〉 1

r
∂%p(r, Ŝ)

(
∂tr +

1

ε
divx(rU)

)
(t, x) dx dt

+

∫ τ

0

∫
Ω

〈Vt,x; r(t, x)− %̃〉 1

r
∂Sp(r, Ŝ)

(
∂tŜ +

1

ε
divx(ŜU)

)
(t, x) dx dt

+

∫ τ

0

∫
Ω

〈
Vt,x;

%̃

r
Ŝ(t, x)− %̃χ

(
S̃

%̃

)〉(
∂tΘ +

1

ε
U · ∇xΘ +

1

ε
∂Sp(r, Ŝ)divxU

)
(t, x) dx dt

+
1

ε

∫ τ

0

∫
Ω

〈
Vt,x;

(
%̃
Ŝ

r
(t, x)− %̃χ

(
S̃

%̃

))(
m̃

%̃
−U(t, x)

)〉
· ∇xΘ(t, x) dx dt,

− 1

ε

∫ τ

0

∫
Ω

∇xU(t, x) : dR(t, ·) dt− 1

ε2

∫ τ

0

∫
Ω

U(t, x) · 〈Vt,x; m̃− %̃U(t, x)〉 dx dt

+
1

ε

∫ τ

0

∫
Ω

〈
Vt,x; %̃χ

(
S̃

%̃

)
− S̃

〉
∂Sp(r, Ŝ)divxU(t, x) dx dt (3.5)

for a.a. τ ∈ (0, T ) and any trio of “test functions”

r ∈ C1([0, T ]×Ω), r > 0, Ŝ ∈ C1([0, T ]×Ω), Ŝ = rs(r,Θ), U ∈ C1([0, T ]×Ω;Rd), U ·n|∂Ω = 0.
(3.6)
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4 Convergence, proof of Theorem 2.2

In view of hypothesis (2.11), we consider the following ansatz:

Ŝ = rs, Uε = −ε1

r
∇xp(r, rs), ∂tr +

1

ε
divx(rU

ε) = 0, ∂ts−
1

ε
Uε · ∇xs = 0. (4.1)

As a consequence of (3.4), we get

∂tŜ +
1

ε
divx(ŜUε) = 0,

∂tΘ +
1

ε
Uε · ∇xΘ +

1

ε
∂Sp(r, Ŝ)divxU

ε = 0,

and 〈
Vεt,x; %̃Uε(t, x)− m̃

〉 1

εr
∇xp(r, Ŝ)− 1

ε2
Uε(t, x) ·

〈
Vεt,x; m̃− %̃Uε(t, x)

〉
= 0.

Accordingly, the relative entropy inequality (3.5) simplifies considerably yielding∫
Ω

〈
Vετ,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)

(τ, x)
〉

dx+ Λ

∫
Ω

d trace[Rε](τ, ·)

+
1

ε2

∫ τ

0

∫
Ω

〈
Vεt,x; %̃

∣∣∣∣m̃%̃ −Uε(t, x)

∣∣∣∣2
〉

dx dt

≤
∫

Ω

E
(
%0,ε, S0,ε,m0,ε

∣∣∣ r0, r0s0, r0U
ε(0, x)

)
dx

− 1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;1%̃>0

(%̃Uε(t, x)− m̃)⊗ (%̃Uε(t, x)− m̃)

%̃
: ∇xU

ε(t, x)

〉
dx dt

− 1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;

(
p(%̃, S̃)− (%̃− r)∂%p(r, Ŝ)− (S̃ − Ŝ)∂Sp(r, Ŝ)− p(r, Ŝ)

)
(t, x)

〉
divxU

ε(t, x) dx dt

+

∫ τ

0

∫
Ω

〈
Vεt,x; %̃Uε(t, x)− m̃

〉 (
∂tU

ε +
1

ε
Uε · ∇xU

ε
)

(t, x) dx dt

+
1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;

(
%̃
Ŝ

r
(t, x)− %̃χ

(
S̃

%̃

))(
m̃

%̃
−Uε(t, x)

)〉
· ∇xΘ(t, x) dx dt,

− 1

ε

∫ τ

0

∫
Ω

∇xU
ε(t, x) : dRε(t, ·) dt

+
1

ε

∫ τ

0

∫
Ω

〈
Vεt,x; %̃χ

(
S̃

%̃

)
− S̃

〉
∂Sp(r, Ŝ)divxU

ε(t, x) dx dt. (4.2)

Next, using the ansatz for Uε from (4.1), we have

−1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;1%̃>0

(%̃Uε(t, x)− m̃)⊗ (%̃Uε(t, x)− m̃)

%̃
: ∇xU

ε(t, x)

〉
dx dt

11



− 1

ε

∫
Ω

∫ τ

0

∇xU
ε(t, x) : dRε(t, ·) dt

<∼
∫ τ

0

(∫
Ω

〈
Vεt,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)

(τ, x)
〉

dx+ Λ

∫
Ω

d trace[Rε](t, ·)
)

dt. (4.3)

Similarly, by virtue of hypothesis (2.10),

−1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;

(
p(%̃, S̃)− (%̃− r)∂%p(r, Ŝ)− (S̃ − Ŝ)∂Sp(r, Ŝ)− p(r, Ŝ)

)
(t, x)

〉
divxU

ε(t, x) dx dt

<∼
∫ τ

0

∫
Ω

〈
Vεt,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)

(τ, x)
〉

dx dt. (4.4)

The details of the above estimates follow the same lines as e.g. [10, Section 5.4]. Consequently,
inequality (4.2) reduces to∫

Ω

〈
Vετ,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)

(τ, x)
〉

dx+ Λ

∫
Ω

d trace[Rε](τ, ·)

+
1

ε2

∫ τ

0

∫
Ω

〈
Vεt,x; %̃

∣∣∣∣m̃%̃ −Uε(t, x)

∣∣∣∣2
〉

dx dt

≤
∫

Ω

E
(
%0,ε, S0,ε,m0,ε

∣∣∣ r0, r0s0, r0U
ε(0, x)

)
dx

+

∫ τ

0

(∫
Ω

〈
Vεt,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)

(τ, x)
〉

dx+ Λ

∫
Ω

d trace[Rε](t, ·)
)

dt

+

∫ τ

0

∫
Ω

〈
Vεt,x; %̃Uε(t, x)− m̃

〉 (
∂tU

ε +
1

ε
Uε · ∇xU

ε
)

(t, x) dx dt

+
1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;

(
%̃
Ŝ

r
(t, x)− %̃χ

(
S̃

%̃

))(
m̃

%̃
−Uε(t, x)

)〉
· ∇xΘ(t, x) dx dt,

+
1

ε

∫ τ

0

∫
Ω

〈
Vεt,x; %̃χ

(
S̃

%̃

)
− S̃

〉
∂Sp(r, Ŝ)divxU

ε(t, x). dx dt (4.5)

By virtue of our choice of the initial data (2.11),∫
Ω

E
(
%0,ε, S0,ε,m0,ε

∣∣∣ r0, r0s0, r0U
ε(0, x)

)
dx→ 0 as ε→ 0.

Moreover, as E is strictly convex, the energy inequality (2.6) implies boundedness of the first
moments

〈Vε; %̃〉 , 〈Vε; |m̃|〉 in L∞(0, T ;L1(Ω)). (4.6)

Consequently, we deduce from (4.5)∫
Ω

〈
Vετ,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)

(τ, x)
〉

dx+ Λ

∫
Ω

d trace[Rε](τ, ·)

12



+
1

ε2

∫ τ

0

∫
Ω

〈
Vεt,x; %̃

∣∣∣∣m̃%̃ −Uε(t, x)

∣∣∣∣2
〉

dx dt

≤
∫ τ

0

(∫
Ω

〈
Vεt,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)〉

dx+ Λ

∫
Ω

d trace[Rε](t, ·)
)

dt

+
1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;

(
%̃
Ŝ

r
(t, x)− %̃χ

(
S̃

%̃

))(
m̃

%̃
−Uε(t, x)

)〉
· ∇xΘ(t, x) dx dt,

+
1

ε

∫ τ

0

∫
Ω

〈
Vεt,x; %̃χ

(
S̃

%̃

)
− S̃

〉
∂Sp(r, Ŝ)divxU

ε(t, x) dx dt+ h(ε), (4.7)

where h(ε)→ 0 as ε→ 0. Choosing

χ(Z) = Z for Z ≤M, where M is large enough,

we get

1

ε

∫ τ

0

∫
Ω

〈
Vεt,x;

(
%̃
Ŝ

r
(t, x)− %̃χ

(
S̃

%̃

))(
m̃

%̃
−Uε(t, x)

)〉
· ∇xΘ(t, x) dx dt

≤ 1

2ε2

∫ τ

0

∫
Ω

〈
Vεt,x; %̃

∣∣∣∣m̃%̃ −Uε(t, x)

∣∣∣∣2
〉

dx dt+ c

∫ τ

0

∫
Ω

〈
Vεt,x; %̃

∣∣∣∣∣χ
(
Ŝ

r

)
(t, x)− χ

(
S̃

%̃

)∣∣∣∣∣
2〉

dx dt,

where∫ τ

0

∫
Ω

〈
Vεt,x; %̃

∣∣∣∣∣χ
(
Ŝ

r

)
(t, x)− χ

(
S̃

%̃

)∣∣∣∣∣
2〉

dx dt
<∼
∫ τ

0

∫
Ω

〈
Vεt,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)〉

dx dt.

(4.8)
Similarly

1

ε

∫ τ

0

∫
Ω

〈
Vεt,x; %̃χ

(
S̃

%̃

)
− S̃

〉
∂Sp(r, Ŝ)divxU

ε(t, x) dx dt

<∼
∫ τ

0

∫
Ω

〈
Vεt,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)〉

dx dt.

Thus (4.7) reduces to∫
Ω

〈
Vετ,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)

(τ, x)
〉

dx+ Λ

∫
Ω

d trace[Rε](τ, ·)

+
1

2ε2

∫ τ

0

∫
Ω

〈
Vεt,x; %̃

∣∣∣∣m̃%̃ −Uε(t, x)

∣∣∣∣2
〉

dx dt

13



≤
∫ τ

0

(∫
Ω

〈
Vεt,x;E

(
%̃, S̃, m̃

∣∣∣ r, Ŝ, rUε
)〉

dx+ Λ

∫
Ω

d trace[Rε](t, ·)
)

dt+ h(ε).

Consequently, the conclusion of Theorem 2.2 follows by a direct application of Gronwall’s lemma
and the bounds (4.6).
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[7] E. Feireisl and M. Hofmanová. Randomness in compressible fluid flows past an obstacle.
Journal of Statistical Physics, 186:32–, 2022.
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