
INSTITUTE OF MATHEMATICS
TH

E
CZ
EC
H
AC

AD
EM

Y
O
F
SC
IE
NC

ES LowMach number limit on perforated
domains for the evolutionary
Navier-Stokes-Fourier system

Danica Basarić

Nilasis Chaudhuri

Preprint No. 14-2023

PRAHA 2023





LOW MACH NUMBER LIMIT ON PERFORATED DOMAINS

FOR THE EVOLUTIONARY NAVIER–STOKES–FOURIER SYSTEM

DANICA BASARIĆ ∗ AND NILASIS CHAUDHURI †

Abstract. We consider the Navier–Stokes–Fourier system describing the motion of a compressible, viscous

and heat-conducting fluid on a domain perforated by tiny holes. First, we identify a class of dissipative
solutions to the Oberbeck-Boussinesq approximation as a low Mach number limit of the primitive system.

Secondly, by proving the weak–strong uniqueness principle, we obtain strong convergence to the target

system on the lifespan of the strong solution.

1. Introduction

The aim of this work is to study the asymptotic analysis of the scaled Navier–Stokes–Fourier system
in a domain perforated with tiny holes. More precisely, we consider the physical situation corresponding
to the low stratification of a fluid, i.e. the equations describing the motion of a compressible viscous fluid
are scaled by a small Mach number Ma = εm and Froude number Fr = εm/2 for a fixed integer m; in
addition, we suppose that the fluid is confined to a bounded spatial domain perforated by balls of radius εα

and having mutual distance εβ for some positive α and β such that α > β. We keep other characteristic
numbers Strouhal number, Reynolds number and Péclet number as unity. Our goal consists in analyzing
what happens when we let ε go to zero.

In the absence of holes, the problem reduces to a classical asymptotic analysis problem in a fixed domain,
mainly the low Mach number limit, which is also referred to as the incompressible limit in the context of
compressible systems in the literature. The first approach, proposed by Kleinarman and Majda [18], is based
on classical or strong solutions of the compressible system and proves that the limit is an incompressible
system. This approach has been followed by Alazard [5] to analyze the low Mach number limit for the Navier-
Stokes-Fourier system. On the other hand, based on global-in-time weak solutions, Lions and Masmoudi [19],
and Desjardins et al. [9] studied the low Mach number limit for the compressible Navier-Stokes system and
they obtained the incompressible Navier-Stokes system as a limit. This approach has also been extended to
the Navier-Stokes-Fourier system. We refer to the monograph of Feireisl and Novotný [15], where different

multiscale problems (like, Ma = Fr and
√

Ma = Fr) are addressed. These multiple scalings explain the
stratification of fluid.

On the other hand, for a fixed Mach and Froude number, the problem coincides with the homogenization
problem for fluid dynamics, which aims to describe the macroscopic behavior of microscopically heterogeneous
systems. In general, the limiting behavior depends on the size and mutual distance of holes, that is, the
relation between the radius of holes εα and mutual distance εβ . For incompressible stationary Stokes and
Navier-Stokes problems with periodically distributed holes, in his seminal works Allaire (in [3], [4], see also
Tartar [30]) proved that in the case of “large” holes, that is, β = 1 and 1 ≤ α < 3, the limit system is
governed by the Darcy law, while for “tiny” holes, that is, β = 1 and α > 3, the limit system remains the
same as the original one. The critical case β = 1 and α = 3 leads to Brinkmann’s law. Similar results hold
in the context of evolutionary Stokes and incompressible Navier-Stokes systems, as shown by Mikelić [25]
and Feireisl, Namlyeyeva, and Nečasová [11]. All of the above results are in three dimensions.
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In the case of compressible fluids, the situation is more complex than its incompressible counterpart. For
the barotropic Navier-Stokes system with Strouhal number proportional to ε2 and the diameter of the holes
proportional to their mutual distance (i.e., “large” holes with α = β = 1), the problem was considered by
Masmoudi [23] who deduced that the limit system is the porous medium equation with the nonlinear Darcy’s
law. For the heat-conducting fluid (Navier-Stokes-Fourier) system with the same α, Feireisl, Novotný, and
Takahashi [12] achieved similar results. Recently, the case of tiny holes (α > 3 and β = 1) has been
studied in several papers, and the limit problem was identified as the same as in the perforated domain
in three dimensions. Along with the mutual distance and diameters of the holes, the results also depend
on the adiabatic exponent γ. For the steady compressible Navier-Stokes equations, Feireisl and Lu [14]
considered γ > 3, while Diening, Feireisl, and Lu [10] considered γ > 2. Lu and Schwarzacher [22] studied
the evolutionary compressible Navier-Stokes equations and proved that the presence of tiny holes is negligible
for γ > 6, which was recently improved to γ > 3 by Oschmann and Pokorný [28]. Lu and Pokorný [21]
proved that the size of holes is negligible in the context of the stationary Navier-Stokes-Fourier system,
while the same result was achieved by Pokorný and Skř́ı̌sovský [29] for the evolutionary case, considering a
pressure of the type p(%, ϑ) = %γ + %ϑ+ϑ4 with β = 1, α > 7, and γ > 6. Recently, Oschmann and Pokorný
[28] improved the above results for the evolutionary compressible Navier-Stokes and Navier-Stokes-Fourier
systems to β = 1, α > 3, and γ > 3. For the Navier-Stokes system, the challenging situation with dimension
two was considered by Nečasová and Pan [27] for γ > 2 and by Nečasová and Oschmann [26] for γ > 1.
Recently, Bella and Oschmann [7] considered the case of randomly perforated domains with the random size
of holes.

For the low Mach number limit of the compressible Navier-Stokes equation in a perforated domain, Höfer,
Kowalczyk and Schwarzacher [17] recover Darcy’s law as a limit of the system by considering β = 1 and
4m > 3(γ + 2)(α − 1), where the adiabatic exponent γ ≥ 2. They also consider the Strouhal number to
be proportional to ε3−α and the Froude number to be 1. Very recently, Bella, Feireisl, and Oschmann [6]
proved that in the case of tiny holes (α ≥ 3 and β = 1) and under the hypothesis 2m

γ > α with the adiabatic

exponent γ > 3
2 , weak solutions of the compressible Navier-Stokes equation converge to a dissipative solution

of the incompressible Navier-Stokes system for well-prepared initial data. Eventually, the use of the weak-
strong uniqueness property ensures the convergence of weak solutions of the primitive system towards the
strong solution for the target system, at least in the interval of existence of the strong solution.

To the best of the authors’ knowledge, this is the first time that the low Mach number limit and the
homogenization of the spatial domain have been performed simultaneously for the Navier-Stokes-Fourier
system, enabling the consideration of general forms for pressure. Following the idea proposed in previous
work [6], we consider the weak solution for the Navier-Stokes-Fourier system and take the limit as ε→ 0 to
obtain a dissipative solution of the Oberbeck-Boussinesq system for well-prepared initial data. Subsequently,
we apply the weak-strong uniqueness property to ensure convergence to the strong solution of the target
system, at least in the interval of existence od the latter. The two main ingredients we use are based on the
restriction operator constructed by Diening et al. [10] and a suitable extension operator for state variables,
mainly for temperature, as suggested by Lu and Pokorný [21] in Sobolev spaces, and later extended by
Pokorny and Skř́ı̌sovský[29] in time dependent Sobolev spaces.

1.1. Primitive system. Let us consider the scaled Navier–Stokes–Fourier system with small Mach number
Ma = εm and Froude number Fr =

√
Ma = εm/2, with the integer m ≥ 1 fixed; specifically, we will consider

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +
1

ε2m
∇xp(%, ϑ) = divxS(ϑ,∇xu) +

1

εm
%∇xG, (1.2)

∂t
(
%e(%, ϑ)

)
+ divx

(
%e(%, ϑ)u

)
+ divxq(ϑ,∇xϑ) = ε2m S(ϑ,∇xu) : ∇xu− p(%, ϑ)divxu. (1.3)

Here the unknown variables are the density % = %(t, x), the velocity u = u(t, x) and the absolute temperature
ϑ = ϑ(t, x) of the fluid, while the pressure p = p(%, ϑ) and the internal energy e = e(%, ϑ) are related to a
third quantity, the entropy s = s(%, ϑ), through Gibb’s relation

ϑDs = De+ pD

(
1

%

)
. (1.4)
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Due to the aforementioned relation, equation (1.3) can be equivalently rewritten as

∂t
(
�s(�, ϑ)

)
+ divx

(
�s(�, ϑ)u

)
+ divx

(
q(ϑ,∇xϑ)

ϑ

)

=
1

ϑ

(
ε2m S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
.

We suppose that the fluid is Newtonian, meaning that the viscous stress tensor S = S(ϑ,∇xu) is given by

S(ϑ,∇xu) = µ(ϑ)

(
∇xu+∇�

x u− 2

3
(divxu)I

)
+ η(ϑ)(divxu)I, (1.5)

with the shear viscosity µ = µ(ϑ) and the bulk viscosity η = η(ϑ) coefficients depending on temperature.
Similarly, we suppose that the heat flux q = q(ϑ,∇xϑ) is determined by Fourier’s law,

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ, (1.6)

with the heat conductivity coefficient κ = κ(ϑ). Finally, G = G(x) is a given potential, usually identified
with the gravitational one.

1.2. Perforated domain. We study the scaled Navier–Stokes–Fourier system (1.1)–(1.6) on (0, T ) × Ωε,
where the time T > 0 can be chosen arbitrarily large while Ωε denotes a domain perforated with many tiny
holes; specifically, we assume

Ωε := Ω \
N(ε)⋃
n=1

Bε,n, (1.7)

where Ω ⊂ R3 is a bounded C2,ν-domain and {Bε,n}N(ε)
n=1 are the balls

Bε,n := B(xε,n, ε
α)

centred at xn,ε and radius εα. Moreover, we suppose that the balls {Bε,n}N(ε)
n=1 have mutual distance εβ ,

1 ≤ β < α. More precisely, defining

Dε,n := B

(
xε,n, ε

α +
1

2
εβ

)

we require that the balls Dε,n are mutually disjoint. The latter condition gives an upper limit on the number
of holes as

N(ε) � 3

4π
|Ω|

(
εα +

1

2
εβ

)−3

� ε−3β . (1.8)

Note, however, that we do not assume any periodicity for the distribution of the holes.

Figure 1. An example of perforated domain

We consider the homogeneous Dirichlet and Neumann boundary conditions for the velocity u and the
temperature ϑ, respectively; specifically,

u|∂Ωε
= 0, ∇xϑ · n|∂Ωε

= 0. (1.9)
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Figure 2. Perforated domains with ε1 > ε2

1.3. Constitutive relations. In order to motivate the existence of global-in-time weak solutions to system
(1.1)–(1.6) some extra assumptions are necessary. Motivated by [15], we assume

p(�, ϑ) = pm(�, ϑ) + prad(ϑ), with pm(�, ϑ) = ϑ
5
2P

(
�

ϑ
3
2

)
, prad(ϑ) =

a

3
ϑ4, (1.10)

e(�, ϑ) = em(�, ϑ) + erad(�, ϑ), with em(�, ϑ) =
3

2

ϑ
5
2

�
P

(
�

ϑ
3
2

)
, erad(�, ϑ) =

a

�
ϑ4, (1.11)

s(�, ϑ) = sm(�, ϑ) + srad(�, ϑ), with sm(�, ϑ) = S
(

�

ϑ
3
2

)
, srad(�, ϑ) =

4a

3

ϑ3

�
, (1.12)

where a > 0, P ∈ C1[0,∞) ∩ C3(0,∞) satisfies

P (0) = 0, P ′(Z) > 0 for Z ≥ 0, 0 <
5
3P (Z)− P ′(Z)Z

Z
≤ c for Z ≥ 0, (1.13)

and

S ′(Z) = −3

2

5
3P (Z)− P ′(Z)Z

Z2
. (1.14)

Consequently, the function Z �→ P (Z)/Z
5
3 is decreasing and we assume

lim
Z→∞

P (Z)

Z
5
3

= p∞ > 0. (1.15)

Furthermore, we suppose that the transport coefficients µ, η and κ are continuously differentiable functions
of temperature ϑ satisfying

0 < µ(1 + ϑ) ≤ µ(ϑ) ≤ µ(1 + ϑ), (1.16)

0 ≤ η(ϑ) ≤ η(1 + ϑ), (1.17)

0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3). (1.18)

for all ϑ ≥ 0, with µ, µ, η, κ, κ positive constants. Finally, we suppose that the potential G ∈ W 1,∞(Ω) has
zero mean, ˆ

Ω

G dx = 0. (1.19)

1.4. Well-prepared initial data. We suppose that

�(0, ·) = �0,ε := �+ εm�
(1)
0,ε, u(0, ·) = u0,ε, ϑ(0, ·) = ϑ0,ε := ϑ+ εmϑ

(1)
0,ε, (1.20)

where �
(1)
0,ε,u0,ε, ϑ

(1)
0,ε are measurable functions and �, ϑ are positive constants. Moreover, in order to get

uniform bounds on Ω and to guarantee the extension of the field equations to the whole domain, we suppose

that [�
(1)
0,ε,u0,ε, ϑ

(1)
0,ε] are extended by zero on Ω \ Ωε; more precisely, we denote

�̃
(1)
0,ε :=

{
�
(1)
0,ε in Ωε,

0 in Ω \ Ωε,
ũ0,ε :=

{
u0,ε in Ωε,

0 in Ω \ Ωε,
ϑ̃
(1)
0,ε :=

{
ϑ
(1)
0,ε in Ωε,

0 in Ω \ Ωε,
(1.21)

and
[�̃0,ε, ϑ̃0,ε] := [�, ϑ] + εm[�̃

(1)
0,ε, ϑ̃

(1)
0,ε].
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In addition, we suppose that
ˆ

Ω

%̃
(1)
0,ε dx =

ˆ
Ω

ϑ̃
(1)
0,ε dx = 0 for all ε > 0, (1.22)

and

%̃
(1)
0,ε → %

(1)
0 weakly-(∗) in L∞(Ω) and a.e. in Ω, (1.23)

ũ0,ε → u0 weakly-(∗) in L∞(Ω;R3) and a.e. in Ω, (1.24)

ϑ̃
(1)
0,ε → ϑ

(1)
0 weakly-(∗) in L∞(Ω) and a.e. in Ω; (1.25)

moreover, in order to get the maximal regularity for the dissipative solution of the target system, we suppose

ϑ
(1)
0 ∈W 2− 2

p ,p(Ω) with p =
5

4
. (1.26)

Finally, we suppose that limiting initial data %
(1)
0 , ϑ

(1)
0 are well-prepared, meaning that they satisfy the

following relation:

∂p(%, ϑ)

∂%
%

(1)
0 +

∂p(%, ϑ)

∂ϑ
ϑ

(1)
0 = %G. (1.27)

We restrict ourselves to the consideration of well-prepared data only. The problem is more interesting for
ill-prepared data, where the presence of Rossby-acoustic waves play an important role in the analysis of
singular limits. We wish to consider it in our future works.

1.5. Target system. Our goal is to show that the low Mach number asymptotic limit on a perforated
domain leads to the Oberbeck-Boussinesq approximation

divxU = 0, (1.28)

% [∂tU + (U · ∇x)U] +∇xΠ− µ(ϑ)∆xU = −AΘ∇xG, (1.29)

%cp [∂tΘ + U · ∇xΘ]− κ(ϑ)∆xΘ = ϑA∇xG ·U (1.30)

on the homogenized domain. Here, %, ϑ are the positive constants introduced in Section 1.4 while the positive
constant A is defined as

A := % a(%, ϑ), (1.31)

where a denotes the coefficient of thermal extension given by

a(%, ϑ) :=
1

%

∂ϑp

∂%p
(%, ϑ), (1.32)

and cp is the specific heat at constant pressure evaluated in (%, ϑ),

cp :=
∂e

∂ϑ
(%, ϑ) + a(%, ϑ)

ϑ

%

∂p

∂ϑ
(%, ϑ). (1.33)

Moreover, the functions [U,Θ] inherit the same boundary conditions of [u, θ(1)]; more precisely, we suppose

U|∂Ω = 0, ∇xΘ · n|∂Ω = 0. (1.34)

Remark 1.1. We point out that if the couple [U,Θ] is a strong solution of system (1.28)–(1.34), it is easy to
check that divx∇>x U = ∇xdivxU = 0. Therefore, the viscosity term appearing in (1.29) can be equivalently
written as

µ(ϑ)divx(∇xU +∇>x U);

the latter will be preferred when introducing the concept of dissipative solution, cf. Definition 2.4 below.
5



1.6. Notation. To avoid confusion, we fix the notation that will be used throughout the paper.
Given two positive quantities A,B, we write

• A ' B if there exist positive constants c1, c2 such that c1A ≤ B ≤ c2A;
• A . B if there exists a positive constant c such that A ≤ cB.

Moreover, given Q ⊆ RN , N ≥ 1, an open set, X a Banach space and M ≥ 1, we denote with

• D(Q;X) = C∞c (Q;X) the space of functions belonging to C∞(Q;X) and having compact support
in Q;
• D′(Q;RM ) = [C∞c (Q;RM )]∗ the space of distributions;

• M(Q;RM ) =
[
Cc(Q;RM )

‖·‖∞]∗
the space of vector-valued Radon measures. If Ω ⊂ RN is a bounded

domain, then M(Ω) = [C(Ω)]∗.
• M+(Q) the space of positive Radon measures;
• M+(Q;RN×Nsym ) the space of tensor–valued Radon measures R such that R : (ξ ⊗ ξ) ∈ M+(Q) for

all ξ ∈ Rd, and with components Ri,j = Rj,i;
• Lp(Q;X), with 1 ≤ p ≤ ∞, the Lebesgue space defined on Q and ranging in X;
• W k,p(Q;RM ), with 1 ≤ p ≤ ∞ and k a positive integer, the Sobolev space defined on Q;
• W s,p(Q;RM ), with 1 ≤ p ≤ ∞ and s ∈ (0, 1), the Sobolev-Slobodeckii space defined on Q.

Structure of the paper. The plan for the paper is as follows.

• In Section 2, we recall the definition of weak solution for the Navier-Stokes-Fourier system, cf.
Definition 2.1, and provide the definition of dissipative solution for the Oberbeck-Boussinesq system,
cf. Definition 2.4. Subsequenlty, we state our main result, cf. Theorem 2.5.
• Section 3 is devoted to the extension of the state variables defined on the perforated domain Ωε to

the whole domain Ω, and to the derivation of all the necessary uniform estimates.
• In Section 4, we extend the validity of the field equations to the homogenized domain Ω.
• Section 5 is dedicated to the limit passage, leading to the concept of dissipative solution for the

target system, cf. Proposition 5.2.
• In Section 6, we prove the weak-strong uniqueness principle for the Oberbeck-Boussinesq system, cf.

Theorem 6.2.
• We postpone to the Appendix the construction of suitable extension and restriction operators, cf.

Propositions A.2 and B.1 respectively.

2. Concepts of solution and main result

2.1. Weak solution. We start providing the definition of weak solution to the Navier–Stokes-Fourier system,
whose existence was proved in [15, Theorem 3.1].

Definition 2.1 (Weak solution of the Navier–Stokes–Fourier system on perforated domains). Let Ω ⊂ R3 be
a bounded C2,ν-domain. Moreover, let the thermodynamic variables p, e, s satisfy hypotheses (1.10)–(1.15)
and the transport coefficients µ, η, κ satisfy conditions (1.16)–(1.18). For any fixed ε > 0, we say that the
trio of functions

%ε ∈ Cweak([0, T ];L
5
3 (Ωε)),

uε ∈ L2(0, T ;W 1,2
0 (Ωε;R3)),

ϑε ∈ L2(0, T ;W 1,2(Ωε)) ∩ L∞(0, T ;L4(Ωε))

is a weak solution of the scaled Navier–Stokes–Fourier system (1.1)–(1.6) in (0, T ) × Ωε, where Ωε is the
perforated domain given by (1.7), with the boundary conditions (1.9) and initial data (1.20) if the following
holds.

(i) Weak formulation of the continuity equation. The integral identity[ˆ
Ωε

%εϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ωε

[%ε∂tϕ+ %εuε · ∇xϕ] dxdt (2.1)

6



holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ωε), with

%ε(0, ·) = %0,ε a.e. in Ωε.

(ii) Weak formulation of the renormalized continuity equation. For any function

b ∈ C1[0,∞), b′ ∈ Cc[0,∞)

the integral identity[ˆ
Ωε

b(%ε)ϕ(t, ·)dx
]t=τ
t=0

=

ˆ τ

0

ˆ
Ωε

[
b(%ε)∂tϕ+ b(%ε)uε · ∇xϕ

]
dxdt

+

ˆ τ

0

ˆ
Ωε

ϕ
(
b(%ε)− b′(%ε)%ε

)
divxuε dxdt

(2.2)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ωε).

(iii) Weak formulation of the momentum equation. The integral identity[ˆ
Ωε

%εuε ·ϕ(t, ·)dx
]t=τ
t=0

=

ˆ τ

0

ˆ
Ωε

[%εuε · ∂tϕ+ [(%εuε ⊗ uε)− S(ϑε,∇xuε)] : ∇xϕ] dxdt

+
1

εm

ˆ τ

0

ˆ
Ωε

(
1

εm
p(%ε, ϑε)divxϕ+ %ε∇xG ·ϕ

)
dxdt

(2.3)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T )× Ωε;R3), ϕ|∂Ωε = 0, with

(%εuε)(0, ·) = %0,εu0,ε a.e. in Ωε.

(iv) Weak formulation of the entropy equality. There exists a non-negative measure

Sε ∈M([0, T ]× Ωε),

such that the integral identity

−
ˆ

Ωε

%0,εs(%0,ε, ϑ0,ε)ϕ(0, ·)dx

=

ˆ T

0

ˆ
Ωε

[
%εs(%ε, ϑε)

(
∂tϕ+ uε · ∇xϕ

)
− κ(ϑε)

ϑε
∇xϑε · ∇xϕ

]
dxdt

+ ε2m

ˆ T

0

ˆ
Ωε

ϕ

ϑε

[
S(ϑε,∇xuε) : ∇xuε +

1

ε2m

κ(ϑε)

ϑε
|∇xϑε|2

]
dxdt+

ˆ T

0

ˆ
Ωε

ϕ dSε,

(2.4)

holds for any ϕ ∈ C1
c ([0, T )× Ωε).

(v) Energy inequality. The integral identity

ˆ
Ωε

(
ε2m

2
%ε|uε|2 + %εe(%ε, ϑε)− εm%εG

)
(t, ·) dx

=

ˆ
Ωε

(
ε2m

2
%0,ε|u0,ε|2 + %0,εe(%0,ε, ϑ0,ε)− εm%0,εG

)
dx

(2.5)

holds for a.e. t ∈ (0, T ).

Remark 2.2. Even if we are dealing with functions defined only almost everywhere on (0, T ), the left-hand
sides of equations (2.1)–(2.3) are well-defined since the density %ε and the momentum mε = %εuε are weakly
continuous in time.

Remark 2.3. Defining the Helmholtz function Hϑ = Hϑ(%, ϑ) as

Hϑ(%, ϑ) := %
(
e(%, ϑ)− ϑs(%, ϑ)

)
,
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combining (1.22), (2.4) and (2.5), it is easy to show that the integral equality
ˆ

Ωε

[
1

2
%ε|uε|2 +

1

ε2m

(
Hϑ(%ε, ϑε)− (%ε − %)

∂Hϑ(%, ϑ)

∂%
−Hϑ(%, ϑ)

)
− %ε − %

εm
G

]
(τ, ·) dx

+

ˆ τ

0

ˆ
Ωε

ϑ

ϑε

(
S(ϑε,∇xuε) : ∇xuε +

1

ε2m

κ(ϑε)

ϑε
|∇xϑε|2

)
dxdt+

ϑ

ε2m
Sε([0, τ ]× Ωε)

=

ˆ
Ωε

[
1

2
%0,ε|u0,ε|2 +

1

ε2m

(
Hϑ(%0,ε, ϑ0,ε)− (%0,ε − %)

∂Hϑ(%, ϑ)

∂%
−Hϑ(%, ϑ)

)
− %0,ε − %

εm
G

]
dx

(2.6)

holds for a.e. τ ∈ (0, T ), where %, ϑ are the positive constants appearing in the definition of the initial density
and temperature in (1.20).

2.2. Dissipative solution. Inspired by [2], we will refer to the concept of dissipative solutions, i.e. solutions
that satisfy the target system in the weak sense but with extra defect terms appearing in the equations and in
the energy inequality. The motivation of the following definition will be clarified in the proof of Proposition
5.2, when performing the passage to the limit.

Definition 2.4 (Dissipative solution of the Oberbeck-Boussinesq system). Let Ω ⊂ R3 be a bounded C2,ν-
domain. We say that the couple of functions

u ∈ Cweak([0, T ];Lp(Ω;R3)) ∩ L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W 1,2
0 (Ω;R3)),

ϑ(1) ∈ C([0, T ];W 2− 2
p ,p(Ω)) ∩W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)),

p =
5

4
(2.7)

is a dissipative solution of the Oberbeck-Boussinesq system (1.28)–(1.34) in [0, T ] × Ω with initial data

[u0, ϑ
(1)
0 ] if the following holds.

(i) Incompressibility. Equation (1.28) holds a.e. on (0, T )× Ω for U = u.
(ii) Incompressible Navier-Stokes system. There exists a positive measure

R ∈ L∞(0, T ;M+(Ω;R3×3
sym))

such that the integral identity

%

[ˆ
Ω

u ·ϕ(t, ·)dx
]t=τ
t=0

= %

ˆ τ

0

ˆ
Ω

[u · ∂tϕ− (u · ∇x)u ·ϕ] dxdt

−
ˆ τ

0

ˆ
Ω

[
µ(ϑ)(∇xu +∇>x u) : ∇xϕ+Aϑ(1)∇xG ·ϕ

]
dxdt

+

ˆ τ

0

ˆ
Ω

∇xϕ : dR dt

(2.8)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T )× Ω;R3), ϕ|∂Ω = 0 such that divxϕ = 0, with

u(0, ·) = u0 a.e. in Ω.

(iii) Heat equation with insulated boundary. Equation (1.30) holds a.e. on (0, T )×Ω for Θ = ϑ(1), U = u,

with ∇xϑ(1) · n|∂Ω = 0 in the sense of traces and ϑ(1)(0, ·) = ϑ
(1)
0 a.e. in Ω.

(iv) Energy inequality. There exists a positive measure

E ∈ L∞(0, T ;M+(Ω))

such that the integral inequalityˆ
Ω

(
1

2
%|u|2 +

cp
2

%

ϑ

∣∣ϑ(1)
∣∣2) (τ, ·)dx+

ˆ
Ω

dE(τ)

+
µ(ϑ)

2

ˆ τ

0

ˆ
Ω

|∇xu +∇>x u|2 dxdt+
κ(ϑ)

ϑ

ˆ τ

0

ˆ
Ω

|∇xϑ(1)|2 dxdt

≤
ˆ

Ω

(
1

2
%|u0|2 +

cp
2

%

ϑ

∣∣ϑ(1)
0

∣∣2)dx

(2.9)

holds for a.e. τ ∈ (0, T ).
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(v) Compatibility condition. There holds

Tr[R] ' E. (2.10)

2.3. Main result. Having collected all the necessary ingredients, we are now ready to state our main result.

Theorem 2.5. Let

- the constants α, β ≥ 1 and the integer m be fixed such that

m > α > 3β; (2.11)

- Ω ⊂ R3 be a bounded C2,ν-domain and {Ωε}ε>0 be a family of perforated domains defined by (1.7);
- the thermodynamic variables p, e, s satisfy hypotheses (1.10)–(1.15);
- the transport coefficients µ, η, κ satisfy conditions (1.16)–(1.18);
- the potential G have zero mean (1.19);
- {[%0,ε,u0,ε, ϑ0,ε]}ε>0 be a family of initial data satisfying conditions (1.20)–(1.27).

Moreover, let

- {[%ε,uε, ϑε]}ε>0 be the family of weak solutions to the scaled Navier–Stokes–Fourier system on the
perforated domains, emanating from {[%0,ε,u0,ε, ϑ0,ε]}ε>0 in the sense of Definition 2.1;

- {[%̃ε, ũε, ϑ̃ε]}ε>0 be the family of their extensions to the homogenized domain Ω, specified in Section
3.1 below.

Then there exists a positive time T ∗ such that, passing to suitable subsequences as the case may be,

ũε ⇀ U in L2(0, T ∗;W 1,2
0 (Ω;R3)), (2.12)

ϑ̃ε − ϑ
εm

⇀ Θ in L2(0, T ∗;W 1,2(Ω)), (2.13)

where [U,Θ] is the strong solution to the Oberbeck-Boussinesq system emanating from [U0,Θ0] = [u0, ϑ
(1)
0 ],

with u0, ϑ
(1)
0 the weak limits appearing in (1.24), (1.25), respectively.

Remark 2.6. The positive time T ∗ appearing in (2.12), (2.13) denotes the maximal time of existence of
strong solution to the Oberbeck-Boussinesq system (1.28)–(1.34), cf. Theorem (6.1).

Theorem 2.5 is a direct consequence of two results: first, we will show that the extended weak solutions of
the Navier–Stokes-Fourier system converge to the dissipative solution of the Oberbeck–Boussinesq system,
cf. Proposition 5.2; secondly, by proving the weak–strong uniqueness principle, we are able to conclude that
the dissipative solution must coincide with the strong solution of the target system, as long as the latter
exists, cf. Theorem 6.2.

3. Preparation

3.1. Extension of functions. In order to get the uniform bounds on the homogenized domain Ω and the
correspondent convergences necessary to pass to the limit, we first need to properly extend all the quantities
appearing in the system.

From now on, we will denote

%(1)
ε :=

%ε − %
εm

, ϑ(1)
ε :=

ϑε − ϑ
εm

, `(1)
ε :=

log(ϑε)− log(ϑ)

εm
. (3.1)

We can simply extend
[
%

(1)
ε ,uε

]
by zero on Ω \ Ωε; more precisely, we consider

%̃(1)
ε :=

{
%

(1)
ε in Ωε

0 in Ω \ Ωε
, ũε :=

{
uε in Ωε

0 in Ω \ Ωε
. (3.2)

The extension of ϑ
(1)
ε and `

(1)
ε is more delicate due to the Neumann boundary condition for the temperature:

the extension by zero may not preserve the W 1,2-regularity. However, we may use the spatial extensions Eε
and Pε constructed in Lemma A.1 and Proposition A.2, respectively:

ϑ̃(1)
ε :=

{
ϑ

(1)
ε in Ωε

Eε(ϑ
(1)
ε ) in Ω \ Ωε

, ˜̀(1)
ε :=

{
`
(1)
ε in Ωε

Pε(`
(1)
ε ) in Ω \ Ωε

. (3.3)
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Accordingly, we consider the following extensions

[%̃ε, ϑ̃ε, ˜̀ε] := [%, ϑ, log(ϑ)] + εm[%̃(1)
ε , ϑ̃(1)

ε , ˜̀(1)
ε ].

Next, we introduce analogous quantities to (3.1) for the thermodynamic functions,

p(1)
ε :=

p(%ε, ϑε)− p(%, ϑ)

εm
, e(1)

ε :=
e(%ε, ϑε)− e(%, ϑ)

εm
, s(1)

ε :=
s(%ε, ϑε)− s(%, ϑ)

εm
,

and for the heat conductivity coefficient,

κ(1)
ε :=

κ(ϑε)− κ(ϑ)

εm
,

extending them by zero on Ω \ Ωε:

[p̃(1)
ε , ẽ(1)

ε , s̃(1)
ε , κ̃(1)

ε ] :=

{
[p

(1)
ε , e

(1)
ε , s

(1)
ε , κ

(1)
ε ] in Ωε

0 in Ω \ Ωε
.

Proceeding as before, we consider the following extensions

[p̃ε, ẽε, s̃ε, κ̃ε] := [p(%, ϑ), e(%, ϑ), s(%, ϑ), κ(ϑ)] + εm[p̃(1)
ε , ẽ(1)

ε , s̃(1)
ε , κ̃(1)

ε ]; (3.4)

notice, in particular, that %̃ε = % and [p̃ε, ẽε, s̃ε, κ̃ε] = [p(%, ϑ), e(%, ϑ), s(%, ϑ), κ(ϑ)] on Ω \Ωε. Finally, we let
the non-negative measure Sε to be zero in Ω \ Ωε

S̃ε :=

{
Sε in Ωε

0 in Ω \ Ωε
.

3.2. Essential and residual parts. Following [15], we introduce the set of essential values Oess ⊂ (0,∞)2

together with its residual counterpart Ores ⊂ (0,∞)2 as

Oess :=

{
(%, ϑ) ∈ R2

∣∣∣ %
2
< % < 2%,

ϑ

2
< ϑ < 2ϑ

}
,

Ores := (0,∞)2 \ Oess,

while the essential set Mess ⊂ (0, T )× Ωε and its residual counterpart Mres ⊂ (0, T )× Ωε are defined as

Mess :=
{

(t, x) ∈ (0, T )× Ωε
∣∣ (%ε(t, x), ϑε(t, x)

)
∈ Oess

}
,

Mres :=
(
(0, T )× Ωε

)
\Mess.

We point out that Oess,Ores are fixed subsets of (0,∞)2, while Mess,Mres are measurable subsets of the
time-space cylinder (0, T )×Ωε depending on %ε, ϑε. Moreover, in view of the extensions introduced in section
3.1, along with Mess,Mres it makes sense to consider a third set Mholes defined as

Mholes := (0, T )× (Ω \ Ωε).

Denoting with h̃ε the extension of any measurable function hε defined on (0, T ) × Ωε, it makes sense to
write

h̃ε = hε1(0,T )×Ωε + h̃ε1(0,T )×(Ω\Ωε) := [hε]ess + [hε]res + [hε]holes,

[hε]ess := hε1Mess
, [hε]res := hε1Mres

= hε − [hε]ess, [hε]holes := h̃ε1Mholes
= h̃ε − hε1(0,T )×Ωε .

(3.5)
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3.3. Uniform bounds. We are now ready to establish the uniform bounds on the whole domain Ω.

Lemma 3.1. Under the hypotheses of Theorem 2.5, the following uniform bounds hold.

ess sup
t∈(0,T )

|Mholes(t)| ≤ cε3(α−β), (3.6)

ess sup
t∈(0,T )

|Mres(t)| ≤ cε2m, (3.7)

S̃ε([0, T ]× Ω) ≤ cε2m, (3.8)

ess sup
t∈(0,T )

[∥∥[%ε(t)]res

∥∥ 5
3

L
5
3 (Ω)

+
∥∥[ϑε(t)]res

∥∥4

L4(Ω)

]
≤ cε2m, (3.9)∥∥∥([%(1)

ε

]
ess
,
[
ϑ(1)
ε

]
ess

)∥∥∥
L∞(0,T ;L2(Ω;R2))

≤ c, (3.10)

‖
√
%̃εũε‖L∞(0,T ;L2(Ω;R3)) ≤ c, (3.11)

‖%̃εũε‖
L∞(0,T ;L

5
4 (Ω;R3))

≤ c, (3.12)

‖ũε‖L2(0,T ;W 1,2
0 (Ω;R3)) ≤ c, (3.13)∥∥∥(ϑ̃(1)

ε , ˜̀(1)
ε

)∥∥∥
L2(0,T ;W 1,2(Ω;R2))

≤ c, (3.14)∥∥∥∥[p(%ε, ϑε)εm

]
res

∥∥∥∥
L∞(0,T ;L1(Ω))

≤ cεm, (3.15)

∥∥∥∥[%εs(%ε, ϑε)εm

]
res

∥∥∥∥
L2(0,T ;L

30
23 (Ω))

≤ c, (3.16)

∥∥∥∥[%εs(%ε, ϑε)εm

]
res

ũε

∥∥∥∥
L2(0,T ;L

30
29 (Ω;R3))

≤ c, (3.17)

∥∥∥∥[κ(ϑε)

ϑε
∇x
(
ϑε
εm

)]
res

∥∥∥∥
L

14
13 (0,T ;L

14
13 (Ω;R3))

≤ c. (3.18)

Proof. The uniform bounds (3.7)–(3.13) and (3.15)–(3.18) are a direct consequence of [15, Proposition 5.1]
since all the involved quantities vanish on Ω\Ωε. Bound (3.6) follows from (1.8), while (3.14) can be deduced
from [15, Proposition 5.1, equations (5.52), (5.53)], namely∥∥∥(ϑ(1)

ε , `(1)
ε

)∥∥∥
L2(0,T ;W 1,2(Ωε;R2))

≤ c, (3.19)

combined with estimates (A.2) and (A.6). �

4. Field equations on the homogenized domain

Before passing to the limit, along with the extension of all the quantities appearing in the primitive system
(1.1)–(1.3), it is also necessary to extend the validity of the integral identities of Definition 2.1 to arbitrary
test functions defined on the whole domain Ω: the latter is the purpose of this section.

4.1. Continuity equation.

Lemma 4.1. Under the hypotheses of Theorem 2.5, the integral identity[ˆ
Ω

%̃εϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%̃ε∂tϕ+ %̃εũε · ∇xϕ] dxdt, (4.1)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]× Ω).
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Proof. Let ϕ ∈ C1
c ([0, T ]×Ω); then ϕ|Ωε ∈ C

1
c ([0, T ]×Ωε) can be used as test function in the weak formulation

of the continuity equation (2.1), obtaining

[ˆ
Ωε

%εϕ(t, ·) dx

]t=τ
t=0

+ %

[ˆ
Ω\Ωε

ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ωε

[%ε∂tϕ+ %εuε · ∇xϕ] dxdt+ %

ˆ τ

0

ˆ
Ω\Ωε

∂tϕ dxdt.

Now, it is enough to use the fact that %̃ε = %̃0,ε = % and ũε = 0 on Ω \ Ωε to get (4.1). �

4.2. Momentum equation. The extension of the weak formulation of the balance of momentum (2.3) is
delicate due to the fact that the latter holds for test functions that vanish on the boundary of the perforated
domain Ωε. Therefore, given an arbitrary test function defined on Ω, we need to apply a suitable restriction
operator

Rε : W 1,p
0 (Ω;R3)→W 1,p

0 (Ωε;R3)

for any p ∈ (1,∞), preserving the “divergence-free” property. The construction of the operator Rε is
postponed to the Appendix B

Lemma 4.2. Under the hypotheses of Theorem 2.5, the integral identity

[ˆ
Ω

%̃εũε ·ϕ(t, ·)dx
]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[%̃εũε · ∂tϕ+ (%̃εũε ⊗ ũε) : ∇xϕ] dxdt

−
ˆ τ

0

ˆ
Ω

(
S(ϑ̃ε,∇xũε) : ∇xϕ− %̃(1)

ε ∇xG ·ϕ
)

dxdt+ 〈r1,ε,ϕ〉M,C ,

(4.2)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ] × Ω;R3), ϕ|∂Ω = 0 such that divxϕ = 0, where the residual

measure r1,ε ∈M([0, T ]× Ω;R3) satisfies

|〈r1,ε,ϕ〉M,C | . εγ1‖ϕ‖W 1,∞
0 ((0,T )×Ω;R3), (4.3)

with γ1 the positive exponent defined in (4.11) below.

Proof. First, let ψ ∈ C∞c (0, T ) and ϕ ∈ C∞c (Ω;R3) be such that divxϕ = 0; then, we can use ψ Rε(ϕ) as test
function in the weak formulation of the balance of momentum, where Rε is the linear operator constructed
in Porposition B.1. Notice in particular that divx[ψ Rε(ϕ)] = 0. Therefore, using the fact that

ˆ
Ω

∇xG ·ϕ dx = −
ˆ

Ω

G divxϕ dx = 0,

we obtain

ˆ T

0

ψ′
ˆ

Ω

%̃εũε ·ϕ dxdt+

ˆ T

0

ψ

ˆ
Ω

[
(%̃εũε ⊗ ũε) : ∇xϕ− S(ϑ̃ε,∇xũε) : ∇xϕ+ %̃(1)

ε ∇xG ·ϕ
]

dxdt =
4∑
k=1

Iε,k
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where, from the decomposition %ε = %+ εm%
(1)
ε , we have

Iε,1 :=

ˆ T

0

ψ′
ˆ

Ωε

%εuε ·
[
ϕ−Rε(ϕ)

]
dxdt

= %

ˆ T

0

ψ′
ˆ

Ωε

uε ·
[
ϕ−Rε(ϕ)

]
dxdt+ εm

ˆ T

0

ψ′
ˆ

Ωε

%(1)
ε uε ·

[
ϕ−Rε(ϕ)

]
dxdt = I

(1)
ε,1 + I

(2)
ε,1

Iε,2 :=

ˆ T

0

ψ

ˆ
Ωε

(%εuε ⊗ uε) : ∇x
[
ϕ−Rε(ϕ)

]
dxdt

= %

ˆ T

0

ψ

ˆ
Ωε

(uε ⊗ uε) : ∇x
[
ϕ−Rε(ϕ)

]
dxdt+ εm

ˆ T

0

ψ

ˆ
Ωε

(%(1)
ε uε ⊗ uε) : ∇x

[
ϕ−Rε(ϕ)

]
dxdt

= I
(1)
ε,2 + I

(2)
ε,2 ,

Iε,3 := −
ˆ T

0

ψ

ˆ
Ωε

[
µ(ϑε)

(
∇xuε +∇>x uε −

2

d
(divxuε)I

)
+ η(ϑε)(divxuε)I

]
: ∇x

[
ϕ−Rε(ϕ)

]
dxdt,

Iε,4 :=

ˆ T

0

ψ

ˆ
Ωε

%(1)
ε ∇xG ·

[
ϕ−Rε(ϕ)

]
dxdt.

Moreover, using the fact that

µ(ϑε) ≤ µ
(
1 + ϑ

)
+ µεmϑ(1)

ε ,

η(ϑε) ≤ η
(
1 + ϑ

)
+ ηεmϑ(1)

ε ,

we obtain

|Iε,3| ≤
(
1 + ϑ

)ˆ T

0

|ψ|
ˆ

Ωε

[
µ

∣∣∣∣∇xuε +∇>x uε −
2

d
(divxuε)I

∣∣∣∣+ η|divxuε|
] ∣∣∇x[ϕ−Rε(ϕ)

]∣∣ dxdt,

+ εm
ˆ T

0

|ψ|
ˆ

Ωε

[
µ|ϑ(1)

ε |
∣∣∣∣∇xuε +∇>x uε −

2

d
(divxuε)I

∣∣∣∣+ η|ϑ(1)
ε ||divxuε|

] ∣∣∇x[ϕ−Rε(ϕ)
]∣∣ dxdt

= I
(1)
ε,3 + I

(2)
ε,3 ,

We can now use the uniform bounds established in Lemma 3.1 and estimates (B.18), (B.19) to deduce

|I(1)
ε,1 | . ‖ψ′‖L2(0,T )‖ũε‖L2(0,T ;L6(Ω))‖ϕ−Rε(ϕ)‖

L
6
5 (Ωε)

.
[
ε3β + ε

3
2 (α−β)

]
‖ϕ‖

W
1, 6

5
0 (Ω)

; (4.4)

|I(2)
ε,1 | . εm‖ψ′‖L2(0,T )‖%̃(1)

ε ũε‖
L2(0,T ;L

30
23 (Ω))

‖ϕ−Rε(ϕ)‖
L

30
7 (Ωε)

.
[
εm+ 2

5β + εm+ 3
10 (α−3β)

]
‖ϕ‖

W
1, 30

13
0 (Ω)

; (4.5)

|I(1)
ε,2 | . ‖ψ‖L∞(0,T )‖ũε ⊗ ũε‖L1(0,T ;L3(Ω))

∥∥∇x[ϕ−Rε(ϕ)
]∥∥
L

3
2 (Ωε)

.
[
ε

1
2β + ε

1
2 (α−2β)

]
‖ϕ‖W 1,2

0 (Ω); (4.6)

|I(2)
ε,2 | . εm‖ψ‖L∞(0,T )‖%̃(1)

ε ũε ⊗ ũε‖
L1(0,T ;L

15
14 (Ω))

∥∥∇x[ϕ−Rε(ϕ)
]∥∥
L15(Ωε)

.
[
εm+ 1

10β + εm−
9
10α
]
‖ϕ‖W 1,30

0 (Ω); (4.7)

|I(1)
ε,3 | . ‖ψ‖L2(0,T )‖∇xũε‖L2(0,T ;L2(Ω))

∥∥∇x[ϕ−Rε(ϕ)
]∥∥
L2(Ωε)

.
[
ε

3
2
α−3β
5α−9β β + ε

1
2

(2α−3β)(α−3β)
5α−9β

]
‖ϕ‖W 1,p

0 (Ω) with p := 2 +
α− 3β

2α− 3β
; (4.8)

|I(2)
ε,3 | . εm‖ψ‖L∞(0,T )‖ϑ̃(1)

ε ∇xũε‖L1(0,T ;L
3
2 (Ω))

∥∥∇x[ϕ−Rε(ϕ)
]∥∥
L3(Ωε)

.
[
εm+ 1

2β + εm−
1
2α+ 2

3β
]
‖ϕ‖W 1,6

0 (Ω); (4.9)

|Iε,4| . ‖ψ‖L1(0,T )‖%̃(1)
ε ‖L∞(0,T ;L

5
3 (Ω))

‖ϕ−Rε(ϕ)‖
L

5
2 (Ωε)

.
[
ε

3
5β + ε

3
5α−β

]
‖ϕ‖

W
1, 15

8
0 (Ω)

. (4.10)
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Due to hypothesis (2.11), the exponent for ε is positive in (4.4)-(4.10). Therefore, condition (4.3) is satisfied
choosing

γ1 := min

{
m− 9

10
α,

3

2

α− 3β

5α− 9β
β

}
. (4.11)

To conclude the proof, it is now enough to use a density argument. �

4.3. Entropy equality.

Lemma 4.3. Under the hypotheses of Theorem 2.5, the integral equality

−
ˆ

Ω

%̃0,ε
s(%̃0,ε, ϑ̃0,ε)− s(%, ϑ)

εm
ϕ(0, ·)dx

=

ˆ T

0

ˆ
Ω

[
%̃εs̃

(1)
ε

(
∂tϕ+ ũε · ∇xϕ

)
− κ̃ε∇x ˜̀(1)

ε · ∇xϕ
]

dxdt

+ εm
ˆ T

0

ˆ
Ω

ϕ
(
ϑ̃−1
ε S(ϑ̃ε,∇xũε) : ∇xũε + κ̃ε|∇x ˜̀(1)

ε |2
)

dxdt+
1

εm

ˆ T

0

ˆ
Ω

ϕ dS̃ε

(4.12)

holds for any ϕ ∈ C1
c ([0, T )× Ω).

Proof. Let ϕ ∈ C1
c ([0, T ) × Ω); then ϕ|Ωε ∈ C1

c ([0, T ) × Ωε) can be used as test function in the weak

formulation of the entropy inequality (2.4), obtaining

−
ˆ

Ω

%̃0,ε
s(%̃0,ε, ϑ̃0,ε)− s(%, ϑ)

εm
ϕ(0, ·)dx

=

ˆ T

0

ˆ
Ω

[
%̃εs̃

(1)
ε

(
∂tϕ+ ũε · ∇xϕ

)
− κ̃ε∇x ˜̀(1)

ε · ∇xϕ
]

dxdt

+ εm
ˆ T

0

ˆ
Ω

ϕ
(
ϑ̃−1
ε S(ϑ̃ε,∇xũε) : ∇xũε + κ̃ε|∇x ˜̀(1)

ε |2
)

dxdt+
1

εm

ˆ T

0

ˆ
Ω

ϕ dS̃ε

+ κ(ϑ)

ˆ T

0

ˆ
Ω\Ωε

∇xPε(`(1)
ε ) · ∇x

[
ϕ+ εmPε(`

(1)
ε )
]

dxdt.

Using the fact that

∇xPε(`(1)
ε ) · n = ∇x`(1)

ε · n =
1

εmϑε
∇xϑε · n = 0 on ∂Ωε,

and ∆xPε(`
(1)
ε ) = 0 in Ω \ Ωε, we obtain that the latter integral vanishes and therefore (4.12) holds. �

4.4. Boussinesq relation. Along with (2.1)-(2.4), when letting ε go to zero, we need to consider an ad-
ditional integral identity known as Boussinesq relation, obtained by multiplying (2.3) by εm. Similarly to
Section 4.2, we have to solve the problem of vanishing test function on the boundary of Ωε. Since in this
context the L∞-norms of the gradient of the test functions will be necessary, we cannot use the restriction
Rε constructed in the Appendix B. Instead, we multiply our arbitrary test function defined on the whole Ω
by a suitable smooth and compactly supported function on Ωε, cf. equation (4.18).

Lemma 4.4. Under the hypotheses of Theorem 2.5, the integral equalityˆ T

0

ˆ
Ω

(
p̃(1)
ε divxϕ+ %̃ε∇xG ·ϕ

)
dxdt = 〈r2,ε,ϕ〉D′,D (4.13)

holds for any ϕ ∈ C∞c ((0, T )× Ω;R3), where the residual distribution r2,ε ∈ D′((0, T )× Ω;R3) satisfies

|〈r2,ε,ϕ〉D′,D| . εγ2‖ϕ‖W 1,∞
0 ((0,T )×Ω;R3), (4.14)

with γ2 the positive exponent defined in (4.28) below.

Proof. We will first construct a proper cut-off function φε,n. To this end, let us consider a constant δ0 > 1
such that B(xε,n, δ0ε

α) ⊂ Dε,n, i.e. (δ0−1)εα < 1
2ε
β . We may apply Lemma B.2 choosing x0 = xε,n, r1 = 1,

r2 = δ0 and a = εα to get the existence of

φε,n ∈ C∞c (B(xε,n, δ0ε
α)), 0 ≤ φε,n ≤ 1, φ

∣∣
Bε,n

= 1, (4.15)
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such that, for any 1 ≤ p ≤ ∞,

‖φε,n‖Lp(R3) ≤ c(δ0) ε
3
pα, (4.16)

‖∇xφε,n‖Lp(R3;R3) ≤ c(δ0) ε(
3
p−1)α. (4.17)

Let us now consider

gε(x) := 1−
N(ε)∑
n=1

φε,n(x); (4.18)

clearly gε ∈ C∞c (Ωε), 0 ≤ gε ≤ 1, and from (1.8) and estimates (4.16), (4.17), we can deduce that

‖1− gε‖Lp(Ω) ≤ N(ε)
1
p ‖φε,n‖Lp(R3) ≤ c(δ0)ε

3(α−β)
p , (4.19)

‖∇xgε‖Lp(Ω;R3) ≤ N(ε)
1
p ‖∇xφε,n‖Lp(R3;R3) ≤ c(δ0)ε

3(α−β)
p −α. (4.20)

Let ϕ ∈ C∞c ((0, T )× Ω;R3). Then we can multiply (2.3) by εm and use

ϕε(t, x) := gε(x)ϕ(t, x)

as test function in the resulting integral identity, obtaining

ˆ T

0

ˆ
Ω

(
p̃(1)
ε divxϕ+ %̃ε∇xG ·ϕ

)
dxdt =

6∑
k=1

Iε,k,

where

Iε,1 := −εm
ˆ T

0

ˆ
Ωε

gε%εuε · ∂tϕ dtdx,

Iε,2 := −εm
ˆ T

0

ˆ
Ωε

(%εuε ⊗ uε) : (∇xgε ⊗ϕ+ gε∇xϕ) dtdx

Iε,3 := εm
ˆ T

0

ˆ
Ωε

S(ϑε,∇xuε) : (∇xgε ⊗ϕ+ gε∇xϕ) dtdx,

Iε,4 :=

ˆ T

0

ˆ
Ωε

p(1)
ε [−∇xgε ·ϕ+ (1− gε)divxϕ] dtdx

=

ˆ T

0

ˆ
Ωε

[p(1)
ε ]ess [−∇xgε ·ϕ+ (1− gε)divxϕ] dxdt

+

ˆ T

0

ˆ
Ωε

[p(1)
ε ]res [−∇xgε ·ϕ+ (1− gε)divxϕ] dtdx = I

(1)
ε,4 + I

(2)
ε,4 ,

Iε,5 :=

ˆ T

0

ˆ
Ωε

(1− gε)%ε∇xG ·ϕ dtdx,

Iε,6 := %

ˆ T

0

ˆ
Ω\Ωε

∇xG ·ϕ dtdx.

15



We can now use the uniform bounds established in Lemma 3.1 and estimates (4.19), (4.20) to get the following
bounds.

|Iε,1| . εm‖%̃εũε‖
L∞(0,T ;L

5
4 (Ω))

‖gε‖L5(Ω)‖ϕ‖W 1,∞
0
. εm‖ϕ‖W 1,∞

0
; (4.21)

|Iε,2| . εm‖%̃εũε ⊗ ũε‖
L1(0,T ;L

15
14 (Ω))

‖∇xgε‖L15(Ω)‖ϕ‖W 1,∞
0
. εm−

1
5 (4α+β)‖ϕ‖W 1,∞

0
; (4.22)

|Iε,3| . εm‖S(ϑ̃ε,∇xũε)‖
L1(0,T ;L

3
2 (Ω))

‖∇xgε‖L3(Ω)‖ϕ‖W 1,∞
0
. εm−β‖ϕ‖W 1,∞

0
; (4.23)

|I(1)
ε,4 | .

∥∥∥[p(1)
ε ]ess

∥∥∥
L∞(0,T ;L2(Ωε))

(
‖∇xgε‖L2(Ω) + ‖1− gε‖L2(Ω)

)
‖ϕ‖W 1,∞

0
. ε

1
2 (α−3β)‖ϕ‖W 1,∞

0
; (4.24)

|I(2)
ε,4 | .

∥∥∥[p(1)
ε ]res

∥∥∥
L∞(0,T ;L1(Ωε))

(
‖∇xgε‖L∞(Ω) + ‖1− gε‖L∞(Ω)

)
‖ϕ‖W 1,∞

0
. εm−α‖ϕ‖W 1,∞

0
; (4.25)

|Iε,5| . ‖G‖W 1,∞(Ω) ‖%̃ε‖L∞(0,T ;L
5
3 (Ω))

‖1− gε‖
L

5
2 (Ω)
‖ϕ‖W 1,∞

0
. ε

6
5 (α−β)‖ϕ‖W 1,∞

0
; (4.26)

|Iε,6| . ‖G‖W 1,∞(Ω)‖ϕ‖W 1,∞
0
|Ω \ Ωε| . ε3(α−β)‖ϕ‖W 1,∞

0
. (4.27)

Due to hypothesis (2.11), the exponent for ε is positive in (4.21)-(4.27). Therefore, condition (4.14) is
satisfied choosing

γ2 := min

{
m− α, α− 3β

2

}
. (4.28)

�

4.5. Ballistic energy inequality.

Lemma 4.5. Under the hypotheses of Theorem 2.5 and defining

H̃ϑ,ε := %̃ε
(
ẽε − ϑ s̃ε

)
,

the integral inequality

ˆ
Ω

[
1

2
%̃ε|ũε|2 +

1

ε2m

(
H̃ϑ,ε − (%̃ε − %)

∂Hϑ(%, ϑ)

∂%
−Hϑ(%, ϑ)

)
− %̃(1)

ε G

]
(τ, ·) dx

+

ˆ τ

0

ˆ
Ω

ϑ

(
ϑ̃−1
ε S(ϑ̃ε,∇xũε) : ∇xũε + κ̃ε

∣∣∣∇x ˜̀(1)
ε

∣∣∣2)dxdt

≤
ˆ

Ω

[
1

2
%̃0,ε|ũ0,ε|2 +

1

ε2m

(
H(%̃0,ε, ϑ̃0,ε)− (%̃0,ε − %)

∂Hϑ(%, ϑ)

∂%
−Hϑ(%, ϑ)

)
− %̃(1)

0,εG

]
dx,

(4.29)

holds for a.e. τ ∈ (0, T ).

Proof. From (2.6) and the extensions define in Section 3.1, it is easy to deduce that

ˆ
Ω

[
1

2
%̃ε|ũε|2 +

1

ε2m

(
H̃ϑ,ε − (%̃ε − %)

∂Hϑ(%, ϑ)

∂%
−Hϑ(%, ϑ)

)
− %̃(1)

ε G

]
(τ, ·) dx

+

ˆ τ

0

ˆ
Ω

ϑ

(
ϑ̃−1
ε S(ϑ̃ε,∇xũε) : ∇xũε + κ̃ε

∣∣∣∇x ˜̀(1)
ε

∣∣∣2)dxdt− ϑκ(ϑ)

ˆ τ

0

ˆ
Ω\Ωε

|∇xPε(`(1)
ε )|2 dxdt

≤
ˆ

Ω

[
1

2
%̃0,ε|ũ0,ε|2 +

1

ε2m

(
H(%̃0,ε, ϑ̃0,ε)− (%̃0,ε − %)

∂Hϑ(%, ϑ)

∂%
−Hϑ(%, ϑ)

)
− %̃(1)

0,εG

]
dx,

holds for a.e. τ ∈ (0, T ). Repeating the passages of Lemma 4.3, we have thatˆ
Ω\Ωε

|∇xPε(`(1)
ε )|2 dx = 0.

Consequently, we get (4.29). �
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5. Convergence

From the uniform bounds established in Lemma 3.1, we deduce the following convergences.

Lemma 5.1. Under the hypotheses of Theorem 2.5, the following convergences hold for ε → 0, passing to
suitable subsequences as the case may be.

%̃ε → % in L∞(0, T ;L
5
3 (Ω)), (5.1)

ϑ̃ε → ϑ in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), (5.2)

ũε ⇀ u in L2(0, T ;W 1,2(Ω;R3)), (5.3)

%̃εũε
∗
⇀ %u in L∞(0, T ;L

5
4 (Ω;R3)), (5.4)√

%̃εũε
∗
⇀
√
%u in L∞(0, T ;L2(Ω;R3)), (5.5)

%̃εũε ⊗ ũε ⇀ % u⊗ u in L2(0, T ;L
30
29 (Ω;R3×3)), (5.6)

S(ϑ̃ε,∇xũε) ⇀ S(ϑ,∇xu) in L
5
4 (0, T ;L

5
4 (Ω;R3×3)), (5.7)

p̃(1)
ε ⇀

∂p(%, ϑ)

∂%
%(1) +

∂p(%, ϑ)

∂ϑ
ϑ(1) in L∞(0, T ;L1(Ω)). (5.8)

%̃εs̃
(1)
ε ⇀ %

(
∂s(%, ϑ)

∂%
%(1) +

∂s(%, ϑ)

∂ϑ
ϑ(1)

)
in L2(0, T ;L

30
23 (Ω), (5.9)

%̃εs̃
(1)
ε ũε ⇀ %

(
∂s(%, ϑ)

∂%
%(1) +

∂s(%, ϑ)

∂ϑ
ϑ(1)

)
u in L2(0, T ;L

30
29 (Ω;R3)), (5.10)

κ̃ε∇x ˜̀(1)
ε ⇀

κ(ϑ)

ϑ
∇xϑ(1) in L

14
13 (0, T ;L

14
13 (Ω;R3)). (5.11)

Proof. The main observation used throughout the proof is that the measures of the holes and of the “residual”
subset tend to zero, as it can be deduced from (3.7) and (3.6); specifically,

ess sup
t∈(0,T )

(|Mres|, |Mholes|)→ 0 as ε→ 0. (5.12)

First of all, we have that

%̃(1)
ε = %(1)

ε 1Ωε =
[
%(1)
ε

]
ess

+
[
%(1)
ε

]
res

;

noticing that, from (3.7), (3.9), for a.e. t ∈ (0, T )∥∥∥[%(1)
ε (t)

]
res

∥∥∥ 5
3

L
5
3 (Ω)

=

∥∥∥∥[%ε(t)− %εm

]
res

∥∥∥∥ 5
3

L
5
3 (Ω)

≤ ε− 5
3m

(
‖[%ε(t)]res‖

5
3

L
5
3 (Ω)

+ %
5
3 |Mres(t)|

)
≤ c(%)ε

m
3 ,

using additionally (3.10), we can deduce, passing to suitable subsequences as the case may be,[
%(1)
ε

]
ess

∗
⇀ %(1) in L∞(0, T ;L2(Ω)), (5.13)[

%(1)
ε

]
res

∗
⇀ 0 in L∞(0, T ;L

5
3 (Ω)), (5.14)

implying, in particular,

%̃(1)
ε

∗
⇀ %(1) in L∞(0, T ;L

5
3 (Ω)). (5.15)

At this point, it is straightforward to deduce the strong convergence (5.1).
If we now use the decomposition (3.5), we can write

ϑ̃(1)
ε = ϑ(1)

ε 1Ωε + Eε
(
ϑ(1)
ε

)
1Ω\Ωε =

[
ϑ(1)
ε

]
ess

+
[
ϑ(1)
ε

]
res

+
[
ϑ(1)
ε

]
holes

.

From (3.7), (3.9) and the fact that ‖[ϑε]res‖L2(Ω) ≤ ‖[ϑε]res‖2L4(Ω) as consequence of Hölder’s inequality, we

have for a.e. t ∈ (0, T )∥∥∥[ϑ(1)
ε (t)

]
res

∥∥∥2

L2(Ω)
=

∥∥∥∥[ϑε(t)− ϑεm

]
res

∥∥∥∥2

L2(Ω)

≤ ε−2m
(
‖[ϑε(t)]res‖4L4(Ω) + ϑ

2|Mres(t)|
)
≤ c(ϑ);
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therefore, using additionally (3.10), (5.12) and estimate (A.3), we obtain, passing to suitable subsequences
as the case may be, [

ϑ(1)
ε

]
ess

∗
⇀ ϑ(1) in L∞(0, T ;L2(Ω)), (5.16)[

ϑ(1)
ε

]
res

∗
⇀ 0 in L∞(0, T ;L2(Ω)), (5.17)[

ϑ(1)
ε

]
holes

∗
⇀ 0 in L∞(0, T ;L2(Ω)), (5.18)

implying, in particular, that

ϑ̃(1)
ε

∗
⇀ ϑ(1) in L∞(0, T ;L2(Ω)). (5.19)

Moreover, from (3.14) we recover that

ϑ̃(1)
ε ⇀ ϑ(1) in L2(0, T ;W 1,2(Ω)). (5.20)

From (5.19), (5.20) it is straightforward to deduce the strong convergence (5.2).

Next, convergences (5.3)–(5.6) can be deduced from (3.11)–(3.13) and (5.1). Similarly, S(ϑ̃ε,∇xũε) =
S(ϑε,∇xuε)1Ωε and therefore, from the constitutive relations (1.16), (1.17) and convergences (5.2), (5.3) we
can deduce (5.7).

We now point out that for any given function f ∈ C1(Oess), denoting

f (1)
ε :=

f(%ε, ϑε)− f(%, ϑ)

εm
, (5.21)

due to convergences (5.13), (5.16), we recover that[
f (1)
ε

]
ess

∗
⇀

∂f(%, ϑ)

∂%
%(1) +

∂f(%, ϑ)

∂ϑ
ϑ(1) in L∞(0, T ;L2(Ω)); (5.22)

see [15, Proposition 5.2] for more details. Therefore, writing

p̃(1)
ε = p(1)

ε 1Ωε =
[
p(1)
ε

]
ess

+
[
p(1)
ε

]
res
,

where, from (3.7), (3.15) we have for a.e. t ∈ (0, T )∥∥∥[p(1)
ε (t)

]
res

∥∥∥
L1(Ω)

≤
∥∥∥∥[p(%ε, ϑε)(t)εm

]
res

∥∥∥∥
L1(Ω)

+
p(%, ϑ)

εm
|Mres(t)| ≤ c(%, ϑ)εm,

using additionally (5.22), we obtain (5.8). Similarly, we write

%̃εs̃
(1)
ε = %εs

(1)
ε 1Ωε = [%ε]ess

[
s(1)
ε

]
ess

+
[
%εs

(1)
ε

]
res

;

from (3.7), (3.9) and (3.16) we get∥∥∥[%εs(1)
ε

]
res

∥∥∥2

L2(0,T ;L
30
23 (Ω))

.

∥∥∥∥[%εs(%ε, ϑε)εm

]
res

∥∥∥∥2

L2(0,T ;L
30
23 (Ω))

+ T
s2(%, ϑ)

ε2m
ess sup
t∈(0,T )

(
‖[%ε(t)]res‖2

L
5
3 (Ω)
|Mres(t)|

1
3

)
≤ c(%, ϑ)(1 + ε

16
15m);

therefore, using additionally (5.1), (5.12) and (5.22), we have

[%ε]ess

[
s(1)
ε

]
ess

∗
⇀ %

(
∂s(%, ϑ)

∂%
%(1) +

∂s(%, ϑ)

∂ϑ
ϑ(1)

)
in L∞(0, T ;L2(Ω)), (5.23)[

%εs
(1)
ε

]
res

⇀ 0 in L2(0, T ;L
30
23 (Ω)). (5.24)

We get, in particular, (5.9). In a similar way, we write

%̃εs̃
(1)
ε ũε = [%ε]ess

[
s(1)
ε

]
ess

ũε +
[
%εs

(1)
ε

]
res

ũε;

18



from (3.7), (3.9), (3.13) and (3.17) we get∥∥∥[%εs(1)
ε

]
res

ũε

∥∥∥2

L2(0,T ;L
30
29 (Ω))

.

∥∥∥∥[%εs(%ε, ϑε)εm

]
res

ũε

∥∥∥∥2

L2(0,T ;L
30
29 (Ω))

+
s2(%, ϑ)

ε2m
ess sup
t∈(0,T )

(
‖[%ε(t)]res‖2

L
5
3 (Ω)
|Mres(t)|

2
5

)
‖ũε‖2L2(0,T ;L6(Ω))

≤ c(%, ϑ)(1 + ε
6
5m),

and hence, from (5.3), (5.12), (5.23), we obtain

[%ε]ess

[
s(1)
ε

]
ess

ũε
∗
⇀ %

(
∂s(%, ϑ)

∂%
%(1) +

∂s(%, ϑ)

∂ϑ
ϑ(1)

)
u in L2(0, T ;L

3
2 (Ω;R3)), (5.25)[

%εs
(1)
ε

]
res

ũε ⇀ 0 in L2(0, T ;L
30
29 (Ω;R3)). (5.26)

Moreover, we can write

κ̃ε∇x ˜̀(1)
ε = κ(ϑε)∇x`(1)

ε 1Ωε + κ(ϑ)∇xPε
(
`(1)
ε

)
1Ω\Ωε

=

[
κ(ϑε)

ϑε

]
ess

∇x
(
ϑε − ϑ
εm

)
+

[
κ(ϑε)

ϑε
∇x
(
ϑε
εm

)]
res

+ κ(ϑ)∇x[`(1)
ε ]holes,

and thus, in virtue of (3.18), (3.19), (5.2), (5.12), (5.16), (5.20) and estimate (A.6), we get[
κ(ϑε)

ϑε

]
ess

∇x
(
ϑε − ϑ
εm

)
⇀

κ(ϑ)

ϑ
∇xϑ(1) in L2(0, T ;L2(Ω;R3)), (5.27)[

κ(ϑε)

ϑε
∇x
(
ϑε
εm

)]
res

⇀ 0 in L
14
13 (0, T ;L

14
13 (Ω;R3)), (5.28)

∇x[`(1)
ε ]holes ⇀ 0 in L2(0, T ;L2(Ω;R3)), (5.29)

leading to (5.11).
Finally, as consequence of the Div-Curl Lemma [15, Proposition 3.3], we obtain

%

(
∂s(%, ϑ)

∂%
%(1) +

∂s(%, ϑ)

∂ϑ
ϑ(1)

)
u = %

(
∂s(%, ϑ)

∂%
%(1) +

∂s(%, ϑ)

∂ϑ
ϑ(1)

)
u

and hence (5.10); notice, in particular, that we can repeat the same passages performed in [15, Section 5.3.2,
(iii)] since only the essential parts of the functions are involved. �

We are ready to let ε → 0 in the weak formulations of the problem on the homogenized domain Ω and
get the first result of our work.

Proposition 5.2. Under the hypotheses of Theorem 2.5, passing to suitable subsequences as the case may
be,

ũε ⇀ u in L2(0, T ;W 1,2(Ω;R3)),

ϑ̃(1)
ε ⇀ ϑ(1) in L2(0, T ;W 1,2(Ω)),

where [u, ϑ(1)] is a dissipative solution to the Oberbeck-Boussinesq system emanating from [u0, ϑ
(1)
0 ] in the

sense of Definition 2.4, with u0, ϑ
(1)
0 the weak limits appearing in (1.24), (1.25), respectively.

Proof. Passage to the limit in the continuity equation. In view of (1.23), (5.1) and (5.4), passing to the limit
in (4.1), we obtain that ˆ τ

0

ˆ
Ω

u · ∇xϕ dxdt = 0

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ]×Ω); in particular, we get that condition (i) of Definition 2.4

is satisfied. Additionally, if we divide (4.1) by εm and let ε → 0, from (1.23), (5.3) and (5.15) we recover
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that [ˆ
Ω

%(1)ϕ(t, ·) dx

]t=τ
t=0

=

ˆ τ

0

ˆ
Ω

[
%(1)∂tϕ+ %(1)u · ∇xϕ

]
dxdt (5.30)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ] × Ω). Therefore, choosing properly the test function ϕ in

(5.30), from (1.22) we can deduce that for a.e. τ ∈ (0, T )ˆ
Ω

%(1)(τ, ·) dx = 0. (5.31)

Passage to the limit in the momentum equation. Convergence (5.4) can be strengthened to

%̃εũε → %u in Cweak([0, T ];L
5
4 (Ω;R3));

hence, from (5.3) and (5.4) we can deduce the regularity class (2.7) for u. Using additionally convergences
(1.23),(1.24), (5.6), (5.7) and (5.15), we are ready to pass to the limit in (4.2), obtaining that

%

[ˆ
Ω

u ·ϕ(t, ·)dx
]t=τ
t=0

= %

ˆ τ

0

ˆ
Ω

(u · ∂tϕ+ u⊗ u : ∇xϕ) dxdt

− µ(ϑ)

ˆ τ

0

ˆ
Ω

(
∇xu +∇>x u

)
: ∇xϕ dxdt+

ˆ τ

0

ˆ
Ω

%(1)∇xG ·ϕ dxdt

(5.32)

holds for any τ ∈ [0, T ] and any ϕ ∈ C1
c ([0, T ] × Ω;R3), ϕ|∂Ω = 0 such that divxϕ = 0. We now introduce

the measure
R ∈ L∞(0, T ;M+(Ω;R3×3

sym)),

dR := % (u⊗ u− u⊗ u) dx,
(5.33)

where the positivity of R follows from the fact that for any ξ ∈ R3 and any open set B ⊂ Ω we have

(u⊗ u− u⊗ u) : (ξ ⊗ ξ) = lim
ε→0

[(ũε ⊗ ũε) : (ξ ⊗ ξ)]− (u⊗ u) : (ξ ⊗ ξ)

= lim
ε→0
|ũε · ξ|2 − |u · ξ|2 = |u · ξ|2 − |u · ξ|2

in D′((0, T )×B) and |u · ξ|2 ≤ |u ·ξ|2 due to the convexity of the function u 7→ |u ·ξ|2; see e.g. [13, Theorem
2.1.1]. Noticing thatˆ

Ω

G∇xG ·ϕ dx =
1

2

ˆ
Ω

∇x|G|2 ·ϕ dx = −1

2

ˆ
Ω

G2 divxϕ dx = 0,

and, due to (1.28) divx(u⊗ u) = u · ∇xu, (5.32) can be rewritten as

%

[ˆ
Ω

u ·ϕ(t, ·)dx
]t=τ
t=0

= %

ˆ τ

0

ˆ
Ω

[u · ∂tϕ− (u · ∇x)u ·ϕ] dxdt− µ(ϑ)

ˆ τ

0

ˆ
Ω

(∇xu +∇>x u) : ∇xϕ dxdt

+

ˆ τ

0

ˆ
Ω

(
%(1) − %

∂%p(%, ϑ)
G

)
∇xG ·ϕ dxdt+

ˆ τ

0

ˆ
Ω

∇xϕ : dR dt.

(5.34)
Passage to the limit in the entropy equation. Similarly, due to convergences (1.23), (1.25), (5.9)–(5.11),

letting ε→ 0 in (4.12) we obtain that

−
ˆ

Ω

%

(
∂s(%, ϑ)

∂%
%

(1)
0 +

∂s(%, ϑ)

∂ϑ
ϑ

(1)
0

)
ϕ(0, ·)dx

=

ˆ T

0

ˆ
Ω

[
%

(
∂s(%, ϑ)

∂%
%(1) +

∂s(%, ϑ)

∂ϑ
ϑ(1)

)(
∂tϕ+ u · ∇xϕ

)
− κ(ϑ)

ϑ
∇xϑ(1) · ∇xϕ

]
dxdt

(5.35)

holds for any ϕ ∈ C1
c ([0, T )×Ω). In particular, choosing properly ϕ in (5.35), from (1.22) and (5.30) we can

deduce that for a.e. τ ∈ (0, T ) ˆ
Ω

ϑ(1)(τ, ·) dx = 0. (5.36)
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Passage to the limit in the Boussinesq equation. Letting ε → 0 in (4.13), in virtue of convergences (5.1)
and (5.8), we obtain that

ˆ T

0

ˆ
Ω

(
∂p(%, ϑ)

∂%
%(1) +

∂p(%, ϑ)

∂ϑ
ϑ(1)

)
divxϕ dxdt = %

ˆ T

0

ˆ
Ω

∇xG ·ϕ dxdt

holds for any ϕ ∈ C∞c ((0, T )× Ω;R3). We get in particular that

∇x
(
∂p(%, ϑ)

∂%
%(1) +

∂p(%, ϑ)

∂ϑ
ϑ(1)

)
= %∇xG ⇒ ∂p(%, ϑ)

∂%
%(1) +

∂p(%, ϑ)

∂ϑ
ϑ(1) = %G+ f(t).

If we integrate the previous identity over (0, τ)×Ω for any τ ∈ [0, T ] we can deduce from (1.19), (5.31) and
(5.36) that f ≡ 0. Therefore,

%(1) = −Aϑ(1) +
%

∂%p(%, ϑ)
G, (5.37)

where A is the constant defined in (1.31).
We can now substitute (5.37) into (5.34) and (5.35); we obtain that condition (ii) of Definition 2.4 is

satisfied and

−%cp
ˆ

Ω

ϑ
(1)
0 ϕ(0, ·) dx =

ˆ T

0

ˆ
Ω

[
%cpϑ

(1)(∂tϕ+ u · ∇xϕ)− (κ(ϑ)∇xϑ(1) + ϑAGu) · ∇xϕ
]

dxdt

holds for any ϕ ∈ C1
c ([0, T )× Ω). In particular, we have used the fact that, from Gibb’s relation (1.4),

∂s(%, ϑ)

∂%
= − 1

%2

∂p(%, ϑ)

∂ϑ
,

and, since the initial data (%
(1)
0 , ϑ

(1)
0 ) are well-prepared and satisfy (1.27),

cpϑ
(1)
0 = ϑ

(
∂s(%, ϑ)

∂%
%

(1)
0 +

∂s(%, ϑ)

∂ϑ
ϑ

(1)
0 + a(%, ϑ)G

)
.

Hence, ϑ(1) satisfies the weak formulation of (1.30).

Next, by interpolation, from (5.3) and (5.4) we can deduce that u ∈ L 10
3 (0, T ;L

10
3 (Ω;R3)), implying that

u · ∇xϑ(1) ∈ Lp(0, T ;Lp(Ω)) with p =
5

4
.

Due to the additional assumption (1.26) on the initial temperature ϑ
(1)
0 , we can apply [15, Theorem 10.22]

to the deduce the regularity class (2.7) for ϑ(1). Consequently, condition (iii) of Definition 2.4 is satisfied.
Passage to the limit in the energy inequality. We first point out that

S(ϑε,∇xuε) : ∇xuε =
µ(ϑε)

2

∣∣∣∣∇xuε +∇>x uε −
2

3
(divxuε)I

∣∣∣∣2 + η(ϑε)|divxuε|2,

and therefore, from (5.2), (5.3), (5.20) and the lower semi-continuity of convex functions, for any ψ ∈ C1[0, T ],
ψ ≥ 0 we have

lim inf
ε→0

ˆ T

0

ˆ
Ω

ϑ

[
1

ϑ̃ε
S(ϑ̃ε,∇xũε) : ∇xũε + κ̃ε

∣∣∣∇x ˜̀(1)
ε

∣∣∣2]ψ dxdt

≥ lim inf
ε→0

ˆ T

0

ˆ
Ω

ϑ

(
1

2

[
µ(ϑε)

ϑε

]
ess

∣∣∣∣∇xuε +∇>x uε −
2

3
(divxuε)I

∣∣∣∣2 +

[
κ(ϑε)

ϑ2
ε

]
ess

∣∣∇xϑ(1)
ε

∣∣2)ψ dxdt

≥ µ(ϑ)

2

ˆ T

0

ˆ
Ω

|∇xu +∇>x u|2 ψ dxdt+
κ(ϑ)

ϑ

ˆ T

0

ˆ
Ω

|∇xϑ(1)|2 ψ dxdt.

Introducing the measure

E ∈ L∞(0, T ;M+(Ω)),

dE :=
1

2
%
(
|U|2 − |U|2

)
dx,

(5.38)
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and noticing that

H̃ϑ,ε − (%̃ε − %)
∂Hϑ(%, ϑ)

∂%
−Hϑ(%, ϑ) =

{
Hϑ(%ε, ϑε)− (%ε − %)

∂Hϑ(%,ϑ)

∂% −Hϑ(%, ϑ) in Ωε,

0 in Ω \ Ωε,

we can pass to the limit in (4.29) and repeat the same passages as in [15, Section 5.5.4], obtaining that the
energy inequality ˆ

Ω

[
1

2
%|u|2 +

1

2%

∂p(%, ϑ)

∂%

∣∣%(1)
∣∣2 +

%

2ϑ

∂e(%, ϑ)

∂ϑ

∣∣ϑ(1)
∣∣2 − %(1)G

]
(τ, ·)dx

+
µ(ϑ)

2

ˆ τ

0

ˆ
Ω

|∇xu +∇>x u|2 dxdt+
κ(ϑ)

ϑ

ˆ τ

0

ˆ
Ω

|∇xϑ(1)|2 dxdt+

ˆ
Ω

dE(τ)

≤
ˆ

Ω

[
1

2
%|u0|2 +

1

2%

∂p(%, ϑ)

∂%

∣∣%(1)
0

∣∣2 +
%

2ϑ

∂e(%, ϑ)

∂ϑ

∣∣ϑ(1)
0

∣∣2 − %(1)
0 G

]
dx

holds for a.e. τ ∈ (0, T ). Substituting (1.27) and (5.37), we get that condition (iv) of Definition 2.4 is
satisfied.

Finally, condition (v) of Definition 2.4 follows from the fact that Tr[u ⊗ u] = |u|2; this concludes the
proof. �

6. Weak–strong uniqueness

Our goal in this section is to prove the weak–strong uniqueness principle for the target system: if the
Oberbeck–Boussinesq approximation admits a strong solution, then it must coincide with the dissipative
solution emanating from the same initial data.

We start recalling the following result on the local existence of strong solutions, cf. [8, Theorem 2.1].
Notice that in [8] the authors considered time-periodic solutions with small data; however, the proof, based
on Galerkin approximation and uniform bounds, can be adapted to get local existence with large data.
We also recall the recent result by Abbatiello and Feireisl [1] where the existence was proven considering
non-local boundary conditions for the temperature.

Theorem 6.1 (Existence of strong solutions to the Oberbeck–Boussinesq system). There exists a positive
time T ∗ and a trio of functions

U ∈W 1,2(0, T ∗;L2(Ω;R3)) ∩ L∞(0, T ∗;W 1,2(Ω;R3)) ∩ L2(0, T ∗;W 2,2(Ω;R3)), (6.1)

Θ ∈W 1,2(0, T ∗;W 1,2(Ω)) ∩ L∞(0, T ∗;W 2,2(Ω)) ∩ L2(0, T ∗;W 2,3(Ω)), (6.2)

Π ∈ L2(0, T ;W 1,2(Ω)) (6.3)

satisfying the Oberbeck–Boussinesq system (1.28)–(1.34) a.e. in (0, T ∗)× Ω.

Theorem 6.2 (Weak–strong uniqueness principle). Let [U,Θ,Π] be a strong solution of the Oberbeck-
Boussinesq system (1.28)–(1.34) on [0, T ∗], the existence of which is guaranteed by Theorem 6.1. Let [u, θ(1)]
be a dissipative solution of the same system with dissipation defects R,E in the sense of Definition 2.4. If

[U(0, x),Θ(0, x)] = [u(0, x), ϑ(1)(0, x)] for a.e. x ∈ Ω (6.4)

then R ≡ E ≡ 0 and

[U(t, x),Θ(t, x)] = [u(t, x), ϑ(1)(t, x)] for a.e. (t, x) ∈ (0, T ∗)× Ω. (6.5)

Proof. Let us define

E(u, ϑ(1) | U,Θ) :=
1

2

(
%|u−U|2 +

%

ϑ
cp|ϑ(1) −Θ|2

)
and for any τ ∈ [0, T ∗] the spatial integral of it, known as relative energy functional,

E(u, ϑ(1) | U,Θ)(τ) :=

ˆ
Ω

E(u, ϑ(1) | U,Θ)(τ, ·) dx

=
1

2

ˆ
Ω

(
%|u−U|2 +

%

ϑ
cp|ϑ(1) −Θ|2

)
(τ, ·) dx.
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Clearly, E(u, ϑ(1) | U,Θ)(τ) ≥ 0 for any τ ∈ [0, T ∗] and the equality holds if and only if (6.5) holds.
Therefore, it is enough to show that

E ≡ 0, E(u, ϑ(1) | U,Θ) ≡ 0 a.e. in (0, T ∗). (6.6)

Let us at first suppose that [U,Θ,Π] are smooth and compactly supported functions such that U|∂Ω = 0
and divxU = 0. Then, ϕ = U can be used as test function in the weak formulation (2.8), obtaining

%

[ˆ
Ω

(u ·U)(t, ·) dx

]t=τ
t=0

= %

ˆ τ

0

ˆ
Ω

(u · ∂tU + (u⊗ u) : ∇xU) dxdt

− 2µ(ϑ)

ˆ τ

0

ˆ
Ω

Dxu : DxU dxdt−A
ˆ τ

0

ˆ
Ω

ϑ(1)∇xG ·U dxdt

+

ˆ τ

0

ˆ
Ω

∇xU : dR dt,

(6.7)

where we have introduced symmetric velocity gradient, defined as

Dxv =
∇xv +∇>x v

2
.

Similarly, ϕ = Θ can be used as test function in the weak formulation of (1.30), obtaining

%

ϑ
cp

[ˆ
Ω

(ϑ(1)Θ)(t, ·) dx

]t=τ
t=0

=
%

ϑ
cp

ˆ τ

0

ˆ
Ω

ϑ(1) (∂tΘ + u · ∇xΘ) dxdt

− κ(ϑ)

ϑ

ˆ τ

0

ˆ
Ω

∇xϑ(1) · ∇xΘ dxdt+A

ˆ τ

0

ˆ
Ω

Θ∇xG · u dxdt.

(6.8)

Moreover, using ϕ = |U|2, |Θ|2 as test function in the weak formulation of the incompressibility condition
(1.28), we have the following identity

1

2

[ˆ
Ω

(
%|U|2 +

%

ϑ
cp|Θ|2

)
(t, ·)

]t=τ
t=0

= %

ˆ τ

0

ˆ
Ω

[U · ∂tU + (u · ∇x)U ·U] dxdt

+
%

ϑ
cp

ˆ τ

0

ˆ
Ω

Θ(∂tΘ + u · ∇xΘ) dxdt.

(6.9)

We can now subtract (6.7), (6.8) and sum (6.9) to the energy inequality (2.9), obtaining

[
E(u, ϑ(1) | U,Θ)(t)

]t=τ
t=0

+

ˆ
Ω

dE(τ)

+ 2µ(ϑ)

ˆ τ

0

ˆ
Ω

Dxu : Dx(u−U) dxdt+
κ(ϑ)

ϑ

ˆ τ

0

ˆ
Ω

∇xϑ(1) · ∇x(ϑ(1) −Θ) dxdt

≤ −
ˆ τ

0

ˆ
Ω

(u−U) · (%[∂tU + (U · ∇x)U] +AΘ∇xG) dxdt

− 1

ϑ

ˆ τ

0

ˆ
Ω

(ϑ(1) −Θ)
[
%cp(∂tΘ + U · ∇xΘ)− ϑA∇xG ·U

]
dxdt

− %
ˆ τ

0

ˆ
Ω

[(u−U) · ∇x] U · (u−U) dxdt− %

ϑ
cp

ˆ τ

0

ˆ
Ω

(ϑ(1) −Θ)∇xΘ · (u−U) dxdt

−
ˆ τ

0

ˆ
Ω

∇xU : dR dt.
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Next, we add to the previous inequality the following vanishing integrals,

µ(ϑ)

ˆ τ

0

ˆ
Ω

[(u−U) ·∆xU + 2Dx(u−U) : DxU] dxdt,

κ(ϑ)

ϑ

ˆ τ

0

ˆ
Ω

[
(ϑ(1) −Θ)∆xΘ +∇x(ϑ(1) −Θ) · ∇xΘ

]
dxdt,

ˆ τ

0

ˆ
Ω

(u−U) · ∇xΠ dxdt,

getting finally the relative energy inequality,[
E(u, ϑ(1) | U,Θ)(t)

]t=τ
t=0

+

ˆ
Ω

dE(τ)

+ 2µ(ϑ)

ˆ τ

0

ˆ
Ω

|Dx(u−U)|2 dxdt+
κ(ϑ)

ϑ

ˆ τ

0

ˆ
Ω

|∇x(ϑ(1) −Θ)|2 dxdt

≤ −
ˆ τ

0

ˆ
Ω

(u−U) ·
(
%[∂tU + (U · ∇x)U] +∇xΠ− µ(ϑ)∆xU +AΘ∇xG

)
dxdt

− 1

ϑ

ˆ τ

0

ˆ
Ω

(ϑ(1) −Θ)
[
%cp(∂tΘ + U · ∇xΘ)− κ(ϑ)∆xΘ− ϑA∇xG ·U

]
dxdt

− %
ˆ τ

0

ˆ
Ω

[(u−U) · ∇x] U · (u−U) dxdt− %

ϑ
cp

ˆ τ

0

ˆ
Ω

(ϑ(1) −Θ)∇xΘ · (u−U) dxdt

−
ˆ τ

0

ˆ
Ω

∇xU : dR dt.

(6.10)

The class of functions [U,Θ,Π] satisfying the relative energy inequality can be enlarged by a density
argument, as long as all the involved integrals remain well-defined. In particular (6.10) holds for [U,Θ,Π]
belonging to the regularity classes defined in (6.1)–(6.3).

If we additionally suppose that [U,Θ,Π] is a strong solution of (1.28)–(1.34) satisfying (6.4), we get that
E(u, ϑ(1) | U,Θ)(0) and the first two integrals on the right-hand side of (6.10) vanish; in particular, (6.10)
reduced to

E(u, ϑ(1) | U,Θ)(τ) +

ˆ
Ω

dE(τ)

+ 2µ(ϑ)

ˆ τ

0

ˆ
Ω

|Dx(u−U)|2 dxdt+
κ(ϑ)

ϑ

ˆ τ

0

ˆ
Ω

|∇x(ϑ(1) −Θ)|2 dxdt

≤ −%
ˆ τ

0

ˆ
Ω

[(u−U)⊗ (u−U)] : ∇xU dxdt− %

ϑ
cp

ˆ τ

0

ˆ
Ω

(ϑ(1) −Θ)∇xΘ · (u−U) dxdt

−
ˆ τ

0

ˆ
Ω

∇xU : dR dt,

(6.11)

for a.e τ ∈ (0, T ). Clearly,

%|(u−U)⊗ (u−U)| . 1

2
%Tr[(u−U)⊗ (u−U)] =

1

2
%|u−U|2,

%

ϑ
cp|(u−U)(ϑ(1) −Θ)| . 1

2
%|u−U|2 +

1

2

%

ϑ
cp|ϑ(1) −Θ|2,

|R| . Tr[R] . E,

where in the last inequality we have used the compatibility condition (2.10). Therefore, for a.e. τ ∈ (0, T )
we obtain

E(u, ϑ(1) | U,Θ)(τ) +

ˆ
Ω

dE(τ) ≤ c(∇xU,∇xΘ)

ˆ τ

0

(
E(u, ϑ(1) | U,Θ)(t) +

ˆ
Ω

dE(t)

)
dt.

Applying the Gronwall argument, we recover in particular that for a.e. τ ∈ (0, T )

E(u, ϑ(1) | U,Θ)(τ) +

ˆ
Ω

dE(τ) ≤ 0.
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Since the left-hand side of the previous inequality is the sum of two non-negative quantities, the only
possibility is that (6.6) holds; we get the claim. �

6.1. Proof of Theorem 2.5. In Proposition 5.2, we have proven that, passing to suitable subsequences as
the case may be,

[ũε, ϑ̃
(1)
ε ] ⇀ [u, ϑ(1)] in L2(0, T ;W 1,2(Ω;R4)), (6.12)

where [u, ϑ(1)] is a dissipative solution to the Oberbeck-Boussinesq system in the sense of Definition 2.4

with dissipation defects R, E defined by (5.33), (5.38), respectively. From the fact that [U0,Θ0] = [u0, θ
(1)
0 ],

Theorem 2.5 is therefore a straightforward corollary of Theorem 6.2.

Appendix A. The extension operator Pε

The aim of this section is to construct the extension operator Pε for the logarithmic part `
(1)
ε , cf. Section

3.1; in particular, we want the Neumann boundary condition to be preserved. Moreover, in order to easily
extend the weak formulations of the entropy equality (2.4) and the ballistic energy inequality (2.6) to the
homogenized domain Ω, we opted for a harmonic extension on the holes.

We begin recalling the following result, which can be found in [21, Lemma 4.1].

Lemma A.1. Suppose Ωε is given by (1.7). There exists an extension operator

Eε : W 1,2(Ωε)→W 1,2(Ω)

such that for each ϕ ∈W 1,2(Ωε) and any 1 ≤ q ≤ ∞ we have

Eε(ϕ) = ϕ in Ωε, (A.1)

‖Eε(ϕ)‖W 1,2(Ω) ≤ c‖ϕ‖W 1,2(Ωε), (A.2)

‖Eε(ϕ)‖Lq(Ω) ≤ c‖ϕ‖Lq(Ωε), (A.3)

where the positive constant c is independent of ε.

We are now ready to construct the operator Pε.

Proposition A.2. Suppose Ωε is given by (1.7). There exists an extension operator

Pε : W 1,2(Ωε)→W 1,2(Ω)

such that for each ϕ ∈W 1,2(Ωε) we have

Pε(ϕ) = ϕ in Ωε, (A.4)

∆xPε(ϕ) = 0 in Ω \ Ωε, (A.5)

‖Pε(ϕ)‖W 1,2(Ω) ≤ c‖ϕ‖W 1,2(Ωε), (A.6)

where the positive constant c is independent of ε.

Proof. Let ϕ ∈ W 1,2(Ωε) be fixed. From [21, Lemma 4.1], for any ε > 0 and any n = 1, . . . , N(ε), there
exists an extension operator

Eε,n : W 1,2(Bε,n,δ0 \Bε,n)→W 1,2(Bε,n)

such that

Eε,n(ϕ) = ϕ in Bε,n,δ0 \Bε,n, (A.7)

‖∇xEε,n(ϕ)‖L2(Bε,n) ≤ c‖∇xϕ‖L2(Bε,n,δ0\Bε,n), (A.8)

‖Eε,n(ϕ)‖L2(Bε,n) ≤ c‖ϕ‖L2(Bε,n,δ0\Bε,n), (A.9)

Let us now consider the translation

Ẽε,n(ϕ)(y) := Eε,n(ϕ)(xε,n + εαy), for any y ∈ B1(0);
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Clearly, Ẽε,n(ϕ) ∈W 1,2(B1(0)) and therefore, there exists a unique P̃ε,n(ϕ) ∈W 1,2(B1(0)) such that

∆yP̃ε,n(ϕ) = 0 on B1(0), (A.10)

P̃ε,n(ϕ) = Ẽε,n(ϕ) on ∂B1(0), (A.11)

‖∇yP̃ε,n(ϕ)‖L2(B1(0);R3) ≤ c‖∇yẼε,n(ϕ)‖L2(B1(0);R3), (A.12)

‖P̃ε,n(ϕ)‖2L2(B1(0)) ≤ c
(
‖Ẽε,n(ϕ)‖2L2(B1(0)) + ‖∇yẼε,n(ϕ)‖2L2(B1(0);R3)

)
; (A.13)

cf. [24, Theorem 7.1.2] (more precisely, one should first solve the Laplace equation with shifted boundary

data Ẽε,n(ϕ)− [Ẽε,n(ϕ)]B1(0), where [Ẽε,n(ϕ)]B1(0) denotes the mean value

[Ẽε,n(ϕ)]B1(0) :=
1

|B1(0)|

ˆ
B1(0)

Ẽε,n(ϕ)(y) dy,

and shift one again the correspondent solution). Defining

Pε,n(ϕ)(x) := P̃ε,n(ϕ)

(
x− xε,n
εα

)
for any x ∈ Bε,n,

we have that Pε,n(ϕ) ∈W 1,2(Bε,n) and from (A.7), (A.10) and (A.11)

∆xPε,n(ϕ) = 0 on Bε,n,

Pε,n(ϕ) = ϕ on ∂Bε,n.

Moreover, from (A.8) and (A.12)

‖∇xPε,n(ϕ)‖2L2(Bε,n;R3) = εα‖∇yP̃ε,n(ϕ)‖2L2(B1(0);R3) ≤ c‖∇xϕ‖
2
L2(Bε,n,δ0\Bε,n),

while from (A.9) and (A.13) we have

‖Pε,n(ϕ)‖2L2(Bε,n) = ε3α‖P̃ε,n(ϕ)‖2L2(B1(0))

≤ c
(
‖Eε,n(ϕ)‖2L2(Bε,n) + ε2α‖∇xEε,n(ϕ)‖2L2(Bε,n)

)
≤ c‖ϕ‖2W 1,2(Bε,n,δ0\Bε,n).

It is therefore enough to define

Pε(ϕ) :=

{
ϕ on Ωε,

Pε,n(ϕ) on Bε,n for any n = 1, . . . , N(ε),

to get the claim. �

Appendix B. The restriction operator Rε
In this section we construct the linear operator Rε that restricts to the perforated domain Ωε functions

initially defined on the whole domain Ω. This type of operator plays a crucial role in the extension of the
weak formulation of the balance of momentum (2.3) to the homogenized domain Ω, cf. Section 4.2.

Proposition B.1. Let p ∈ (1,∞) be fixed and let Ωε the perforated domain defined by (1.7). For any
ε ∈ (0, 1) there exists a linear operator

Rε : W 1,p
0 (Ω;R3)→W 1,p

0 (Ωε;R3)

such that for any ϕ ∈W 1,p
0 (Ω;R3),

‖Rε(ϕ)‖W 1,p
0 (Ωε)

≤ c
(

1 + ε
3(α−β)

p −α
)
‖ϕ‖W 1,p

0 (Ω), (B.1)

where the positive constant c does not depend on ε. Moreover, if divxϕ = 0 then divxRε(ϕ) = 0.
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The operator Rε can be constructed implementing the technique developed by Allaire for the case p = 2,
cf. [3, Section 2.2]. Notice that an analogous restriction operator with β = 1 was considered by Diening,
Feireisl and Lu when constructing the inverse of the divergence operator on perforated domains, cf. [10,
equation (3.12)], and more recently by Lu, cf. [20, Theorem 2.1].

We introduce
Cε,n := Dε,n \Bε,n

In order to prove Proposition B.1, we need three technical lemmas.

Lemma B.2. For any give x0 ∈ R3, 0 < r1 < r2, a > 0, there exists

ϕa ∈ C∞c
(
B(x0, ar2)

)
, 0 ≤ ϕa ≤ 1, ϕa

∣∣
B(x0,ar1)

= 1, (B.2)

such that for any 1 ≤ p ≤ ∞,

‖ϕa‖Lp(R3) ≤ c(r2) a
3
p , (B.3)

‖∇xϕa‖Lp(R3;R3) ≤ c(r1, r2) a
3
p−1. (B.4)

Proof. It is easy to construct

ϕ ∈ C∞c
(
B(0, r2)

)
, 0 ≤ ϕ ≤ 1, ϕ

∣∣
B(0,r1)

= 1.

Now it is enough to define

ϕa(x) := ϕ

(
x− x0

a

)
.

Clearly, conditions (B.2) are satisfied; moreover, for any 1 ≤ p ≤ ∞, we have

‖ϕa‖Lp(R3) = ‖ϕa‖Lp(B(x0,ar2)) = a
3
p ‖ϕ‖Lp(B(0,r2)) = a

3
p ‖ϕ‖Lp(R3),

‖∇xϕa‖Lp(R3;R3) = ‖∇xϕa‖Lp(B(x0,ar2)\B(x0,ar1)) = a
3
p−1‖∇xϕ‖Lp(B(0,r2)\B(0,r1)) = a

3
p−1‖∇xϕ‖Lp(R3;R3).

�

Lemma B.3. Let p ∈ (1,∞) be fixed. For any ε ∈ (0, 1) and any n = 1, . . . , N(ε) there exists a linear
operator

Lε,n : W 1,p(Dε,n;R3)→W 1,p(Cε,n;R3)

such that for any ϕ ∈W 1,p(Dε,n;R3)

Lε,n(ϕ) =

{
ϕ on ∂Dε,n,

0 on ∂Bε,n,
(B.5)

and

‖∇xLε,n(ϕ)‖Lp(Cε,n) ≤ c
(
‖∇xϕ‖Lp(Dε,n) + ε

3(α−β)
p −α‖ϕ‖Lp(Dε,n)

)
, (B.6)

where the positive constant c does not depend on ε or n.

Proof. Let δ0, δ1 be two positive fixed constants such that

0 < δ1 < 1 < δ0,
δ0
δ1
<

3

2
;

then, defining for any constant δ > 0

Bε,n,δ := B(xε,n, δε
α),

Dε,n,δ := B

(
xε,n, δ

(
εα +

1

2
εβ
))

,

we have the following inclusions:
Bε,n ⊂ Bε,n,δ0 ⊂ Dε,n,δ1 ⊂ Dε,n.

Next, we introduce two cut-off functions φε,n, ψε,n; indeed, it is sufficient to apply Lemma B.2 choosing first
x0 = xε,n, r1 = 1, r2 = δ1, a = εα, and subsequently x0 = xε,n, r1 = δ1, r2 = 1, a = εα + 1

2ε
β to get

φε,n ∈ C∞c (Bε,n,δ0), 0 ≤ φε,n ≤ 1, φ
∣∣
Bε,n

= 1, ‖∇xφε,n‖L∞(R3) ≤ c(δ0)ε−α. (B.7)

27



Figure 3. The inclusion: Bε,n ⊂ Bε,n,δ0 ⊂ Dε,n,δ1 ⊂ Dε,n

ψε,n ∈ C∞
c (Dε,n), 0 ≤ ψε,n ≤ 1, ψ

∣∣
Dε,n,δ1

= 1, ‖∇xψε,n‖L∞(R3) ≤ c(δ1)ε
−β . (B.8)

We will denote

Eε,n := Dε,n \Dε,n,δ1 , |Eε,n| = c(δ1)ε
3β

Fε,n := Bε,n,δ0 \Bε,n, |Fε,n| = c(δ0)ε
3α.

Letting

〈h〉B :=
1

|B|

ˆ

B

h dx,

for any ϕ ∈ W 1,p(Dε,n;R3), we introduce

aε,n(ϕ) := (1− φε,n)
(
〈ϕ〉Dε,n

)
, (B.9)

bε,n(ϕ) := (1− ψε,n)
(
ϕ− 〈ϕ〉Dε,n

)
, (B.10)

and the linear operator
Lε,n(ϕ) := aε,n(ϕ) + bε,n(ϕ).

Notice that

• if x ∈ ∂Dε,n then φε,n(x) = ψε,n(x) = 0 and Lε,n(ϕ) = ϕ;
• if x ∈ ∂Bε,n then φε,n(x) = ψε,n(x) = 1 and Lε,n(ϕ) = 0;

hence, (B.5) is satisfied. Furthermore, from (B.7), Jensen and Hölder inequalities we have

‖∇xaε,n(ϕ)‖Lp(Fε,n) =
∥∥∇xφε,n ⊗ 〈ϕ〉Dε,n

∥∥
Lp(Fε,n)

� ‖∇xφε,n‖L∞(R3)

∣∣〈ϕ〉Dε,n

∣∣ |Fε,n|
1
p

≤ c(δ0)ε
( 3

p−1)α 1

|Dε,n|

ˆ

Dε,n

|ϕ| dx ≤ c(δ0)ε
( 3

p−1)α |Dε,n|
1
p′ −1 ‖ϕ‖Lp(Dε,n)

≤ c(δ0)ε
3(α−β)

p −α‖ϕ‖Lp(Dε,n).

(B.11)

From Poincaré’s inequality and the fact that εα < εβ , we have

∥∥ϕ− 〈ϕ〉Dε,n

∥∥
Lp(Dε,n)

�

(
εα +

1

2
εβ

)
‖∇xϕ‖Lp(Dε,n) � εβ‖∇xϕ‖Lp(Dε,n).

Therefore, from (B.8) we can estimate

‖∇xbε,n(ϕ)‖Lp(Eε,n) ≤
∥∥(1− ψε,n)∇x

(
ϕ− 〈ϕ〉Dε,n

)∥∥
Lp(Dε,n)

+
∥∥∇xψε,n ⊗

(
ϕ− 〈ϕ〉Dε,n

)∥∥
Lp(Dε,n)

� ‖∇xϕ‖Lp(Dε,n)
+ ε−β

∥∥ϕ− 〈ϕ〉Dε,n

∥∥
Lp(Dε,n)

� ‖∇xϕ‖Lp(Dε,n)
.

(B.12)

Putting together (B.11) and (B.12), we finally obtain (B.6). �
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Lemma B.4. Let p ∈ (1,∞) be fixed. For any ε ∈ (0, 1) and any n = 1, . . . , N(ε) there exists a linear
operator

Sε,n : W 1,p(Dε,n;R3)→W 1,p(Cε,n;R3)

such that for any ϕ ∈W 1,p(Dε,n;R3)

divxSε,n(ϕ) = divxϕ+
1

|Cε,n|

ˆ
Bε,n

divxϕ dx, (B.13)

Sε,n(ϕ) =

{
ϕ on ∂Dε,n,

0 on ∂Bε,n,
(B.14)

and

‖∇xSε,n(ϕ)‖Lp(Cε,n) ≤ c
(
‖∇xϕ‖Lp(Dε,n) + ε

3(α−β)
p −α‖ϕ‖Lp(Dε,n)

)
, (B.15)

where the positive constant c does not depend on ε or n.

Proof. Let ϕ ∈W 1,p(Dε,n;R3) be fixed. Defining

F(ϕ) := divx [ϕ− Lε,n(ϕ)] +
1

|Cε,n|

ˆ
Bε,n

divxϕ dx,

where Lε,n is the linear operator constructed in Lemma B.3, we have that F(ϕ) ∈ Lp(Cε,n) and from (B.5),ˆ
Cε,n

F(ϕ) dx =

ˆ
Dε,n

divxϕ dx−
ˆ
Cε,n

divxLε,n(ϕ) dx =

ˆ
∂Dε,n

ϕ · n dσx −
ˆ
∂Dε,n

ϕ · n dσx = 0.

Therefore, if we consider the standard Bogovskii operator

BCε,n : Lp0(Cε,n)→W 1,p
0 (Cε,n;R3),

there exists BCε,n(F(ϕ)) ∈W 1,p
0 (Cε,n;R3) such that divxBCε,n(F(ϕ)) = F(ϕ) and

‖∇xBCε,n(F(ϕ))‖Lp(Cε,n) .

(
1 +
|Dε,n|
|Cε,n|

)
‖∇xϕ‖Lp(Dε,n) + ‖Lε,n(ϕ)‖Lp(Cε,n)

. ‖∇xϕ‖Lp(Dε,n) + ‖Lε,n(ϕ)‖Lp(Cε,n),

(B.16)

where we used the fact that
|Dε,n|
|Cε,n|

= 1 +
|Bε,n|
|Cε,n|

. 1 + εα−β ≤ 2.

If we now consider the Stokes problem

∇xqε,n −∆xvε,n = −∆x

[
ϕ− Lε,n(ϕ)− BCε,n(F(ϕ))

]
,

divxvε,n = 0,

on Cε,n, with the boundary condition
vε,n = 0 on ∂Cε,n,

it is known, see e.g. [16], Theorem IV.6.1, point (b), that it admits a solution

(qε,n,vε,n) ∈ Lp(Cε,n)×W 1,p
0 (Cε,n;R3)

such that
‖∇xvε,n‖Lp(Cε,n) ≤

∥∥∇x[ϕ− Lε,n(ϕ)− BCε,n(F(ϕ))
]∥∥
Lp(Cε,n)

. (B.17)

It is sufficient to define
Sε,n(ϕ) := vε,n + Lε,n(ϕ) + BCε,n(F(ϕ))

Indeed, equation (B.13) and the boundary conditions (B.14) are satisfied, as well as the compatibility con-
dition, ˆ

Cε,n

divxSε,n(ϕ) dx =

ˆ
Cε,n

divxϕ dx+

ˆ
Bε,n

divxϕ dx =

ˆ
Dε,n

divxϕ dx =

ˆ
∂Dε,n

ϕ · n dσx

=

ˆ
∂Dε,n

Sε,n(ϕ) · n dσx =

ˆ
∂Cε,n

Sε,n(ϕ) · n dσx.

Finally, combining (B.6), (B.16) and (B.17), we get (B.15). �
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Proof of Proposition B.1. Given ϕ ∈W 1,p(Ω;R3), it is enough to define

Rε(ϕ) :=


ϕ on Ω \

⋃N(ε)
n=1 Dε,n,

Sε,n(ϕ) on Cn,ε, n = 1, . . . , N(ε),

0 on Bn,ε, n = 1, . . . , N(ε),

where Sε,n is the linear operator constructed in Lemma B.4. Clearly Rε is linear and it “glues well” on the
boundary of each Cε,n. Moreover, from (B.15), we have

‖∇xRε(ϕ)‖Lp(Ωε) ≤ ‖∇xϕ‖Lp
(

Ω\
⋃N(ε)
n=1 Dε,n

) +

N(ε)∑
n=1

‖∇xSε,n(ϕ)‖Lp(Cε,n)

. ‖∇xϕ‖Lp
(

Ω\
⋃N(ε)
n=1 Dε,n

) +

N(ε)∑
n=1

‖∇xϕ‖Lp(Dε,n) + ε
3(α−β)

p −α
N(ε)∑
n=1

‖ϕ‖Lp(Dε,n);

from the fact that Dε,n1
∩ Dε,n2

= ∅ if n1 6= n2, we get (B.1). Finally, if divxϕ = 0 on Dε,n for any
n = 1, . . . , N(ε), from (B.13) we obtain divxSε,n(ϕ) = 0 on Cε,n for any n = 1, . . . , N(ε). Consequently, if
divxϕ = 0 on Ω, divxRε(ϕ) = 0 on Ωε. �

We conclude this section with the following result, which is extensively used in Section 4.2.

Lemma B.5. Let r, q ∈ (1,∞) and p ∈
[

3
2 ,∞

)
be such that p, q > r. Then for any ϕ ∈ C∞c (Ω;R3)

‖ϕ−Rε(ϕ)‖Lr(Ωε) . ε
3β( 1

r−
1
p )
(

1 + ε
3(α−β)

p −β
)
‖ϕ‖

W
1,

3p
p+3

0 (Ω)
, (B.18)∥∥∇x[ϕ−Rε(ϕ)

]∥∥
Lr(Ωε)

. ε3β( 1
r−

1
q )
(

1 + ε
3(α−β)

q −α
)
‖ϕ‖W 1,q

0 (Ω), (B.19)

Proof. From the proof of Proposition B.1 it is clear that ϕ−Rε(ϕ) vanishes everywhere with the exception of
the disjoints sets Dε,n, n = 1, . . . , N(ε). Therefore, form Hölder’s inequality and the fact that |Dε,n| ' ε3β ,
we have

‖ϕ−Rε(ϕ)‖Lr(Ω) =

N(ε)∑
n=1

‖ϕ−Rε(ϕ)‖Lr(Dε,n) ≤ |Dε,n|
1
r−

1
p

N(ε)∑
n=1

‖ϕ−Rε(ϕ)‖Lp(Dε,n)

. ε3β( 1
r−

1
p )‖ϕ−Rε(ϕ)‖Lp(Ω).

Next, from the Sobolev embedding

W
1, 3p
p+3

0 (Ω) ↪→ Lp(Ω), for p ∈
[

3

2
,∞
)
,

and using (B.1), we obtain (B.18); similarly, we get (B.19). �
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[25] A. Mikelić, Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. Ann. Mat.
Pura Appl. 158(4): 167–179; 1991
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