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Abstract

We review several recent results concerning the properties of a barotropic Euler system.
In particular, the following topics will be addressed:

• Density of the so called “wild data” in the Lebesgue topology.

• Strong continuity in time of weak solutions.

• Measurable semigroup selection.

• Euler system and its relevance to turbulence.

• Numerical solutions of barotropic Euler system and visualisation of oscillatory approx-
imations.

Key words: Barotropic Euler system, weak solution, convex integration, semigroup selection,
turbulence, finite volume approximation

1 Introduction

This is a survey of some recent results on qualitative properties of solutions of the Euler system of
equations describing the motion of a barotropic compressible perfect fluid:

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0, (1.1)

where % = %(t, x) is the mass density, u = u(t, x) the velocity, and p the pressure related to the
density by an equation of state p = p(%).

The following properties of the Euler system are well known, see e.g. Benzoni-Gavage and Serre
[3], Dafermos [11] , Smoller [25]:

∗The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement
21–02411S. The Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by
RVO:67985840.
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• Local existence.

The problem admits a classical solution for smooth initial data defined on a short time
interval.

• Finite time blow–up.

The classical solutions develop a singularity (shock wave) in a finite time for a fairly general
class of smooth initial data.

• Ill posedness in the class of weak solutions.

The problem is ill posed in the class of weak solutions unless some extra admissibility con-
ditions are prescribed.

The expected remedy for ill posedness in the class of weak solutions is imposing some admis-
sibility conditions to be satisfied by the weak solutions. Formally, the Euler systems conserves
energy, specifically

∂tE(%,u) + divx [(E(%,u) + p(%))u] = 0, E(%,u) =
1

2
%|u|2 + P (%), P ′(%)%− P (%) = 0. (1.2)

We say that a weak solution of the Euler system is admissible if the energy inequality

∂tE(%,u) + divx [(E(%,u) + p(%))u] ≤ 0 (1.3)

holds in the sense of distributions. If the problems is considered in a (bounded) domain Ω ⊂ Rd

with impermeable boundary, the system of equations is accompanied by the no-flux boundary
condition

~u · ~n|∂Ω = 0. (1.4)

In this case, the energy inequality (1.3) may be replaced by its weaker form

d

dt

∫
Ω

E(%,u) dx ≤ 0. (1.5)

We call any weak solution satisfying (1.5) weakly admissible.

2 Wild data

There is a number of negative results concerning the well posedness of the Euler system in the
class of weak solutions. Most of them are based on the recent development of the method of convex
integration in the framework of fluid mechanics due to the series of works of Chiodaroli et al. [7],
[8], De Lellis and Székelihydi [12], [13] among many others.

First, consider weak solutions of the Euler system emanating from the initial data

%(0, ·) = %0, (%~u)(0, ·) = %0~u0. (2.1)
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We say that the initial data %0, ~u0 are wild if there exists a positive time Tw > 0 such that the Euler
system admits infinitely many admissible (weak) solutions (%, ~u) on any interval [0, T ], 0 < T < Tw

belonging to the class

% ∈ L∞((0, T )× Ω), % > 0, ~u ∈ L∞((0, T )× Ω;Rd).

The following results was proved in [9, Theorem 1.3]

Theorem 2.1 (Density of wild data). Let d = 2, 3. Suppose p ∈ C∞(a, b), p′ > 0 in (a, b), for
some 0 ≤ a < b ≤ ∞.

Then for any

%0 ∈ W k,2(Ω), a < inf
Ω
%0 ≤ sup

Ω
%0 < b, ~u0 ∈ W k,2(Ω;Rd), k >

d

2
+ 1,

~u0 satisfying ~u0 · ~n|∂Ω = 0 and the relevant higher order compatibility conditions, any ε > 0, and
any 1 ≤ p <∞, there exist wild data %0,ε, ~u0,ε such that

‖%0,ε − %0‖Lp(Ω) < ε, ‖~u0,ε − ~u0‖Lp(Ω;Rd) < ε.

In other words, the set of wild data is dense in the Lp topology. Chen, Vasseur and You [6]
established density of wild data for the isentropic Euler system (p = a%γ) in the class of weak
solutions satisfying the total energy inequality∫

Td

[
1

2
%|~u|2 + P (%)

]
(τ, ·) dx ≤

∫
Td

[
1

2
%0|~u0|2 + P (%0)

]
dx for any τ > 0.

These solutions are global in time, however, the associated total energy profile∫
Ω

[
1

2
%|~u|2 + P (%)

]
(τ, ·) dx

may not be non–increasing in time.

3 Continuity in time of weak solutions

Next, let us focus on the continuity in time of the weak solutions necessary for a meaningful
definition of the initial data. For definiteness, we may consider the space periodic boundary
conditions,

x ∈ Ω = Td, d = 2, 3,

or the physically more realistic impermeability condition

~u · ~n|∂Ω = 0,
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where Ω ⊂ Rd is the physical domain occupied by the fluid.
It follows directly from the weak formulation that integrable weak solutions of the Euler system

belong automatically to the class

[%, (%~u)] ∈ Cweak([0, T ];Lγ(Ω))× L
2γ
γ+1 (Ω;Rd)).

We show this result is sharp in the class of weak solutions, meaning for any initial data

%(0, ·) = %0 Riemann integrable in Ω,

%~u(0, ·) = %0, ~u0, div(%0~u0) Riemann integrable in Ω, ~u0 · ~n|∂Ω = 0,

and any countable set of times {τi}∞i=1 ⊂ (0, T ), the Euler system admits infinitely many weak
solutions that are not strongly continuous at any τi. In addition, these solutions satisfy the weaker
for of the energy inequality,

d

dt

∫
Ω

[
1

2
%|~u|2 + P (%)

]
dx ≤ 0, P (%) =

a

γ − 1
%γ.

For a compact set Q ⊂ RM , consider the class of Riemann integrable functions, specifically set

R(Q) ≡
{
v : Q→ R

∣∣∣ meas
{
y ∈ Q

∣∣∣ v is not continuous at y
}

= 0
}

where the symbol “meas” stands for the Lebesgue measure.
The following result was proved in [1, Theorem 2.1].

Theorem 3.1. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with C2 boundary. Let the initial data
%0, ~u0 be given,

0 < % ≤ %0(x) ≤ % for all x ∈ Ω, %0 ∈ R(Ω),

~u0 ∈ R(Ω;Rd), divx(%0~u0) ∈ R(Ω), %0~u0 · n|∂Ω = 0.

Let E(t) be an arbitrary function satisfying

0 ≤ E(t) ≤ E for all t ∈ [0, T ], E ∈ R[0, T ].

Then there exists E0 ≥ 0 such that the Euler system admits infinitely many solutions [%,u] in
(0, T )× Ω satisfying

1

2
% ≤ %(t, x) ≤ 2% for all (t, x) ∈ (0, T )× Ω, ~u ∈ L∞(0, T )× Ω;Rd),∫

Ω

[
1

2
%|~u|2 + P (%)

]
(τ, ·) dx = E0 + E(τ) for a.a. τ ∈ (0, T ).

In particular, we may choose the function E to be non–increasing and discontinuous at a given
countable set of time (τi)i∈T ⊂ (0, T ) to deduce the following corollary, cf. [1, Theorem 2.3].
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Corollary 3.2. Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with C2 boundary. Let the initial data
%0, ~u0 be given,

0 < % ≤ %0(x) ≤ % for all x ∈ Ω, %0 ∈ R(Ω),

~u0 ∈ R(Ω;Rd), divx(%0,u0) ∈ R(Ω), %0~u0 · n|∂Ω = 0.

Let S = {τn}∞n=1 ⊂ (0, T ) be an arbitrary (countable) set of times.
Then the Euler system admits infinitely many weakly admissible (weak) solutions that are not

strongly continuous at any τn, n = 1, 2, . . .

Recall that weakly admissible means the total energy is equal to a non–increasing function for
a.a. time as specified in (1.5). In particular, the solutions need not be strongly continuous at
t = 0.

The proof of the above results is based on a generalized version of the “oscillatory lemma” of
De Lellis and Székelyhidi [12, Proposition 3] extended to Riemann integrable parameters, see [1,
Lemma 3.3].

Lemma 3.3 (Oscillatory Lemma – Riemann version). Let

Q = (t1, t2)× Πd
i=1(ai, bi), t1 < t2, ai < bi, i = 1, . . . , d,

be a block. Suppose that

~v ∈ R(Q;Rd), U ∈ R(Q;Rd×d
0,sym), e ∈ R(Q), r ∈ R(Q)

be given such that
0 < r ≤ r(t, x) ≤ r, e(t, x) ≤ e for all (t, x) ∈ Q,

d

2
sup
Q

λmax

[
~v ⊗ ~v
r
− U

]
< inf

Q
e.

Then there is a constant c = c(d, e) and sequences of vector functions (~wn)∞n=1, (Vn)∞n=1,

~wn ∈ C∞c (Q;Rd), Vn ∈ C∞c (Q;Rd×d
0,sym)

satisfying
∂t ~wn + divxVn = 0, divx ~wn = 0 in Q,

d

2
sup
Q

λmax

[
(~v + ~wn)⊗ (~v + ~wn)

r
− (U + Vn)

]
< inf

Q
e for all n = 1, 2, . . . ,

~wn → 0 in Cweak([t1, t2];L2(Πd
i=1(ai, bi);Rd)) as n→∞,

lim inf
n→∞

∫
Q

|~wn|2

r
dx dt ≥ c(d, e)

∫
Q

(
e− 1

2

|~v|2

r

)2

dx dt.

Here, the symbol λmax[A] denotes the maximal eigenvalue of a symmetric matrix A. As demon-
strated in [14], Lemma 3.3 can be applied to other problems involving the compressible Euler
system.
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3.1 Measurable semigroup selection

Despite the number of ill–posedness results – the “bad news” – reported above, there is a semigroup
selection of suitable generalized solutions to the Euler system. The semigroup mapping is Borel
measurable but not continuous in general.

We start by introducing the dissipative solutions to the compressible Euler system satisfying
the following system of equations in the sense of distributions:

∂t%+ div(~m) = 0,

∂t ~m+ div

(
~m⊗ ~m

%

)
+∇p(%) = −div R,

together with the energy inequality∫
Ω

[
1

2

|~m|2

%
+ P (%)

]
(τ, ·)dx+ E(τ, ·) ≤

∫
Ω

[
1

2

|~m|2

%
+ P (%)

]
(0, ·)dx,

where R ∈ L∞(0, T ;M+
sym(Ω;Rd×d)), and R ≥ 0,∫

Ω

trace[R] dx
<∼ E, (3.1)

see [4]. In this context, it more convenient to consider the conservative variables (%, ~m = %~u). The
symbolsM+

sym denotes the space of non–negative tensor valued measures on Ω. Roughly speaking,
dissipative solutions satisfy the Euler system modulo the tensor R termed Reynolds stress. The
crucial property of dissipative solutions is the compatibility relation (3.1) between the trace of the
Reynolds stress and the total energy defect. Unlike the conventional weak solutions, the dissipative
solutions are identified with the triple (%, ~m,E), where E denotes the “augmented” energy

E(τ) =

∫
Ω

[
1

2

|~m|2

%
+ P (%)

]
(τ, ·)dx+ E(τ, ·).

As shown in [4], the Euler system admits a measurable semiflow selection in the class of dissi-
pative solutions. Specifically, we consider three state variables (%, ~m) together with the augmented
energy

E =

∫
Ω

[
1

2

|~m|2

%
+ P (%)

]
dx+ E

as functions of the time t ∈ [0,∞). Then there is a Borel measurable mapping

S : t ≥ 0, (%0, ~m0, E0) 7→ (%(t, ·), ~m(t, ·), E(t))(%0, ~m0, E0),

such that

S[0; %0, ~m0, E0] = (%0, ~m0, E0), S[t+ s; %0, ~m0, E0] = S
[
s;S[t; %0, ~m0, E0]

]
, s ≥ 0.

Specifically, the selection enjoys the following properties, see [4]:
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• Compatibility. The mapping

t ∈ [0,∞) 7→ S[t, %0, ~m0, E0]

is a dissipative solution of the Euler system emanating form the initial data (%0, ~m0, E0).

• Stability of strong solutions. Let the Euler system admit a strong C1 solution %̂, m̂, with
the associated energy

E0 =

∫
Ω

[
|~m0|2

%0

+
a

γ − 1
%γ0

]
dx,

defined on a maximal time interval [0, Tmax).

Then we have
S[t, %0, ~m0, E0] = (%̂, m̂, E0)(t) for all t ∈ [0, Tmax).

This reflects the fact that dissipative solutions satisfy the weak–strong uniqueness principle.

• Maximal dissipation. Let the Euler system admit a dissipative solution %̂, m̂, with the
associated energy Ê such that

Ê(t) ≤ E(t) for all t ≥ 0,

where E is the energy of the solution semiflow S[t, %0,m0, E0].

Then we have
E(t) = Ê(t) for all t ≥ 0.

The dissipative solutions respects the maximal dissipation criterion proposed by Dafermos
[10] for general systems of hyperbolic conservation laws.

• Stability of stationary states. Let % > 0, ~m ≡ 0 be a stationary solution of the Euler
system. Suppose that

%(T, ·) = %, ~m(T, ·) = 0 for some T ≥ 0,

where %, ~m are the density and the momentum components of a solution semiflow S[t, %0, ~m0, E0].

Then we have
%(t, ·) = %, ~m(t, ·) = 0 for all t ≥ T.

If the system reaches a stationary state where the density is constant and the momentum
vanishes, it remains in this state for all future times.

The semiflow selection is based on the general method proposed by Krylov [24] and its adap-
tation by Cardona and Kapitanski [5]. The fact that the selection complies with the maximal
dissipation principle has an interesting consequence (see [20]), namely:
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E(τ)−
∫

Ω

[
1

2

|~m|2

%
+ P (%)

]
(τ, ·) dx→ 0 as τ →∞.

for any dissipative solution maximizing the energy dissipation. In particular the Reynolds stress
R vanishes in the asymptotic limit for large times. This fact may be seen as another piece of
evidence supporting the physical relevance of dissipative solutions.

3.2 Euler system as vanishing viscosity limit, relevance to models of
turbulence

A largely used approach in the mathematical studies of hydrodynamic turbulence is to add certain
stochastic perturbation to the model. For instance, Yakhot and Orszak [26] suggested that a
stochastically perturbed Navier–Stokes system shall possess the same statistical properties as the
deterministic Navier–Stokes system with general inhomogeneous boundary conditions. Another
approach how to observe turbulent behaviour is increasing the Reynolds number, meaning following
the so-called vanishing viscosity regime.

Consider the Euler system

d%+ div(%~u)dt = 0,

d(%~u) + div(%~u⊗ ~u)dt+∇p(%)dt = ~F (%, %~u)dW, (3.2)

driven by a stochastic forcing represented by a multiplicative cylindrical white noise W . We address
the question, to which extent solutions of the Euler system can be “statistically equivalent” to the
inviscid limit of the Navier–Stokes system

∂t%+ div(%~u) = 0,

∂t(%~u) + div(%~u⊗ ~u) +∇p(%) = µ∆~u+ λ∇div~u, µ, λ↘ 0 (3.3)

past a convex obstacle in R3.
Following [17], we consider a domain

Ω = Rd \K, d = 2, 3

exterior to compact convex obstacle K. Let (%n, ~un)∞n=1 be a sequence of (weak) solutions of the
Navier–Stokes system (3.3) in (0, T )× Ω satisfying the boundary conditions

~un|∂K = 0, ~un → ~u∞, %n → %∞ as |x| → ∞

for constant field ~u∞, %∞ ≥ 0, and vanishing viscosity coefficients

µn ↘ 0, λn ↘ 0.
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In addition, consider the sequence of probability measures – empirical means –

VN =
1

N

∞∑
n=1

δ(%n,%nun),

where δ is the Dirac distribution “sitting” on a suitable (infinite dimensional) trajectory space T ,
see [17] for details.

The arguments presented below are explained in detail in [17]. Using stochastic compactness
method, we can show that the sequence (VN)∞N=1 is tight and converges to a limit

VN → VNS narrowly in P[T ].

Next, let us introduce the concept of statistical equivalence:

Let Pi, i = 1, 2, be Borel probability measures on T . We say that the two measures are
statistically equivalent if the following holds:

• Equality of expectations of density and momentum.

EP1

[∫ T

0

∫
Ω

rϕ dx dt

]
= EP2

[∫ T

0

∫
Ω

rϕ dx dt

]
,

EP1

[∫ T

0

∫
Ω

~w ·ϕ dx dt

]
= EP2

[∫ T

0

∫
Ω

~w ·ϕ dx dt

]
,

for any ϕ ∈ C∞c ((0, T )× Ω), ϕ ∈ C∞c ((0, T )× Ω;Rd).

• Equality of expectations of kinetic, internal and angular energy.

EP1

[∫ T

0

∫
Ω

1r>0
|~w|2

r
ϕ dx dt

]
= EP2

[∫ T

0

∫
Ω

1r>0
|~w|2

r
ϕ dx dt

]
,

EP1

[∫ T

0

∫
Ω

P (r)ϕ dx dt

]
= EP2

[∫ T

0

∫
Td
P (r)ϕ dx dt

]
,

EP1

[∫ T

0

∫
Ω

1r>0
1

r
(Jx0 · ~w) · ~w ϕ dx dt

]
= EP2

[∫ T

0

∫
Ω

1r>0
1

r
(Jx0 · ~w) · ~w ϕ dx dt

]
,

(3.4)

for any x0 ∈ Rd, and any ϕ ∈ C∞c ((0, T )× Ω), where

Jx0(x) = |x− x0|2I− (x− x0)⊗ (x− x0).

Finally, we anticipate the hypothesis that the stochastically driven Euler system (3.2) generat-
ing a solution VE is statistically equivalent to the vanishing viscosity limit VNS. Then necessarily:

• VNS is a weak statistical solution of the deterministic Euler system. In particular, the
genuinely stochastic model becomes irrelevant.
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• If, in addition, the barycenter

(%,m) =

∫
T

(r, ~w)dVNS ∈ T

is a weak solution to the Euler system, then the low viscosity limit is deterministic

VNS = δ(%,m),

and the sequence (%n, ~mn) statistically converges to (%,m), specifically,

1

N
#

{
n ≤ N

∣∣∣‖%n − %‖Lγ(M) + ‖~mn −m‖
L

2γ
γ+1 (M ;Rd)

> ε

}
→ 0 as N →∞ (3.5)

for any ε > 0, and any compact M ⊂ [0, T ]× Ω.

As a corollary, we recover the dichotomy proved [16]: If

%n → % weakly-(*) in L∞(0, T ;Lγloc(Ω)), mn →m weakly-(*) in L∞(0, T ;L
2γ
γ+1

loc (Ω)),

then either

%n → % in Lγloc([0, T ]× Ω), mn →m in L
2γ
γ+1

loc ([0, T ]× Ω;Rd),

or (%,m) is not a solution of the (deterministic) Euler system. Note in passing that the arguments
used in [17] rely essentially on the fact that the stochastic integral in the Euler system is understood
in Itô’s sense, in particular it is a martingale.

4 Computing oscillatory solutions to the Euler system – a

short excursion in numerical analysis

In accordance with the theoretical results mentioned above and in the line with the research of the
group Fjordholm, Käppeli, Mishra, and Tadmor [21], [22], the “oscillatory solutions” of the Euler
system described in terms of parametrized measures (Young measures) are objects of practical
interest worth of visualising by means of numerical methods.

It turns out that the “standard” approach to Young measures via computing the limits of non–
linear superpositions b(%n, ~mn) of a sequence of consistent numerical approximations is not suitable
as the convergence is necessarily weak. Instead we propose an alternative approach inspired by
Komlós theorem later adapted by Balder [2]. The celebrated Komlós theorem (see [23]) can be
viewed as a generalization of the Banach–Saks theorem:

{Un}∞n=1 bounded in L1(Q)

⇒
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1

N

N∑
k=1

Unk → U a.a. in Q as N →∞.

This motivated the introduction of the concept of (S)–convergence in [15] and elaborated in the
monograph [18]. We say that a sequence of approximate solutions (S)–converges to a parametrized
measure (Vt,x)t∈(0,T ),x∈Ω

(%n, ~mn)
(S)→ V

if
1

N

N∑
n=1

b(%n, ~mn)(t, x)→
∫
Rd+1

b(%̃, m̃) dVt,x for any b ∈ BC(Rd+1) and a.a. (t, x).

Note that V may exist even if the sequence does not generate a Young measure and it coincides
with the Young measure as soon as the latter exists. Moreover, by virtue of Komlós theorem, the
measure V always exists for a suitable subsequence.

We say that a sequence (%n, ~mn)∞n=1 is a consistent approximation of the Euler system if the
following holds:

• Approximate equation of continuity.∫ T

0

∫
Ω

[%n∂tϕ+ ~mn · ∇xϕ] dx dt = −
∫

Ω

%0ϕ dx+ e1,n[ϕ]

for any ϕ ∈ C∞c [0, T )× Ω).

• Approximate momentum equation∫ T

0

∫
Ω

[
~mn · ∂tϕ +

~mn ⊗ ~mn

%n
: ∇xϕ+ p(%n)divxϕ

]
dx dt

= −
∫

Ω

%0u0 ·ϕ dx+ e2,n[ϕ]

for any ϕ ∈ C∞c ([0, T )× Ω;Rd).

• Stability - approximate energy inequality.∫
Ω

[
1

2

|~mn|2

%n
+ P (%n)

]
(τ, ·) dx ≤

∫
Ω

[
1

2

|~m0|2

%0

+ P (%0)

]
dx+ e3,n

for aa.a. 0 < τ < T .

• Consistency. The error terms vanish in the asymptotic limit:

e1,n[ϕ]→ 0, e2,n[ϕ]→ 0, e3,n → 0 as n→∞
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An unconditionally consistent finite volume approximation of the Euler system was proposed
in [18, Chapter 9]. Thus introducing a sequence of approximate empiric probability measures

νnt,x = δ(%n, ~mn)(t,x)

we conclude, up to a suitable subsequence,∥∥∥∥∥distM

[
1

N

M∑
k=1

νnkt,x;Vt,x

]∥∥∥∥∥
Lq((0,T )×Ω)

→ 0

for some q > 1, where distM denotes the Monge–Kantorowich distance. Similarly, we obtain
convergence of the first variation,

1

N

N∑
k=1

〈
νnkt,x;

∣∣∣∣∣Ũ− 1

N

N∑
k=1

Un

∣∣∣∣∣
〉
→
〈
νt,x;

∣∣∣Ũ−U
∣∣∣〉

in L1(Q), where Ũ denotes the “dummy variables” for (%, ~m), see [19].
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