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1 Introduction

The subject of this article is a new model of a compressible viscous fluid satisfying the so-called slip
boundary condition of friction type (SBCF). In this paper we prove the existence of weak solutions to
this model.
Classical (or strong) solutions to the compressible Navier-Stokes equations can be expected only for
small data (or, more generally, for data close to an equilibrium). The first such result for the Cauchy
problem for the Navier-Stokes-Fourier system (when heat conductivity is included) goes back to the
eighties ([18]; for further developments, see e.g. [20] or [2]. However, classical solutions are not known
to exist globally in time if the data is arbitrary. The concept of weak solutions was for the first time
successfully used by Lions (see [17]) in the case of isentropic flow. In this book, several kinds of
boundary conditions were considered: The no-slip boundary condition, which describes the vanishing
of the fluid velocity on the boundary of the domain, periodic boundary conditions as well as the case of
a fluid covering the whole space. A detailed proof of the existence of weak solutions in the case of the
no-slip boundary condition can further be found in [21]. A weak solution in the case of heat-conducting
fluids satisfying the no-slip boundary condition was for the first time constructed by Feireisl (see [4])
by combining the internal energy balance and the global energy balance. Another approach, presented
by Feireisl and Novotný, is based on the entropy inequality (see [5]). In the latter book the case of the
complete-slip boundary condition, i.e. the case of fluids for which the normal component of the velocity
vanishes on the boundary, is additionally taken into consideration. Moreover, the existence of weak
solutions in the case of incompressible fluids is treated for example in [16] for the no-slip boundary
condition, periodic boundary conditions as well as in the whole space RN .
The no-slip boundary condition has been the most widely used given its success in reproducing the
standard velocity profiles for incompressible/compressible viscous fluids for many years. The no-slip
hypothesis seems to be in good agreement with experiments but it can lead to certain rather surprising
conclusions e.g. the most striking one being the absence of collisions of rigid objects immersed in a
linearly viscous fluid [11, 12].
The Navier-Stokes equations have also been studied in combination with more uncommon boundary
conditions. The so-called Navier boundary condition, which allows for slip, offers more freedom and is
likely to provide a physically acceptable solution at least to some of the paradoxical phenomena result-
ing from the no-slip boundary condition, see, e.g. Moffat [19]. Recent developments in macrofluidic
and nanofluidic technologies have renewed interest in the slip behavior that may become significant
in the small spatial scales even for a relatively small Reynolds number (cf. Priezjev and Troian [22]).
Mathematically, the behavior of the tangential component of the velocity is a delicate issue.
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We further mention the Coulomb friction law boundary condition, which is used for the description
of fluids that can slip on the boundary provided that the tangential component of the stress tensor is
sufficiently large. In [1] the existence of weak solutions to the incompressible Navier-Stokes equations
satisyfing this boundary condition is proved in the case of two and three spatial dimensions. Another
boundary condition modelling this phenomenon is the slip boundary condition of friction type intro-
duced by H. Fujita in [7] and [8] H. Fujita for the stationary Stokes and Navier–Stokes equations. The
same boundary condition was studied for the incompressible Navier-Stokes equations in [14], wherein
the existence of solutions is proved globally in time in the 2D case and locally in time in the 3D case. A
numerical analysis of the slip boundary condition of friction type can be found e.g. in [13]. Moreover,
some applications to real world problems with numerical simulations are given in [9], [10] and [15].
In the present article we combine, for the first time, the compressible Navier-Stokes equations with
the slip boundary condition of friction type. We prove the existence of weak solutions in this setting.
Since the slip boundary condition of friction type is particularly interesting for the modelling of fluids
in moving domains or fluid-structure interaction, our result can be considered as a first stepping
stone towards the study of these more sophisticated problems. From the mathematical point of view,
the main novelty in our existence proof lies in the addition of one further approximation level to
the classical approximation method used for the construction of weak solutions to the compressible
Navier Stokes equations with the no-slip boundary condition, c.f. for example [21]. This additional
approximation level follows closely the approximation methods used in [1] and [14] in the case of the
incompressible Navier-Stokes equations with the Coulomb friction law boundary condition and the
slip boundary condition of friction type respectively. It consists of the addition of a boundary integral
to the momentum equation which contains the gradient of a smooth and convex approximation of
the absolute value of the velocity field, c.f. (28) below. Due to the convexity of the approximation,
this boundary integral can later be replaced by the desired boundary integral which expresses the
slip boundary condition of friction type in our weak formulation (12). Another novelty results from
the fact that, as in the incompressible case in [14], the weak formulation to our problem merges the
momentum equation and the energy inequality into one single relation, c.f. (12) below. For technical
reasons, however, we also need to study the momentum equation separately in order to deduce the
same improved density estimates and the effective viscous flux identity as in the existence proof in
the case of the no-slip boundary condition in [21], which are required for passing to the limit in the
pressure term. As a consequence we are forced to also pass to the limit in the momentum equation
separately on every approximation level, which leads to a relation which we refer to as the alternative
momentum equation, c.f. Remark 4.1 below.
The paper is organised as follows. In Section 2 we present the full model. A corresponding weak
formulation of this model is presented in Section 3. In the same section we further show that this
weak formulation constitutes a suitable definition of weak solutions and present our main result. The
full proof of the main result extends across the Sections 4.1–4.5.

2 Model

The model which we study in this paper is as follows. We consider a viscous compressible fluid
occupying an open and bounded domain Ω � R3 with locally Lipschitz boundary Γ � BΩ and with
outward unit normal vector n on Γ. The density ρ : p0, T q�ΩÑ R and the velocity field u : p0, T q�ΩÑ
R3 of the fluid are determined via the system

Btρ�∇ � pρuq � 0 in p0, T q � Ω, (1)

Btpρuq �∇ � pρub uq � ∇ � σ � ρf in p0, T q � Ω, (2)

ρp0q � ρ0, pρuqp0q � q in Ω, (3)

u � n � 0 on p0, T q � Γ, (4)

|pσnqτ | ¤ g, pσnqτ � uτ � g |uτ | � 0 on p0, T q � Γ, (5)
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where the Cauchy stress tensor

σ � σpu, pq :� 2νDpuq � λp∇ � uqId� pId, Dpuq :�
1

2
∇u� 1

2
p∇uqT

with the viscosity coefficients ν, λ P R, satisfying

ν ¡ 0, λ� ν ¥ 0,

can be split into its normal component σn � σn � n and its tangential component στ � σn � σnn.
Moreover the positive constant g in (5) is the threshold of slippage. Further the pressure p is defined
by the isentropic constitutive relation

p � aργ , γ ¡
3

2
, a ¡ 0.

In the considered model the equations (1) and (2) represent the continuity equation and the momentum
equation, respectively. The initial conditions are presented in (3). Finally the equations (4) and (5)
represent the slip boundary condition of friction type.

3 Weak formulation and main result

Here we present the definition of a weak solution to the system (1)–(5) and state our main result.
To this end we denote by H1

npΩ;R3q the Sobolev space of all functions in H1pΩ;R3q whose normal
component vanishes on the boundary,

H1
n

�
Ω;R3

�
:�

 
u P H1

�
Ω;R3

�
: u � n � 0 on Γ

(
.

Definition 3.1 Let T ¡ 0 and let Ω � R3 be a bounded domain. Let ν, λ, a, γ P R be given constants
which satisfy

ν, a ¡ 0, γ ¡
3

2
, ν � λ ¥ 0. (6)

Further assume that f P L8pp0, T q � Ωq, g P L2pp0, T q � Γq and assume the initial data to satisfy the
conditions

0 ¤ ρ0 P L
γpΩq, q P L1pΩq,

|q|2

ρ0
P L1pΩq, q � 0 a.e. in tx P Ω : ρ0pxq � 0u (7)

Then a pair of functions pρ, uq, such that

0 ¤ ρ P L8 p0, T ;Lγ pΩ;Rqq
£
C
�
r0, T s;L1 pΩ;Rq

�
and u P L2

�
0, T ;H1

n

�
Ω,R3

��
, (8)

is said to be a weak solution to the system (1)–(5) if it satisfies:

(i) the continuity equation in the distributional sense,

Btρ�∇ � pρuq � 0 in D1
�
p0, T q � R3

�
, (9)

and the renormalized sense,

Btζpρq �∇ � pζ pρquq �
�
ζ 1 pρq ρ� ζ pρq

�
∇ � u � 0 in D1

�
p0, T q � R3

�
, (10)

for all ζ PC1 pr0,8qq :
��ζ 1prq�� ¤ crσ @r ¥ 1 for certain c ¡ 0, σ ¡ �1, (11)

(ii) the momentum and energy inequality»
Ω

1

2
ρp0q |up0q|2 �

aργp0q

γ � 1
dx�

»
Ω

1

2
ρpτq |upτq|2 �

aργpτq

γ � 1
dx

�

» τ

0

»
Ω
�ρu � Btϕ� pρub uq : ∇ϕ� p2νDpuq � λ p∇ � uq idq : r∇ϕ�∇us

� p id : ∇ϕ� ρf � rϕ� us dxdt�

» τ

0

»
BΩ
g|ϕ| � g|u|dΓdt ¥ 0 (12)

for almost all τ P r0, T s and all ϕ P Dpp0, τq � Ωq with ϕ � n|BΩ � 0 and
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(iii) the initial conditions

ρp0q � ρ0, lim
τÑ0�

»
Ω
ρpτ, xqupτ, xq � ϕpxq dx �

»
Ω
qpxq � ϕpxq dx (13)

for all ϕ P DpΩq with ϕ � n |BΩ � 0.

In order to make sure that Definition (3.1) is a suitable definition of weak solutions, we show that any
classical solution to the system (1)–(5) is also a weak solution and, vice versa, any weak solution with
a sufficient amount of regularity solves the problem (1)–(5) in the classical sense. In order to obtain
the variational inequality (12) from the system (1)–(5) we first pick an arbitrary time τ P r0, T s and
multiply the momentum equation (2) by an arbitrary function ϕ P Dpp0, τq � Ωq with ϕ � n |BΩ � 0.
Integrating (by parts) over p0, τq � Ω we obtain the identity» τ

0

»
Ω
�ρu � Btϕ� pρub uq : ∇ϕ � σ : ∇ϕ dxdt �

» τ

0

»
Ω
ρf � ϕ dxdt�

» τ

0

»
BΩ
pσnqτ � ϕ dΓdt. (14)

Similarly, we test the momentum equation (2) by u and subtract from it the continuity equation (1)
tested by 1

2 |u|
2. Hence we infer the energy inequality

1

2

»
Ω
ρpτq|upτq|2 �

aργpτq

γ � 1
dx�

» τ

0
2ν |Dpuq|2 � λ |∇ � u|2 dxdt

�
1

2

»
Ω
ρp0q |up0q|2 �

aργp0q

γ � 1
dx�

» τ

0

»
Ω
ρf � u dxdt�

» τ

0

»
BΩ
pσnqτ � u dΓdt.

The last identity we substract from the equation (14) and then we use the boundary condition (5).
Finally we obtain»

Ω

1

2
ρp0q |up0q|2 �

aργp0q

γ � 1
dx�

»
Ω

1

2
ρpτq |upτq|2 �

aργpτq

γ � 1
dx�

» τ

0

»
Ω
�ρu � Btϕ� pρub uq : ∇ϕ

� p2νDpuq � λ p∇ � uq idq : r∇ϕ�∇us � p id : ∇ϕ� ρf � rϕ� us dxdt�

» τ

0

»
BΩ
g|ϕ| � g|u|dΓdt

�

» τ

0

»
BΩ
pσnqτ � rϕ� us dΓdt�

» τ

0

»
BΩ
g|ϕ| � g|u|dΓdt (15)

�

» τ

0

»
BΩ
pσnqτ � ϕ dΓdt�

» τ

0

»
BΩ
g|ϕ|dΓdt ¥ 0, (16)

which is exactly the variational inequality (12). Conversely, we need to check that any sufficiently
regular weak solution in the sense of Definition 3 also satisfies the system (1)–(5) in the classical sense.
Hereof, the continuity equation (1), the initial condition (3) and the boundary condition (4) are clear.
For the derivation of the momentum equation we test the variational inequality (12) by ψu�ϕ for some
arbitrary functions ψ P Dp0, T q, ϕ P Dpp0, T q � Ωq. Under exploitation of the assumed smoothness of
ρ and u this yields the relation»

Ω

1

2
ρp0q |up0q|2 �

aργp0q

γ � 1
dx�

»
Ω

1

2
ρpτq |upτq|2 �

aργpτq

γ � 1
dx�

» T

0

»
Ω
Bt pρuq � pψu� ϕq

� p∇ � pρub uqq � pψu� ϕq � p∇ � p2νDpuq � λ p∇ � uq idqq � rp1� ψqu� ϕs �∇p � pψu� ϕq

� ρf � rp1� ψqu� ϕs dxdt�

» T

0

»
BΩ
g|ψu| � g|u|dΓdt ¥ 0

Letting ψ Ñ 1 we see that the ϕ-independent terms in this inequality cancel each other and we are
left with the equality» T

0

»
Ω
Bt pρuq � ϕ� p∇ � pρub uqq � ϕ � p∇ � p2νDpuq � λ p∇ � uq idqq � ϕ�∇p � ϕ� ρf � ϕ dxdt � 0.

(17)
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Hence, by the arbitrary choice of ϕ P Dpp0, T q � Ωq, the classical formulation (2) of the momentum
equation is satisfied. This in particular implies that the identity (15) again holds true. Subtracting
(15) from the given variational inequality (12) we find the estimate

�

» τ

0

»
BΩ
pσnqτ � rϕ� us dΓdt ¤

» τ

0

»
BΩ
g|ϕ| � g|u|dΓdt (18)

for any ϕ P Dpp0, τq � Ωq with ϕ � n|BΩ � 0 and, by a density argument, for any ϕ P L2p0, τ ;H1
npΩqq.

We choose s � T and test this inequality by u � ϕ. Hence, replacing ϕ by u � ϕ, we conclude, from
the reverse triangle inequality, the estimate����

» τ

0

»
BΩ
pσnqτ � ϕ dΓdt

���� ¤
» τ

0

»
BΩ
g|ϕ|dΓdt.

It follows that |pσnqτ | ¤ g on BΩ and further, from the estimate (18) with the choice ϕ � 0, that
pσnqτ � u� g|u| � 0 on BΩ. Hence also the boundary condition (5) is satisfied.

We are now in the position to present the main result of our article, which is as follows:

Theorem 3.1 Let T ¡ 0 and let Ω � R3 be a bounded domain of class C2,η
�
C0,1 for some η ¡ 0.

Let the data ν, λ, a, γ P R, f P L8pp0, T q � Ωq, g P L2pp0, T q � BΩq, ρ0 P L
γpΩq and q P L1pΩq satisfy

the conditions (6)–(7). Then there exists a weak solution pρ, uq, in the sense of Definition 3.1, to the
system (1)–(5).

We remark that the C2,η-regularity of Ω in Theorem 3.1 is necessary for the construction of the density
in the approximate system in Section 4.1 below, c.f. [5, Lemma 3.1, Theorem 10.22, Theorem 10.23],
[21, Proposition 7.39]. Moreover, the C1-regularity of Ω is needed to extend u to an L2p0, T ;H1pR3qq-
function when showing that the couple pρ, uq satisfies the renormalized continuity equation in Section
4.4 below, c.f. [3, Section 5.4, Theorem 1].

4 Approximate system

In this section we present an approximate version of the problem introduced in Section 2, followed by a
brief explanation of the individual approximation levels. We fix four parameters n P N, δ, ϵ, α ¡ 0, each
of them associated to one of these approximation levels. We further fix some parameter β ¡ maxtγ, 4u.
By Vn � C2pΩ;R3q � L2pΩ;R3q we denote an n-dimensional vector space equipped with the L2pΩq-
inner product, such that¤

nPN
Vn is dense in W 1,p

n pΩq :�
 
ϕ PW 1,ppΩq : ϕ � n|Γ � 0

(
@1 ¤ p   8. (19)

For technical reasons (c.f. the deduction of the convergence (65) below) we assume that without loss
of generality the sequence of spaces pVnqn contains a subsequence pV0,nqn of spaces V0,n � C2

0 pΩ;R3q
such that ¤

nPN
V0,n is dense in W 1,p

0 pΩq @1 ¤ p   8. (20)

Moreover, following the approximation method used for the proof of the existence of weak solutions
to the Navier-Stokes equations with the Coulomb friction law boundary condition in [1, Section 3], we
denote by

jδpvq :�

#
|v| for |v| ¡ δ,

|v|2

2δ � δ
2 for |v| ¤ δ,

a convex approximation jδ P C
1pR3q

�
C1,1
loc pR

3q of the absolute value function. We remark that while
in [1] the local Lipschitz-continuity of the gradient of jδ is not required, it is necessary in our setting
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in order to achieve continuity of the operator T in the fixed point argument for the construction of an
approximate solution in Section 4.1 below. The approximation jδ further has the properties

jδp0q �0, (21)

grad jδpvq � v ¥0 @ v P R3, (22)

|grad jδpvq| ¤1 @ v P R3, (23)

|jδpvq � |v|| ¤δ @ v P R3, (24)

where grad jδ denotes the gradient of jδ. Our approximate problem on the highest approximation level
consists of finding functions

ρδ PW :�
!
ψ P C

�
r0, T s;C2,η

�
Ω
��£

C1
�
r0, T s;C0,η

�
Ω
��

: ∇ψ � n|Γ � 0
)
, (25)

uδ PC pr0, T s;Vnq (26)

which satisfy the approximate continuity equation

Btρδ �∇ � pρδuδq �ϵ∆ρδ, ∇ρδ � n|Γ � 0. (27)

in p0, T q � Ω and the approximate momentum equation»
Ω
Bt pρδuδq � ϕ dx �

»
Ω
pρδuδ b uδq : ∇ϕ� 2νD puδq : Dpϕq � λp∇ � uδqp∇ � ϕq � aργδ∇ � ϕ� αρβδ∇ � ϕ

� ρδf � ϕ� ϵ p∇uδ∇ρδq � ϕ dx�
»
BΩ
g grad jδpuδq � ϕ dΓ (28)

in r0, T s for all ϕ P Cpr0, T s;Vnq as well as the initial conditions

ρp0, xq � ρ0pxq, up0, xq � u0pxq @x P Ω. (29)

Here the initial data u0 for the velocity field is defined by

u0 :� Pn

�
q

ρ0



P Vn, (30)

where Pn denotes the orthogonal projection from L2pΩq onto Vn, and the initial data ρ0, q is assumed
to satisfy the additional regularity criteria

ρ0 P C
2,η

�
Ω
�
, 0   α ¤ ρ0 ¤ α

� 1
2β , ∇ρ0 � n|Γ � 0, q P C2

�
Ω
�
. (31)

Having introduced the full approximate problem (25)–(29) we now give a short explanation of the in-
dividual approximation levels in the order, in which we will later pass to the limit in them, beginning
with the δ-level. On this level, following the proof of the existence of weak solutions to the incom-
pressible Navier-Stokes equations with the Coulomb friction law boundary conditions in [1], we add a
boundary integral containing the quantity grad jδpuδq to the momentum equation. The convexity of
jδ then allows us to transform the approximate momentum equation (28) into an inequality in which
the desired boundary condition is incorporated in the same way as in the momentum and energy
inequality (12) in our weak formulation.
The remaining approximation levels coincide precisely with the corresponding approximation levels
in the classical theory of the existence of weak solutions to the compressible Navier-Stokes equations,
which can be found for example in [21, Chapter 7]. On the n-level we carry out a Galerkin approxi-
mation, which allows us to find a solution to the approximate system. More precisely, this procedure
reduces the problem to a finite dimensional problem in the spatial component, which can be solved
via the classical theory of ordinary differential equations and a fixed point argument. The reason why
we pass to the limit with respect to δ Ñ 0 before passing to the limit in the Galerkin approximation
lies in the high spatial regulariy available on the Galerkin level. This regularity allows us to achieve
uniform convergence of the velocity field uδ when letting δ tend to zero, which is required for passing
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to the limit in the quantity jδpuδq.
On the ϵ-level the additional quantity ϵ∆ρδ is added to the continuity equation. This procedure (c.f.
[21, Section 7.6]), known as the parabolic regularization of the continuity equation, is required to
make sure that the density in our approximate system and consequently also in our final system is
non-negative. For the sake of preserving an energy inequality under this modification of the continuity
equation, the term ϵp∇uδ∇ρδq is moreover added to the momentum equation.
Lastly we have the α-level, on which we add the artificial pressure αρβ is added to the momentum
equation. The choice β ¡ maxtγ, 4u provides us with with a higher regularity of the density, which
in turn allows us to pass to the limit in the quantity ϵp∇uδ∇ρδq in the limit passage with respect to
nÑ8, see [21, Section 7.8.2].

4.1 Solution to the approximate problem

Our proof of the existence of a solution to the approximate problem (25)–(29) mainly follows the
classical existence theory for the compressible Navier-Stokes equations (c.f. for example [21, Section
7.7]) with the difference lying only in the consideration of the additional boundary integral in the
momentum equation (28). We start by fixing an arbitrary function w P Cpr0, T s;Vnq. Then by the
classical theory for the parabolic Neumann problem (see [5, Lemma 3.1, Theorem 10.22, Theorem
10.23], [21, Proposition 7.39]) there exists a unique function ρ � ρpwq PW which solves the problem

Btρ�∇ � pρwq � ϵ∆ρ in r0, T s � Ω, (32)

ρp0, �q � ρ0p�q in Ω, 0   ρ ¤ ρ0p�q ¤ ρ   8, in Ω (33)

and which in addition satisfies the estimate

0   ρ exp
�
�}w}L1p0,t;Vnq

	
¤ ρpt, �q ¤ ρ exp

�
}w}L1p0,t;Vnq

	
  8 in Ω (34)

for all t P r0, T s. Further this solution satisfies the estimates

}ρpwq}Cpr0,T s;C2,ηpΩqq � }ρpwq}C1pr0,T s;C0,ηpΩqq ¤cpwq, (35)��ρ �w1
�
� ρ

�
w2

���
Cpr0,T s;L2pΩqq

¤c
�
w1, w2

� ��w1 � w2
��
Cpr0,T s;W 1,8pΩqq

(36)

for all w,w1, w2 P Cpr0, T s;Vnq, where the constants cpwq, cpw1, w2q ¡ 0 are bounded as long as
w,w1, w2 are bounded in the norm on Cpr0, T s;Vnq. Moreover, due to the bound (34) of ρpwq away
from 0, it is easy to see from the classical theory of ordinary differential equations that there exists a
unique solution u � upwq P Cpr0, T s;Vnq to the associated linearized problem»

Ω
Bt pρpwquq � ϕ dx �

»
Ω
pρpwqw b uq : ∇ϕ� 2νD puq : Dpϕq � λp∇ � uqp∇ � ϕq

�
�
aρpwqγ � αρpwqβ

	
∇ � ϕ� ρpwqf � ϕ� ϵ p∇u∇ρpwqq � ϕ dx

�

»
BΩ
g grad jδpwq � ϕ dΓ in r0, T s, (37)

up0, �q �u0p�q in Ω. (38)

This allows us to consider the desired solution uδ to the momentum equation (28) as a fixed point of
the operator

T : C pr0, T s;Vnq Ñ C pr0, T s;Vnq , Tpwq :� upwq,

mapping w P Cpr0, T s;Vnq to the corresponding solution to the linearized problem (37). The existence
of such fixed point follows from the version [3, Section 9.2.2, Theorem 4] of the Schauder fixed point
theorem. We show that T is continuous, compact and fixed points of sT are bounded in Cpr0, T s;Vnq
uniformly with respect to s P r0, 1s. To this end we introduce the operator

Mρpwqptq : Vn Ñ V �
n ,

@
Mρpwqptqv, ϕ

D
V �n �Vn

:�

»
Ω
ρpwqptqv � ϕ dx @ϕ, v P Vn.
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The bound (34) of ρpwq away from zero implies the existence of an inverse M�1
ρpwqptq of Mρpwqptq, with

the properties ���M�1
ρpwqptq

���
LpV �n ,Vnq

¤
1

infp0,T q�Ω ρpwq
, (39)

���M�1
ρpw1qptq

�M�1
ρpw2qptq

���
LpV �n ,Vnq

¤
cpnq�

infp0,T q�Ωmin tρ pw1q , ρ pw2qu
�2 ��ρ �w1

�
ptq � ρ

�
w2

�
ptq

��
L1pΩq

,

(40)

as well as

Bt
@
Mρpwqptqvptq, ϕ

D
V �n �Vn

�
A
M�1

ρpwqptqMBtρpwqptqM
�1
ρpwqptqvptq �M�1

ρpwqptqBtvptq, ϕ
E
V �n �Vn

in D1p0, T q, (41)���M�1
ρpwqptqMBtρpwqptqM

�1
ρpwqptq

���
LpV �n ,Vnq

¤
cpnq�

infp0,T q�Ω ρpwq
�2 }Btρpwqptq}L1pΩq (42)

for any t P r0, T s, any w,w1, w2, v P Cpr0, T s;Vnq and any ϕ P Vn, c.f. [21, Section 7.7.1]. Denoting

xN pw, ρ, uq , ϕyV �n �Vn
:�

»
Ω
pρpwqw b uq : Dpϕq � aργpwq∇ � ϕ� αρβpwq∇ � ϕ

� 2νD puq : Dpϕq � λp∇ � uqp∇ � ϕq � ρpwqf � ϕ� ϵ p∇u∇ρpwqq � ϕ dx

�

»
BΩ
g grad jδpwq � ϕ dΓ,

@
pρ0u0q

� , ϕ
D
V �n �Vn

:�

»
Ω
ρ0u0 � ϕ dx,

for any ϕ P Vn, the solution u � Tpwq to the linearized problem (37), (38) can be expressed as

uptq �M�1
ρpwqptq

�
pρ0u0q

� �

» t

0
N pw, ρpwq, uq dτ

�
. (43)

Combining this identity with the estimates (34), (35), (39), (40) and the local Lipschitz-continuity of
grad jδ we deduce that the operator T is continuous. Further, the combination of the identity (43)
with the identity (41) and the estimates (34), (36), (39) and (42) leads to the estimate

}Btu}
2
L2p0,T ;Vnq

¤ cpn,wq (44)

with a constant cpn,wq ¡ 0 which remains bounded as long as w is bounded in the norm of Cpr0, T s;Vnq.
From this estimate we infer that the operator T is also compact. Finally we consider an arbitrary
number s P r0, 1s and an arbitrary fixed point u P Cpr0, T s;Vnq of the operator sT. We test the corre-
sponding linearized momentum equation (37) by u and subtract from it the corresponding continuity
equation (32), tested by 1

2 |u|
2. This yields the energy equality

d

dt

»
Ω

1

2
ρpuqptq|uptq|2 � s

aργpuqptq

γ � 1
� s

αρβpuqptq

β � 1
dx�

»
Ω
2ν|Dpuqptq|2 � λ |∇ � u|2 dx

� sϵγ

»
Ω
ργ�2puq |∇ρpuq|2 dx� sϵβ

»
Ω
ρβ�2puq |∇ρpuq|2 dx�

»
BΩ
sg grad jδpuq � u dΓ

�s

»
Ω
ρpuqptqfptq � uptq dx (45)

for all t P r0, T s. According to the property (22) of jδ it holds that grad jδpuq � u ¥ 0 and, by
assumption, g is nonnegative. Hence, from the Gronwall Lemma, we deduce that all fixed points u of
sT are bounded in the norm of Cpr0, T s;Vnq, independently of s. This and the continuity as well as
the compactness of T provides the conditions for the fixed point theorem [3, Section 9.2.2, Theorem
4], which proves the existence of a fixed point u P Cpr0, T s;Vnq of T. Setting pρδ, uδq � pρpuq, uq, the
pair pρδ, uδq constitutes the desired solution to our approximate problem (25)–(29). Integrating the
energy inequality (45), which ρδ, uδ satisfy for s � 1 we have shown the following proposition:
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Proposition 4.1 Let the conditions of Theorem 3.1 be satisfied, let n P N, δ, ϵ, α ¡ 0 and let β ¡
maxt4, γu. Moreover, let u0 P Vn be defined by (30) and assume ρ0, q, defined by (7), to satisfy the
additional regularity conditions (31). Then there exists a solution pρδ, uδq P W � Cpr0, T s;Vnq to the
approximate problem (25)–(29) which in addition satisfies the energy equality

»
Ω

1

2
ρδpτq|uδpτq|

2 �
aργδ pτq

γ � 1
�
αρβδ pτq

β � 1
dx�

» τ

0

»
Ω
2ν|D puδq ptq|2 � λ |∇ � uδ|

2 � ϵγργ�2
δ |∇ρδ|2

� ϵβρβ�2
δ |∇ρδ|2 dxdt�

» τ

0

»
BΩ
g grad jδ puδq � uδ dΓdt

�

» τ

0

»
Ω
ρδf � uδ dxdt�

»
Ω

1

2
ρ0|u0|

2 �
aργ0
γ � 1

�
αρβ0
β � 1

dx (46)

for all τ P r0, T s.

4.2 Limit passage with respect to δ Ñ 0

Our next goal is to pass to the limit in the regularization of the function j, i.e. the approximation
parameter δ tend to zero. From the energy inequality (46), the equivalence of norms on the finite
dimensional space Vn and the estimates (34), (35) for the solution ρδ to the Neumann problem (32),
(33) with w � uδ, we infer the uniform bounds

}ρδ}Cpr0,T s;C2,ηpΩqq � }ρδ}C1pr0,T s;C0,ηpΩqq �

���� 1ρδ
����
Cpr0,T s�Ωq

� }uδ}Cpr0,T s;Vnq
¤ c

with a constant c ¡ 0 independent of δ. In particular, the bound for uδ implies that the bound (44)
for Btuδ still holds true,

}Btu}
2
L2p0,T ;Vnq

¤ c (47)

with a constant c ¡ 0 independent of δ. Consequently, making use of the Aubin-Lions Lemma, we
may extract subsequences and find functions

0 ¤ ρ P

"
ψ P C

�
r0, T s;H1,2pΩq

�£
C pr0, T s;LppΩqq

£
L2

�
0, T ;H2,2pΩq

�
:

Btψ P L2 pp0, T q � Ωq , ∇ψ � n|BΩ � 0

*
@1 ¤ p   8, (48)

u P
 
ϕ P C pr0, T s;Vnq : Btϕ P L

2 p0, T ;Vnq
(
,

such that

ρδ Ñρ in C
�
r0, T s;H1,2pΩq

�
and C pr0, T s;LppΩqq , uδ Ñ u in C pr0, T s;Vnq , (49)

ρδ á ρ in L2
�
0, T ;H2,2pΩq

�
, Btρδ á Btρ in L2 pp0, T q � Ωq , Btuδ á Btu in L2 p0, T ;Vnq .

(50)

Clearly, these convergences are sufficient to pass to the limit in the continuity equation (27) and infer
that the limit functions ρ, u satisfy

Btρ�∇ � pρuq �ϵ∆ρ a.e. in p0, T q � Ω. (51)

As in the weak formulation (12) we want to combine the momentum equation and the energy inequality
into one single relation. To this end we integrate the momentum equation (28) over r0, τ s for some
arbitrary τ P r0, T s and subtract from it the energy equality (46). Further, we exploit the convexity
and the C1-regularity of jδ to estimate

grad jδ puδq � pϕ� uδq ¤ jδpϕq � jδ puδq ,
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which allows us to bring the boundary integrals into the same form as in the weak formulation (12).
Altogether we obtain the inequality

»
Ω

1

2
ρ0|u0|

2 � a
ργ0
γ � 1

�
αρβ0
β � 1

dx�

»
Ω

1

2
ρδpτq|uδpτq|

2 � a
ργδ pτq

γ � 1
�
αρβδ pτq

β � 1
dx

�

» τ

0

»
Ω
�ρδuδ � Btϕ� pρδuδ b uδq : ∇ϕ� 2νD puδq : Dpϕ� uδq � λp∇ � uδqp∇ � pϕ� uδqq

� aργδ∇ � ϕ� αρβδ∇ � ϕ� ϵaργ�2
δ |∇ρδ|2 � ϵβρβ�2

δ |∇ρδ|2 � ϵ p∇uδ∇ρδq � ϕ� ρδf � pϕ� uδq dxdt

�

» τ

0

»
BΩ
gjδpϕq � gjδpuδq dΓdt ¥ 0 @ϕ P C1

c pp0, τq;Vnq , τ P r0, T s. (52)

Due to the uniform convergences (24) of jδ and (49) of uδ we can pass to the limit in the boundary
integral, » τ

0

»
BΩ
gjδpϕq � gjδpuδq dΓdtÑ

» τ

0

»
BΩ
g |ϕ| � g |u| dΓdt.

The strong convergences (49) also allow us to pass to the limit in the remaining terms of the inequal-
ity (52). Hence, dropping the nonpositive quantity �ϵaργ�2

δ |∇ρδ|2 from the left-hand side of this
inequality we conclude that the limit functions ρ, u satisfy

»
Ω

1

2
ρ0|u0|

2 � a
ργ0
γ � 1

�
αρβ0
β � 1

dx�

»
Ω

1

2
ρpτq|upτq|2 � a

ργpτq

γ � 1
�
αρβpτq

β � 1
dx

�

» τ

0

»
Ω
�ρu � Btϕ� pρub uq : ∇ϕ� 2νD puq : Dpϕ� uq � λp∇ � uqp∇ � pϕ� uqq

� aργ∇ � ϕ� αρβ∇ � ϕ� ϵβρβ�2 |∇ρ|2 � ϵ p∇u∇ρq � ϕ� ρf � pϕ� uq dxdt

�

» τ

0

»
BΩ
g |ϕ| � g |u| dΓdt ¥ 0 @ϕ P C1

c pp0, τq;Vnq , τ P r0, T s. (53)

Remark 4.1 As a technical tool we will need in (65), (77) and (79) a limit version of the momentum
equation (28) itself. In this limit equation it will be sufficient to restrict ourselves to test functions
vanishing on Γ. Using such test functions in the momentum equation (28), we see that the boundary
integral vanishes and we can pass to the limit to obtain the identity

�

» T

0

»
Ω
ρu � Btϕ dxdt �

» T

0

»
Ω
pρub uq : ∇ϕ� 2νD puq : Dpϕq � λp∇ � uqp∇ � ϕq � aργ∇ � ϕ

� αρβ∇ � ϕ� ρf � ϕ� ϵ p∇u∇ρq � ϕ dxdt (54)

for all ϕ P C1
c pp0, T q;Vnq such that ϕ|Γ � 0.

4.3 Limit passage with respect to nÑ 8

In this section we pass to the limit in the Galerkin approximation, i.e. we let n tend to infinity.
Choosing ϕ � 0 in the momentum and energy inequality (53) we obtain a classical energy inequality. In
combination with the classical regularity for the regularized continuity equation (51) (see for example
[21, Lemma 7.37, Lemma 7.38, Section 7.8.2]) this yields the uniform bounds��ρn|un|2��L8p0,T ;L1pΩqq

� }ρn}L8p0,T ;LβpΩqq � }un}L2p0,T ;H1pΩqq ¤c, (55)

ϵ
1
2

����ρβ
2
n

����
L2p0,T ;H1pΩqq

� ϵ }∇ρn}Lrpp0,T q�Ωq � ϵ }Btρn}Lr̃pp0,T q�Ωq � ϵ2 }∆ρn}Lr̃pp0,T q�Ωq ¤c (56)

for a constant c ¡ 0 independent of n P N, where we can choose

r :�
10β � 6

3β � 3
¡ 2, r̃ :�

5β � 3

4β
¡ 1,
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provided that β ¡ 4. Interpolations between these bounds lead to the uniform bounds

}ρnun}
L8p0,T ;L

2β
β�1 pΩqq

� }ρnun b un}
L

6β
4β�3 pp0,T q�Ωq

� ϵ
3
5β }ρn}

L
5
3βpp0,T q�Ωq

¤ c (57)

for another constant c ¡ 0 independent of n. Combining the bounds (55)–(57) with the Aubin-Lions
Lemma we may extract a subsequence and conclude the existence of functions u P L2p0, T ;H1

npΩqq,

ρub u P L
6β

4β�3 pp0, T q � Ωq and

0 ¤ ρ PL8
�
0, T ;LβpΩq

	£
L2

�
0, T ;H1pΩq

�£
Lr̃

�
0, T ;W 2,r̃pΩq

�
with the properties

Btρ P L
r̃ pp0, T q � Ωq , ∇ρ � n|BΩ � 0 (58)

such that

ρn Ñ ρ in Lβ pQq and L2
�
0, T ;H1,2pΩq

�
, ρn á ρ in Lr̃

�
0, T ;W 2,r̃pΩq

�
, (59)

un á u in L2p0, T ;H1,2pΩqq, Btρn á Btρ in Lr̃ pp0, T q � Ωq , (60)

ρnun
�
á ρu in L8

�
0, T ;L

2β
β�1 pΩq

	
, ρnun b un á ρub u in L

6β
4β�3 pp0, T q � Ωq . (61)

With these convergences, we can directly pass to the limit in the continuity equation (51) and infer
that

Btρ�∇ � pρuq �ϵ∆ρ a.e. in p0, T q � Ω. (62)

This equation immediately implies that also the renormalized regularized continuity equation

Btζ pρq �∇ � pζ pρquq �
�
ζ 1 pρq ρ� ζ pρq

�
∇ � u� ϵ∆ζ pρq � �ϵζ2 pρq |∇ρ|2 ¤ 0 a.e. in p0, T q � Ω

(63)

holds true for all convex functions ζ P C2pr0,�8qq. In order to pass to the limit in the momentum and
energy inequality (53) we need to identify the limit function ρub u from the convergence (61). To this
end we test the alternative momentum equation (54) by ψϕ for some arbitrary functions ψ P Dp0, T q
and ϕ P VN , N ¤ n, such that ϕ|Γ � 0. Under exploitation of the uniform bounds (55)–(57) this leads
us to the dual estimate ����Bt

»
Ω
ρnun � ϕ dx

����
L
mint 6

5 , 2r
2�rup0,T q

¤ c

for a constant c ¡ 0 depending on N but not on n. This allows us to infer from the Arzelà-Ascoli
theorem that »

Ω
ρnp�, xqunp�, xq � ϕ dxÑ

»
Ω
ρp�, xqup�, xq � ϕ dx in C pr0, T sq (64)

for any fixed ϕ P VN , N P N. Since the Galerkin spaces VN have been choosen such that the functions

ϕ P
�8

N�1 VN with ϕ|Γ � 0 are dense in L
2β
β�1 pΩq (c.f. (20)) and due to the continuity of the functions

ρnun with respect to the time variable (c.f. (49)) the convergence (64) suffices to infer that

ρnun Ñ ρu in Cweak

�
r0, T s;L

5
4 pΩq

	
and thus in L2

�
0, T ;H�1pΩq

�
, (65)

which is sufficient to identify, as desired,

ρub u � ρub u a.e. in p0, T q � Ω. (66)

For the limit passage in the boundary integrals we note that by the weak convergence of un in
L2p0, T ;H1pΩqq and the trace theorem, un also converges weakly in L2pp0, T q � BΩq. Hence the
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nonnegativity of g P L2pp0, T q � BΩq and the weak lower semicontinuity of the L1pp0, T q � BΩq-norm
imply that » τ

0

»
BΩ
g |u| dΓdt ¤ lim inf

nÑ8

» τ

0

»
BΩ
g |un| dΓdt @τ P r0, T s.

This, in combination with the convergences (59)–(61), the identification (66) of the weak limit of the
convective term and the weak lower semicontinuity of norms, gives us all the ingredients required for
passing to the limit in both the momentum and energy inequality (52) and the alternative momentum
equation (54). Due to the density of the Galerkin functions in W 1,p

n pΩq and W 1,p
0 pΩq, 1 ¤ p   8 (c.f.

(19), (20)) we infer that

»
Ω

1

2
ρ0|u0|

2 � a
ργ0
γ � 1

�
αρβ0
β � 1

dx�

»
Ω

1

2
ρpτq|upτq|2 � a

ργpτq

γ � 1
�
αρβpτq

β � 1
dx

�

» τ

0

»
Ω
�ρu � Btϕ� pρub uq : ∇ϕ� 2νD puq : Dpϕ� uq � λp∇ � uqp∇ � pϕ� uqq

� aργ∇ � ϕ� αρβ∇ � ϕ� ϵβρβ�2 |∇ρ|2 � ϵ p∇u∇ρq � ϕ� ρf � pϕ� uq dxdt

�

» τ

0

»
BΩ
g |ϕ| � g |u| dΓdt ¥ 0 (67)

holds true for almost all τ P r0, T s and all ϕ P Dpp0, τq � Ωq with ϕ � n|BΩ � 0 and

�

» T

0

»
Ω
ρu � Btϕ dxdt �

» T

0

»
Ω
pρub uq : ∇ϕ� 2νD puq : Dpϕq � λp∇ � uqp∇ � ϕq � aργ∇ � ϕ

� αρβ∇ � ϕ� ρf � ϕ� ϵ p∇u∇ρq � ϕ dxdt, (68)

for all ϕ P Dpp0, T q � Ωq.

4.4 Limit passage with respect to ϵÑ 0

In this section we consider the limit passage with respect to ϵÑ 0 in order to get rid of the artificial
regularization terms in the system. By setting ϕ � 0 in the momentum and energy inequality (67)
and a subsequent interpolation we infer, exactly as the corresponding bounds (55) and (57) in the
previous limit passage, the uniform bounds��ρϵ|uϵ|2��L8p0,T ;L1pΩqq

� }ρϵ}L8p0,T ;LβpΩqq � }uϵ}L2p0,T ;H1pΩqq ¤c, (69)

}ρϵuϵ}
L8p0,T ;L

2β
β�1 pΩqq

� }ρϵuϵ b uϵ}
L

6β
4β�3 pp0,T q�Ωq

¤c (70)

for a constant c ¡ 0 independent of ϵ. These bounds allow us to extract a subsequence and conclude
the existence of functions

0 ¤ ρ P L8
�
0, T ;LβpΩq

	
, u P L2

�
0, T ;H1

npΩq
�

(71)

such that

ρϵ
�
á ρ in L8

�
0, T ;LβpΩq

	
, uϵ á u in L2

�
0, T ;H1,2pΩq

�
. (72)

Under exploitation of the continuity equation (62) the first one of these convergences further leads to

ρϵ Ñ ρ in Cweak

�
r0, T s;LβpΩq

	
and hence ρϵuϵ á ρu in L8

�
0, T ;L

2β
β�1 pΩq

	
. (73)

Moreover, we may test the continuity equation (62) by ρϵ to infer that

ϵ
1
2 }∇ρϵ}L2pp0,T q�Ωq ¤ c and thus ϵ∇ρϵ Ñ 0 in L2 pp0, T q � Ωq . (74)
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The convergences (72)–(74) allow us to pass to the limit in the continuity equation (27) and infer
that ρ and u satisfy the continuity equation (9) in D1pp0, T q � Ωq. Due to the Lipschitz regularity of
BΩ u can be extended continuously to a function u P L2p0, T ;H1pR3qq, see [3, Section 5.4, Theorem
1]. Extending also ρ by 0 outside of Ω we infer that the continuity equation in fact holds true in
D1pp0, T q � R3q. From the regularization method by DiPerna and Lions (see [21, Theorem 6.9]) it
follows that ρ and u also satisfy the renormalized continuity equation (10), (11). Similar to the
convergence of the convective term in the Galerkin limit (c.f. (61), (66)), we may deduce from the
alternative momentum equation (68) that

ρϵuϵ b uϵ á ρub u in L
6β

4β�3 pp0, T q � Ωq . (75)

In order to pass to the limit in the pressure terms we need to find a uniform bound for the densitiy in
Lqpp0, T q � Ωq for some q ¡ β. Thanks to the alternative momentum equation (68) such bound can
be derived as in the case of the no-slip boundary condition, c.f. [6, Lemma 3.1]. Nameley, since the
Bogovskii operator BΩ on Ω (c.f. [21, Section 3.3.1.2]) maps zero-mean functions in LppΩq, 1   p   8,
into W 1,p

0 pΩq, we can test the alternative momentum equation (68) by functions of the form

ϕϵpt, xq :� ψptqBΩ

�
ρϵptq �

1

|Ω|

»
Ω
ρϵpt, yq dy

�
pxq, 0 ¤ ψ P D p0, T q . (76)

As BΩ can be understood as an inverse to the divergence operator, this allows us to find a constant
c ¡ 0 independent of ϵ such that

}ρϵ}Lγ�1pp0,T q�Ωq � }ρϵ}Lβ�1pp0,T q�Ωq ¤ c. (77)

Thus we find subsequences and functions ργ P L
γ�1
γ pp0, T q � Ωq, ρβ P L

β�1
β pp0, T q � Ωq such that

ργϵ á ργ in L
γ�1
γ pp0, T q � Ωqq , ρβϵ á ρβ in L

β�1
β pp0, T q � Ωq . (78)

Our next goal is to identify the limit functions ργ and ρβ, for which we need the effective viscous flux
identity

lim
ϵÑ0

» T

0

»
Ω
Φpλ� 2νq rρϵ∇ � uϵ � ρ∇ � us dxdt � lim

ϵÑ0

» T

0

»
Ω
Φ
��
aργϵ � αρβϵ

�
ρϵ �

�
aργ � αρβ

�
ρ
	
dxdt

(79)

for all 0 ¤ Φ P Dpp0, T q � Ωq. This identity can be proved by applying the method from [6, Lemma
3.2] to the alternative momentum equation (68). We test (68) and a corresponding limit identity,
obtained from the convergences (72), (73) and (78), by functions of the form

ϕϵpt, xq :� Φpt, xq
�
∇∆�1

�
rρϵpt, �qs pt, xq, ϕpt, xq :� Φpt, xq

�
∇∆�1

�
rρpt, �qs pt, xq, (80)

with 0 ¤ Φ P Dpp0, T q � Ωq, respectively. Subtracting the two resulting relations from each other we
obtain the effective viscous flux identity exactly as in [6, Lemma 3.2]. Following the procedure in [6,
Section 3.5] we consider - after a dominated convergence argument - both the renormalized continuity
equation (63) on the ϵ-level and the renormalized continuity equation (10) in the limit with the choice
of the (strictly) convex function ζpξq :� ξ lnpξq in. This results in two relations which we subtract
from each other to obtain the inequality

lim
ϵÑ0

»
Ω
ρpτq ln pρpτqq � ρϵpτq ln pρϵpτqq dx ¥ lim

ϵÑ0

» τ

0

»
Ω
ρϵ∇ � uϵ � ρ∇ � u dxdt @τ P r0, T s. (81)

From the effective viscous flux identity (79) and the monotonicity of the (artificial) pressure function
it follows that the right-hand side of this relation is nonnegative. Further, since the mapping ξ Ñ
ξ lnpξq is convex, we know that ρ lnpρq ¤ ρ lnpρq, where ρ lnpρq denotes a weak limit of ρϵ lnpρϵq in
L1pp0, T q � Ωq. Combining these two facts, we conclude that

ρ lnpρq � ρ lnpρq a.e. in p0, T q � Ω.
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By the relations between weakly convergent sequences and (strictly) convex functions (c.f. [5, Theorem
10.20]), this equation implies pointwise convergence of ρϵ, which in turn implies that, as desired,

ργ � ργ a.e. in p0, T q � Ω, ρβ � ρβ a.e. in p0, T q � Ω. (82)

Combining the convergences (72)–(75), (78), the identification (82) of the limits of the pressure terms
and the weak lower semicontinuity of norms, we can now pass to the limit in both the momentum and
energy inequality (67) and the alternative momentum equation (68) and infer that»

Ω

1

2
ρ0|u0|

2 � a
ργ0
γ � 1

�
αρβ0
β � 1

dx�

»
Ω

1

2
ρpτq|upτq|2 � a

ργpτq

γ � 1
�
αρβpτq

β � 1
dx

�

» τ

0

»
Ω
�ρu � Btϕ� pρub uq : ∇ϕ� 2νD puq : Dpϕ� uq � λp∇ � uqp∇ � pϕ� uqq

� aργ∇ � ϕ� αρβ∇ � ϕ� ρf � pϕ� uq dxdt�

» τ

0

»
BΩ
g |ϕ| � g |u| dΓdt ¥ 0 (83)

holds true for almost all τ P r0, T s and all ϕ P Dpp0, τq � Ωq with ϕ � n|BΩ � 0 and

�

» T

0

»
Ω
ρu � Btϕ dxdt �

» T

0

»
Ω
pρub uq : ∇ϕ� 2νD puq : Dpϕq � λp∇ � uqp∇ � ϕq � aργ∇ � ϕ

� αρβ∇ � ϕ� ρf � ϕdxdt, (84)

holds true for all ϕ P Dpp0, T q � Ωq.

4.5 Limit passage with respect to αÑ 0

Finally it remains to get rid of the artificial pressure term in the momentum equation, i.e. to let α tend
to zero. In addition, we return from the regularized initial data ρ0,α, qα in the approximate problem
(c.f. (31)) to the more general initial data ρ0, q from the main result Theorem 3.1. More precisely, as
in [6, Section 4], we choose ρ0,α, qα satisfying the relations (31) for any fixed α ¡ 0 such that

ρ0,α Ñ ρ0 in LγpΩq, αρβ0,α Ñ 0 in L1pΩq, (85)

qα Ñ q in L1pΩq,
|qα|

2

ρ0,α
Ñ

|q|2

ρ0
in L1pΩq (86)

for α Ñ 0. As in the previous limit passages we infer, from the choice ϕ � 0 in the momentum and
energy inequality (83) and an ensuing interpolation, the uniform bounds��ρα|uα|2��L8p0,T ;L1pΩqq

� }ρα}L8p0,T ;LγpΩqq � }uα}L2p0,T ;H1pΩqq ¤c, (87)

}ραuα}
L8p0,T ;L

2γ
γ�1 pΩqq

� }ραuα b uα}
L

6γ
4γ�3 pp0,T q�Ωq

¤c (88)

for a constant c ¡ 0 independent of α. This allows us to find a subsequence as well as functions

0 ¤ ρ P L8 p0, T ;LγpΩqq , u P L2
�
0, T ;H1

npΩq
�

(89)

such that

ρα
�
á ρ in L8 p0, T ;LγpΩqq , uα á u in L2

�
0, T ;H1,2pΩq

�
(90)

as well as, under exploitation of the continuity equation (9) and the alternative momentum equation
(84),

ρα Ñ ρ in Cweak pr0, T s;L
γpΩqq , ραuα Ñ ρu in Cweak

�
r0, T s;L

2γ
γ�1 pΩq

	
(91)

and consequently

ραuα b uα á ρub u in L
6γ

4γ�3 pp0, T q � Ωq. (92)
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Due to the convergences (91) and the continuity equation (9) on the α-level, the limit functions ρ and
u satisfy the same continuity equation (9) in D1pp0, T q � Ωq. For the limit passage in the pressure
terms the derivation of the improved uniform bounds (77) of the density on the ϵ-level needs to be
modified. More specifically, the derivation of these bounds relies on the fact that on the ϵ-level the
density is bounded uniformly in L8p0, T ;LβpΩqq, which is not the case in our current situation. As
a compensation, the density in the test functions (76) needs to be replaced by a suitable smooth
approximation of ρθα for some sufficiently small value θ ¡ 0. This procedure, which is described in
detail in [6, Section 4.1], leads, by a use of the resulting test functions in the alternative momentum
equation (84), to the desired improved pressure estimates

}ρα}Lγ�θpp0,T q�Ωq � α
1

β�θ }ρα}Lβ�θpp0,T q�Ωq ¤ c

with a constant c ¡ 0 independent of α. In particular we may extract a subsequence and find a

function ργ P L
γ�1
γ pp0, T q � Ωq such that

ργα á ργ in L
γ�θ
γ pp0, T q � Ωq , αρβα Ñ 0 in L

β�θ
β pp0, T q � Ωq . (93)

For the identification of the limit function ργ we further follow the procedure in [6, Section 4.3] and
deduce the following modified version of the effective viscous flux identity (79) on the ϵ-level,

lim
αÑ0

» T

0

»
Ω
Φpλ� 2νq

�
Tk pραq∇ � uα � Tk pρq∇ � u

�
dxdt

� lim
αÑ0

» T

0

»
Ω
Φ
�
aργαTk pραq � aργ Tk pρq

	
dxdt (94)

for all Φ P Dpp0, T q � Ωq, where Tk ¤ 2k, k P N, constitutes a suitable smooth and concave cut-off
version of the identity function on r0,8q and Tkpρq denotes a weak limit of Tkpραq in L

1pp0, T q � Ωq.
In the derivation of this identity we again have to make up for the lower integrability of the density
as compared to the density on the ϵ-level. This is achieved by replacing the test functions (80) used
on the ϵ-level by test functions of the form

ϕαpt, xq :� Φpxq
�
∇∆�1

�
rTk pραq pt, �qs pxq, ϕpt, xq :� Φpxq

�
∇∆�1

� �
Tk pρqpt, �q

�
pxq.

where Φ P Dpp0, T q � Ωq. In our case, we use these test functions in the alternative momentum
equation (84) on the α-level and a corresponding limit identity respectively. Comparing the resulting
identities we arrive at the desired effective viscous flux identity (94), exactly as in the proof of [6,
Lemma 4.2]. From this identity, the concavity of Tk and the convexity of ξ ÞÑ ξγ we deduce, exactly
as in the proof of [6, Lemma 4.3], boundedness of the oscillation defect measure,

oscγ�1 rρα Ñ ρs
�
p0, T q � R3

�
:� sup

k¥1

�
lim sup
αÑ0

» T

0

»
R3

|Tk pραq � Tk pρq|
γ�1 dxdt

�
  8. (95)

Next we choose ζ � Tk in the renormalized continuity equation (10) on the α-level and pass to
the limit with respect to α. Since Tkpρq is bounded uniformly, the resulting limit identity can be
renormalized under exploitation of the regularization technique by DiPerna and Lions, see [21, Lemma
6.9]. Subsequently, using the bound (95) of the oscillation defect measure, we may let k tend to infinity
to infer that ρ and u also satisfy the renormalized continuity equation (10). For the details of this
procedure we refer to the proof of [6, Lemma 4.4]. Under exploitation of the dominated convergence
theorem we may use the choice

ζpξq :� ζkpξq :� ξ

» ξ

1

Tkpsq

s2
ds

in both the renormalized continuity equation (10) on the α-level and in the limit. Comparing the
resulting equations to each other and passing to the limit with respect to αÑ 0 we infer that

lim
αÑ0

»
Ω
pζkpραq � ζkpρqq pτq dx� lim

αÑ0

» τ

0

»
Ω
Tk pραq∇ � uα � Tkpρq∇ � u dxdt

�

» τ

0

»
Ω
Tkpρq∇ � u� Tkpρq∇ � u dxdt (96)
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for all τ P r0, T s. Here, the second term on the left-hand side is nonnegative, which follows from
the effective viscous flux identity (94), the fact that both the mappings ξ ÞÑ ξγ and ξ ÞÑ Tkpξq are
nondecreasing and the classical relations between weakly convergent sequences and monotone functions
(c.f. [5, Theorem 10.19]). Moreover, the right-hand side of the equation (96) vanishes for k Ñ 8 as
can be seen from the bound (95) of the oscillation defect measure. Consequently, letting k tend to
infinity also on the left-hand side of this identity we infer that

lim
αÑ0

»
Ω
ρpτq ln pρpτqq � ραpτq ln pραpτqq dx ¥ 0.

Exactly as in the limit passage with respect to ϵ Ñ 0 (c.f. (82)), this estimate yields pointwise
convergence of ρα and consequently the identity ργ � ργ almost everywhere in p0, T q � Ω. Therefore,
using the convergences (90)–(92) and (93) as well as the weak lower semicontinuity of norms we may
pass to the limit in the momentum and energy inequality (83) and infer that ρ and u satisfy the
momentum and energy inequality (12). Finally we note that ρ, as a solution to the renormalized
continuity equation (10), is an element of the space Cpr0, T s;L1pΩqq, c.f. [4, Proposition 4.3]. Due to
this continuity in the time variable and the convergence (85) of the initial data it satisfies the initial
condition ρ � ρ0 in the classical sense. The initial condition stated for ρu in (13) follows from the
convergences (86) and (91) This concludes the proof of Theorem 3.1.
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