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A unified approach to inequalities for K-functionals
and moduli of smoothness

Amiran Gogatishvili, Bohumı́r Opic, Sergey Tikhonov, and Walter Trebels

Abstract. The paper provides a detailed study of crucial inequalities for smoothness
and interpolation characteristics in rearrangement invariant Banach function spaces. We
present a unified approach based on Holmstedt formulas to obtain these estimates. As
examples, we derive new inequalities for moduli of smoothness and K-functionals in
various Lorentz spaces.

1. Introduction

Some, nowadays well-known, inequalities between moduli of continuity, or more gen-
eral, between moduli of smoothness are attached to the names of Marchaud, Ul’yanov,
and Kolyada. These inequalities play an important role in approximation theory as well
as in the theory of function spaces, in particular, they can be used to derive embedding
properties of function spaces with fixed degree of smoothness, see, e.g., [6, Section 5.4],
[8], [15].

The purpose of this paper is to consider crucial inequalities (Marchaud, Ul’yanov, etc.)
from an abstract point of view. To this end, in Section 4 we assume suitable embeddings
between interpolation and potential spaces (the interpolation spaces may be interpreted
as abstract Besov spaces). Simultaneously, abstract versions of the Holmstedt formulas
are developed, which allow also to cover limiting cases. In Section 5 applications are given
in the case of general weighted Lorentz spaces. Finally, Section 6 deals with applications
to Lorentz-Karamata spaces.

To illustrate our results, we start in Subsection 1.1 with the formulation of the aforesaid
basic inequalities adapted to Lebesgue spaces Lp(Rn), 1 < p < ∞. Their improvements
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and extensions in the framework of Lorentz spaces Lp,r(Rn) (note that Lp,p = Lp) are
described in Subsection 1.2, proofs are given in Section 2.

1.1. Some basic results. A detailed study of inequalities between different moduli
of smoothness on Lp(Rn), 1 6 p 6∞, can be naturally divided into two parts: inequalities
for moduli of smoothness of different orders in Lp and inequalities in different metrics
(Lp, Lp∗). In the paper a modulus of smoothness of order κ > 0 on an r.i. function space
X (defined in Section 3, e.g., X = Lp) is given by

(1.1) ωκ(f, t)X = sup
|h|6t
‖∆κ

hf(x)‖X , where ∆κ
hf(x) =

∞∑
ν=0

(−1)ν
(
κ

ν

)
f
(
x+ νh

)
.

Let us begin with the key inequalities on Lp(Rn). Trivially, if k,m, n ∈ N and 1 6
p 6∞, then

(1.2) ωk+m(f, t)Lp . ωk(f, t)Lp for all t > 0 and f ∈ Lp(Rn).

In 1927 Marchaud [46] proved his famous inequality (being a weak inverse of (1.2)): Given
k,m, n ∈ N and 1 6 p 6∞, then

(1.3) ωk(f, t)Lp . tk
∫ ∞
t

u−kωk+m(f, u)Lp
du

u
for all t > 0 and f ∈ Lp(Rn).

Using geometric properties of the Lp spaces when 1 < p < ∞, in 1958 M. F. Timan
improved (1.3) (see, e.g., [15, Chapter 2, Theorem 8.4]): If k,m, n ∈ N, 1 < p <∞, and
q = min{2, p}, then

(1.4) ωk(f, t)Lp . tk
(∫ ∞

t

[
u−kωk+m(f, u)Lp

]q du
u

)1/q

for all t > 0 and f ∈ Lp(Rn).

Observe the natural formal passage from (1.4) to (1.3) when p→ 1 + .
In 2008 F. Dai, Z. Ditzian and S. Tikhonov [18] derived an improvement of (1.2): If
k,m, n ∈ N, 1 < p <∞, and r = max{2, p}, then

(1.5) tk
(∫ ∞

t

[
u−kωk+m(f, u)Lp

]r du
u

)1/r

. ωk(f, t)Lp for all t > 0 and f ∈ Lp(Rn).

Observe again the natural formal passage from (1.5) to (1.2), this time when p→∞. We
call (1.5) a reverse Marchaud inequality (in [18] it is called a sharp Jackson inequality).

Consider now inequalities for moduli of smoothness in different Lebesgue metrics. In
1968 P.L. Ul’yanov [66] proved such an inequality for periodic functions in Lp(T). Its
Rn-counterpart reads as follows (see, e.g., [9]): If k, n ∈ N, 1 6 p <∞, 0 < δ < n/p, and
1/p∗ = 1/p− δ/n, then

(1.6) ωk(f, t)Lp∗ .

(∫ t

0

[
u−δωk(f, u)Lp

]p∗ du
u

)1/p∗

as t→ 0+

holds for all f ∈ Lp(Rn) (for which the right-hand side of(1.6) is finite). 1

1 One can show that if f ∈ Lp(Rn) and the right-hand side of (1.6) is finite for some t > 0, then
f ∈ Lp∗(Rn) and so the modulus of smoothness appearing on the left-hand side of (1.6) is well defined.
Note that we always look at inequalities involving moduli of smoothness in different metrics at this way.
One can also show that if f ∈ Lp(Rn) and the right-hand side of (1.6) is finite for some t > 0, then it is
finite for all t > 0 - cf. Remark 6.8 mentioned below).
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In 1988 V.I. Kolyada [42] gave a definite strengthening of (1.6) on Lp(Tn). In the
Rn-setting his result is the following (see [33]):
Suppose that k, n ∈ N, and either 1 < p < ∞ and n > 1, or p = 1 and n > 2. If
0 < δ < min{n/p, k} and 1/p∗ = 1/p− δ/n, then, for all f ∈ Lp(Rn),

(1.7) tk−δ
(∫ ∞

t

[uδ−kωk(f, u)Lp∗ ]
pdu

u

)1/p

.

(∫ t

0

[u−δωk(f, u)Lp ]
p∗ du

u

)1/p∗

as t→ 0 + .

Another extension of (1.6), which is not comparable with inequality (1.7), is the so-
called sharp Ul’yanov inequality proved in 2010 independently in [58] and [63]:
If k, n ∈ N, 1 < p <∞, 0 < δ < n/p, and 1/p∗ = 1/p− δ/n, then, for all f ∈ Lp(Rn),

(1.8) ωk(f, t)Lp∗ .

(∫ t

0

[u−δωk+δ(f, u)Lp ]
p∗ du

u

)1/p∗

as t→ 0 + .

In the case p = 1 (1.8) does not hold in general [60, Theorem 1(B)] and it requires
some modifications [24, Rem. 6.20] (see also [60, Theorem 1(A)]). If k, n ∈ N, 0 < δ < n,
and 1/p∗ = 1− δ/n, then, for all f ∈ L1(Rn),

ωk(f, t)Lp∗ .

(∫ t(| ln t|)1/(αp∗)

0

[u−δωk+δ(f, u)L1 ]p
∗ du

u

)1/p∗

as t→ 0 + .

The importance of these inequalities instigated much research in various areas of anal-
ysis (theory of function spaces, approximation theory, interpolation theory) and led to
numerous publications. We mention only a few recent papers: [20, 21, 22, 23, 34, 37,
38, 40, 43, 52, 60, 63]. Basic properties of moduli of smoothness of functions from
Lp(Rn), 0 < p 6∞, are given in [41].

1.2. Inequalities for moduli of smoothness on Lorentz spaces. We say that
a measurable function f belongs to the Lorentz space Lp,r = Lp,r(Rn), 1 6 p, r 6 ∞, if
(see, e.g., [6, Section 4.4])

‖f‖p,r :=


(∫∞

0
[t1/p f ∗(t)]r dt

t

)1/r

<∞ , r <∞,
sup
t>0

t1/p f ∗(t) <∞ , r =∞,

where f ∗ denotes the non-increasing rearrangement of f. Thus Lp = Lp,p and ‖f‖p =
‖f‖p,p.

The next statements extend the inequalities mentioned above to Lorentz spaces.

Proposition 1.1. If n ∈ N, 1 < p < ∞, 1 6 q0, r0, r1 6 ∞, r0 6 r1, and β > 0,
then, for all f ∈ Lp,r0(Rn):

(A) Marchaud-type inequality.

(1.9) ωβ(f, t)Lp,r1 . tβ
(∫ ∞

t

[
u−βωβ+σ(f, u)Lp,r0

]q0 du
u

)1/q0

as t→ 0+

provided σ > 0 and q0 6 min{p, 2, r1} if p 6= 2. If p = 2 and r0 6 2, then take
q0 6 min{2, r1}, and in the case p = 2, r0 > 2 one has to take q0 < 2.

(B) Reverse Marchaud-type inequality.
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(1.10) tβ
(∫ ∞

t

[
u−γωβ+γ(f, u)Lp,r1

]q1 du
u

)1/q1

. ωβ(f, t)Lp,r0 as t→ 0+

(with usual modification if q1 = ∞) provided γ > 0 and q1 > max{p, 2, r0} if p 6= 2. If
p = 2 and r1 > 2, then take q1 > max{2, r0}, and in the case p = 2, r1 < 2 one has to
take q1 > 2.

Denote by W k
p (Rn), 1 6 p < ∞, k ∈ N, the Sobolev space of order k, i.e.,

f ∈ W k
p (Rn) if f and all its (weak) derivatives up to the order k belong to Lp(Rn).

It is well known that, by Taylor’s formula,

ωm+k(f, t)Lp . tk
∑
|µ|=k

ωm(D µf, t)Lp , m ∈ N, µ ∈ Nn
0 , for all f ∈ W k

p (Rn) and t > 0.

Here we use the multi-index notation |µ| :=
∑n

j=1 µj, D
µ =

∏n
j=1 (∂/∂xj)

µj . We want to
state an improvement and some type of reverse of this inequality in the case 1 < p <∞.
To this end, we need Besov spaces and Riesz potential spaces, both modelled upon Lorentz
spaces.

We make use of the Fourier analytical approach in S ′ (cf. [7]):
Take a C∞-function ϕ such that

(1.11) supp ϕ ⊂ {x ∈ Rn : |x| 6 7/4} and ϕ(x) = 1 if |x| 6 3/2.

For j ∈ Z and x ∈ Rn, let

(1.12) ϕj(x) = ϕ(2−jx)− ϕ(2−j+1x).

The sequence {ϕj}j∈Z is a smooth dyadic resolution of unity, i.e., 1 =
∑∞

j=−∞ ϕj(x) for
all x ∈ Rn, x 6= 0.

Let 1 6 p, q, r 6∞ and σ > 0. The Besov spaceBσ
(p,r);q(Rn) consists of all f ∈ Lp,r(Rn)

such that

(1.13) |f |B σ
(p,r);q

=

(
∞∑

j=−∞

[
2jσ‖F−1[ϕj] ∗ f‖Lp,r

]q)1/q

<∞

(the sum should be replaced by the supremum if q = ∞). Here the symbol F−1 is used
for the inverse Fourier transform. An equivalent characterization of this semi-norm in
terms of moduli of smoothness is given by

(1.14) |f |∗B σ
(p,r);q

=

(∫ ∞
0

[
t−σωk(f, t)Lp,r

]q dt
t

)1/q

, 0 < σ < k.

The Riesz potential space Hσ
p,r(Rn), σ > 0, consists of all f ∈ Lp,r(Rn) for which

(1.15) |f |Hσ
p,r

:= ‖D σ
Rf‖Lp,r <∞ , where D σ

Rf :=
∞∑

j=−∞

F−1[|ξ|σϕj] ∗ f

(the σ-th Riesz derivative) converges in S ′ to an Lp,r(Rn)-function. Note that W k
p = Hk

p,p

if 1 < p <∞.
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Proposition 1.2. Let n ∈ N, 1 < p < ∞, 1 6 q0, q1 6 ∞, 1 6 r0 = r1 = r 6 ∞,
and β, σ > 0.

(A) If f ∈ Lp,r(Rn) then, under the assumptions on the parameters q0 and r of
Proposition 1.1 (A), for all t > 0,

(1.16) ωσ(Dβ
Rf, t)Lp,r .

(∫ t

0

[
u−βωβ+σ(f, u)Lp,r

]q0 du
u

)1/q0

.

In particular, if β = m and σ = k ∈ N, then, for all µ ∈ Nn
0 with |µ| = m,

(1.17) ωk(D
µf, t)Lp,r .

(∫ t

0

[
u−mωk+m(f, u)Lp,r

]q0 du
u

)1/q0

.

(B) If f ∈ Hβ
p,r(Rn) then, under the assumptions on the parameters q1 and r of

Proposition 1.1 (B), for all t > 0,

(1.18)

(∫ t

0

[
u−βωβ+σ(f, u)Lp,r

]q1 du
u

)1/q1

. ωσ(Dβ
Rf, t)Lp,r .

In particular, if β = m and σ = k ∈ N, then(∫ t

0

[
u−mωm+k(f, u)Lp,r

]q1 du
u

)1/q1

. sup
j=1,...,n

ωk

(∂mf
∂xmj

, t
)
Lp,r

.

Finally consider inequalities between moduli of smoothness in different metrics.

Proposition 1.3. Suppose n ∈ N, 1 < p < ∞, 0 < δ < n/p, 1/p∗ = 1/p− δ/n, 1 6
q0, q1, r0, r1 6∞, and β > 0.

(A) Sharp Ul’yanov inequality. If r0, q1 6 r1, then, for all t > 0 and f ∈ Lp,r0(Rn),

(1.19) ωβ(f, t)Lp∗,r1 .
(∫ t

0

[u−δ ωβ+δ(f, u)Lp,r0 ]q1
du

u

)1/q1
.

(B) Kolyada-type inequality. If r0 6 q0, q1 6 r1, then, for all t > 0 and f ∈ Lp,r0(Rn),

(1.20) tβ
(∫ ∞

t

[u−βωβ+δ(f, u)Lp∗,r1 ]q0
du

u

)1/q0

.

(∫ t

0

[u−δωβ+δ(f, u)Lp,r0 ]q1
du

u

)1/q1

.

2. Remarks and proofs in outlines

Peetre’s K-functional K0 for the compatible couple (Lp,r, H
σ
p,r) plays a decisive role

in the proofs of Propositions 1.1–1.3. It is defined by

K0(f, t;Lp,r, H
σ
p,r) = inf

g∈Hσ
p,r

(‖f − g‖p,r + t|g|Hσ
p,r

), f ∈ Lp,r, t > 0.

We also need the characterization, for 1 < p <∞, σ > 0, 1 6 r 6∞,

(2.1) K0(f, tσ;Lp,r, H
σ
p,r) ≈ ωσ(f, t)Lp,r , f ∈ Lp,r, t > 0,
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(see [67] and its extension in [30, (1.13)]) and the identification of the interpolation space
given by

(Lp,r, H
σ
p,r)θ,q = B θσ

(p,r);q , σ > 0, 0 < θ < 1, 1 < p <∞, 1 6 r, q 6∞,

where (·, ·)θ,q denotes Peetre’s real interpolation method. The improvements and ex-
tensions of inequalities (1.3)–(1.8) can be easily proved via the Holmstedt formulas [6,
Section 5.2]. One only needs to exchange in [63] the embeddings between Besov and po-
tential spaces modelled on Lebesgue spaces by the corresponding ones modelled on Lorentz
spaces. Therefore, we only sketch the proofs of the propositions stated in Subsection 1.2.

Concerning (1.9) and (1.10), note that, under the restrictions on q0 and q1 given in
Proposition 1.1, the following embeddings are true:

(2.2) B σ
(p,r0);q0

↪→ Hσ
p,r1

if 1 6 p <∞, 1 6 q0, r0, r1 6∞, r0 6 r1 (see Theorem 1.1, (iv)–(vi) in [57]) and

(2.3) Hγ
p,r0

↪→ Bγ
(p,r1);q1

if 1 6 p <∞, 1 6 q1, r0, r1 6∞, r0 6 r1 (see Theorem 1.2, (iv)–(vi) in [57]).

Remark 2.1. In parts (i) and (ii) of this remark we assume the same restrictions on
the parameters under which (1.9) and (1.10) hold, respectively.

(i) Divide equation (1.9) by t−β and let t → 0 + . Then on the right-hand side one
gets |f |∗

B β
(p,r0);q0

. One way how to handle the left-hand side is to introduce the generalized

Weierstraß means W β
t f = F−1[e(t|ξ|)β ] ∗ f . By [30, (1.11)], one has

K0(f, tβ;Lp,r1 , H
β
p,r1

) ≈ ‖f −W β
t f‖p,r1 , f ∈ Lp,r1 , t > 0.

Also, by [13, Corollary 3.4.11],

lim
t→0+

t−β‖f −W β
t f‖p,r1 ≈ |f |Hβ

p,r1
.

Hence, in view of (2.1), (1.9) implies (2.2). In particular, (1.9) and (2.2) are equivalent
assertions. This means the following: if inequality (1.9) holds under certain range of
parameters, then embedding (2.2) is valid for such parameters and vice versa.

(ii) If (1.10) is true, then its right-hand side is equivalent to K0(f, tβ;Lp,r0 , H
β
p,r0

),

which trivially is smaller than tβ|f |Hβ
p,r0
. Dividing inequality (1.10) by tβ, one gets(∫ ∞

t

[
u−γωβ+γ(f, u)Lp,r1

]q1 du
u

)1/q1

. |f |Hβ
p,r0

uniformly in t > 0, and (2.3) follows. Thus, (1.10) and (2.3) are again equivalent state-
ments. �

Concerning Proposition 1.2 (A), let f ∈ B β
(p,r),q. Then, by (2.2), f ∈ Hβ

p,r , hence

D β
Rf ∈ Lp,r , and

(2.4) ωσ(D β
Rf, t)Lp,r . ‖D

β
Rf − h‖Lp,r + tσ|h|Hσ

p,r
for all h ∈ Hσ

p,r.
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If g ∈ Hσ+β
p,r , then D β

R g ∈ Hσ
p,r, |D

β
R g|Hσ

p,r
= |g|Hσ+β

p,r
and ‖D β

R(f−g)‖Lp,r . |f−g|B β
(p,r),q

.

Now choose h = D β
R g in (2.4) to obtain

ωσ(D β
Rf, t)Lp,r . |f − g|B β

(p,r),q
+ tσ|D β

R g|Hσ
p,r
≈ |f − g|(Lp,r,Hβ+σ

p,r )θ,q
+ tσ|g|Hσ+β

p,r
,

where in Peetre’s (·, ·)θ,q-interpolation method one has to put θ = β/(β + σ). Taking the
minimum over all g ∈ Hσ+β

p,r in the last display and using the appropriate Holmstedt
formula ([6, p. 310]), we arrive at (1.16).

Regarding (1.17), observe that the j-th Riesz transform Rj, 1 6 j 6 n, (with the
Fourier symbol ξj/|ξ|, ξ ∈ Rn) is a bounded operator from Lp into Lp, 1 < p <∞, hence
also bounded from Lp,r into Lp,r, 1 < p < ∞, 1 6 r 6 ∞. Now set Rµ :=

∏n
j=1 R

µj
j to

obtain ‖D µf‖Lp,r = ‖RµD
|µ|
R f‖Lp,r . ‖D

|µ|
R f‖Lp,r . Hence,

ωk(D
µf, t)Lp,r = sup

|y|6t
‖∆k

yRµD
|µ|
R f‖Lp,r = sup

|y|6t
‖Rµ∆k

yD
m
R f‖Lp,r . ωk(D

m
R f, t)Lp,r

and (1.17) follows from (1.16).
Concerning Proposition 1.2 (B), we follow the argument starting with (12.13) in [23].

Thus, by [30, Lemma 1.4 with α = 0],

ωσ(Dβ
Rf, t)Lp,r ≈ K0(Dβ

Rf, t
σ;Lp,r, H

σ
p,r) ≈ ‖D

β
R(f − Vtf)‖p,r + tσ|Dβ

RVtf |Hσ
p,r
,

where Vtf are the de la Vallée-Poussin means of f. Now use Theorem 1.2 (iv) - (vi) in
[57], subsequently, the lifting property of the Riesz potential, and again [30, Lemma 1.4]
to obtain

ωσ(Dβ
Rf, t)Lp,r & |Dβ

R(f − Vtf)|B0
(p,r),q1

+ tσ|Dβ
RVtf |Hσ

p,r

≈ |f − Vtf |Bβ
(p,r),q1

+ tσ|Vtf |Hβ+σ
p,r
≈ K0(f, tβ;Bβ

p,q1
, Hβ+σ

p,r ).

Since Bβ
(p,r),q1

= (Lp,r, H
β+σ
p,r )θ,q1 , β = θ(β + σ) (see, e.g., [7, Theorem 6.3.1]), hence

1− θ = σ/(β + σ) and, therefore, by the Holmstedt formula, we finally derive(∫ t

0

[u−βωβ+σ(f, u)Lp,r ]
q1
du

u

)1/q1

. ωσ(Dβ
Rf, t)Lp,r .

In particular, if β = m ∈ N, then, for even m and hence γj ∈ 2N0
n,

Dβ
Rf = F−1

[
(ξ2

1 + · · ·+ ξ2
n)m/2F [f ]

]
=
∑
|γ|=m

F−1
[ n∏
j=1

ξ
γj
j F [f ]

]
, γ ∈ N0

n.

If γj is odd, observe that

|ξ|m = |ξ|m−1(ξ2
1 + · · ·+ ξ2

n)/|ξ| = |ξ|m−1(ξ1 ·
ξ1

|ξ|
+ · · ·+ ξn ·

ξn
|ξ|

)

and that ξj/|ξ| is the symbol of the j-th Riesz transform being a bounded operator on
Lp, 1 < p < ∞, and hence also on the Lorentz spaces under consideration. Therefore,
when σ = k ∈ N,

ωk(D
m
R f, t)Lp,r . sup

|γ|=m
ωk

(
∂γf

∂xγ
, t

)
Lp,r
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and hence the assertion follows along the lines of the paper [23]. �

For the proof of Proposition 1.3, suppose that β, δ > 0 and that p, p∗ and δ satisfy
the assumptions. By Theorem 1.1 (iii) in [57],

(2.5) B δ
(p,r0);q1

↪→ Lp∗,r1 if 1 6 q1 6 r1 6∞, 1 6 r0 6∞.

Moreover, Theorem 1.6 (iii) in [57] contains a version of the Hardy-Littlewood-Sobolev
theorem on fractional integration, which states that

(2.6) Hβ+δ
p,r0

↪→ Hβ
p∗,r1 if 1 6 r0 6 r1 6∞, β > 0.

The use of Holmsted’s formula completes the proof of (1.19).
Concerning the proof of (1.20), we need the embedding

(2.7) Hσ+δ
p,r0

↪→ B σ
(p∗,r1);q0

, if 1 6 r0 6 q0 6∞, 1 6 r1 6∞,

which holds by [57, Theorem 1.2 (iii)], and also embedding (2.5), which requires the
additional restriction q1 6 r1 . �

Remark 2.2. Similarly to Remark 2.1, we may derive that each of inequalities (1.16)–
(1.20) implies the corresponding embedding. For example, let (1.19) be true. Since

Hβ+δ
p,r0

= {f ∈ Lp,r0 : ωβ+δ(f, u)Lp,r0 6 Cuβ+δ}, inequality (1.19) implies Hβ+δ
p,r0

↪→ Hβ
p∗,r1 ,

which is (2.6). Likewise, (1.20) yields (2.7).

Remark 2.3. Let n ∈ N, 1 < p <∞, 0 < δ < n/p, 1/p∗ = 1/p− δ/n, and β > 0.
(a) The combination of the Kolyada inequality with the Marchaud inequality leads to

a special special case of the Ul’yanov inequality. If 1 6 r := r0 = r1 = q0 = q1 6∞ and
r 6 min{p∗, 2}, then

(2.8) ωβ(f, t)Lp∗,r .
(∫ t

0

[u−δ ωβ+δ(f, u)Lp,r ]
r du

u

)1/r

for all t > 0 and f ∈ Lp,r(Rn).

This follows on applying to the left-hand side of (1.20) Marchaud inequality (1.9), where
we replace p by p∗.

(b) Similarly, if 1 6 r := r0 = r1 = q1 6 ∞, r > max{p∗, 2}, and γ > 0, then the
combination of Ul’yanov inequality (1.19) and reverse Marchaud inequality (1.10) (where
p is replaced by p∗) yields a special case of the Kolyada inequality, namely, for all t > 0
and f ∈ Lp,r(Rn),

(2.9) tβ
(∫ ∞

t

[
u−βωβ+γ(f, u)Lp∗,r

]r du
u

)1/r

.
(∫ t

0

[u−δ ωβ+δ(f, u)Lp,r ]
r du

u

)1/r

.

Note that in the case 0 < γ < δ the order of the modulus of smoothness on the left-hand
side is smaller than the one on the right-hand side.

2.1. Sharp Ulyanov and Kolyada inequalities for p = 1. As it was mentioned
above both (1.19) and (1.20) do not hold in general when p = 1. However, under some
additional conditions on parameters both results are still valid even in the Lorentz space
setting.

Proposition 1.3 ′. Suppose n ∈ N, n > 2, 1 6 δ < n, 1/p∗ = 1− δ/n, 1 6 q1 6 r1 6
∞ and β > 0, β + δ ∈ N.
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(A) Then, for all t > 0 and for all f ∈ L1(Rn),

(2.10) ωβ(f, t)Lp∗,r1 .

(∫ t

0

[u−δωβ+δ(f, u)L1 ]q1
du

u

)1/q1

.

(B) If 1 6 q0 6∞ then, for all t > 0 and for all f ∈ L1(Rn),

tβ
(∫ ∞

t

[u−βωβ+δ(f, u)Lp∗,r1 ]q0
du

u

)1/q0

.

(∫ t

0

[u−δωβ+δ(f, u)L1 ]q1
du

u

)1/q1

.

Proof of Proposition 1.3 ′(A). If g ∈ Hβ
p∗,r1 , then in light of (2.1), for all f ∈ Lp∗,r1 and

all positive t,

(2.11) ωβ(f, t)Lp∗,r1 ≈ K0(f, tβ;Lp∗,r1 , H
β
p∗,r1) . ‖f − g‖p∗,r1 + tβ|g|Hβ

p∗,r1
.

Now we take into account the following result by Alvino [3] (appeared in 1977, rediscovered
by Poornima [54] in 1983 and by Tartar [59] in 1998)

(2.12) ‖h‖n/(n−1),1 .
n∑
j=1

∥∥∥∥ ∂h∂xj
∥∥∥∥

1

, n > 2.

Together with Hörmander’s multiplier criterion and [57, Theorem 1.6 (iii)], this yields

(2.13) W β+δ
1 ↪→ W β+δ−1

n/(n−1),1 = Hβ+δ−1
n/(n−1),1 ↪→ Hβ

p∗,1 ↪→ Hβ
p∗,r1 if r1 > 1

and for the corresponding seminorms we have, for all g ∈ W β+δ
1 ,

(2.14) |g|Hβ
p∗,r1
. |g|Hβ

p∗,1
. |g|Wβ+δ

1
, 0 <

1

p∗
= 1− δ

n
, r1 > 1.

Note that using Alvino’s result, we necessarily assume δ > 1.

By [57, Theorem 1.1 (iii)], the first embedding below is valid, the second one is
elementary and, therefore,

(2.15) Bδ
(1,1);q1

↪→ Lp∗,1 ↪→ Lp∗,r1 , ‖f‖p∗,r1 . |f |Bδ
(1,1);q1

for all f ∈ Bδ
(1,1);q1

if 1 6 q1 6 r1 6∞ .

Applying estimates (2.14), (2.15), and (2.11), we arrive at

ωβ(f, t)Lp∗,r1 . |f − g|Bδ(1,1);q1

+ tβ|g|Wβ+δ
1

for all g ∈ W β+δ
1 . Together with Holmsted’s formula, this yields

ωβ(f, t)Lp∗,r1 . K0(f, tβ;Bδ
(1,1);q1

,W β+δ
1 )

≈

(∫ tβ+δ

0

[u−δ/(β+δ)K0(f, u;L1,W
β+δ
1 ]q1

du

u

)1/q1

≈
(∫ t

0

[u−δωβ+δ(f, u)L1 ]q1
du

u

)1/q1

,

where the condition β + δ ∈ N allows us to identify the resulting K0-functional with the
classical modulus of smoothness in L1. �
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Proof of Proposition 1.3 ′(B). Following the proof of (1.20), we need analogues of (2.5)
and (2.7) for p = 1. In fact, in this case (2.5) holds whenever 1 6 q1 6 r1 6 ∞ (see
(2.15)). Concerning (2.7), we modify it by repeating the argument in (2.13) to get

W β+δ
1 ↪→ W β+δ−1

n/(n−1),1 = Hβ+δ−1
n/(n−1),1.

Hence, applying (2.7) upon Hβ+δ−1
n/(n−1),1, under our assumptions, we arrive at

W β+δ
1 ↪→ Bβ

(p∗,r1);q0
,

1

p∗
= 1− δ

n
> 0, δ > 1, β > 0, δ + β ∈ N, 1 6 q0 6∞.

By the Holmstedt formula,

Ip∗ := tβ/(β+δ)

(∫ ∞
t

[u−β/(β+δ)K0(f, u;Lp∗,r2 , H
β+δ
p∗,r2)]q0

du

u

)1/q0

≈ K0(f, tβ/(β+δ);Lp∗,r2 , (Lp∗,r2 , H
β+δ
p∗,r2)β/(β+δ), q0 )

. ‖f − g‖p∗,r2 + tβ/(β+δ)|g|Bβ
(p∗,p∗), q0

. |f − g|Bδ
(1,1);q1

+ tβ/(β+δ)|g|Wβ+δ
1

, 1 6 q1 6 r1 6∞ .

Since this estimate holds for all g ∈ W β+δ
1 , we have

Ip∗ . K0(f, tβ/(β+δ); (L1,W
β+δ
1 )δ/(β+δ), q1 ,W

β+δ
1 )

≈
(∫ t

0

[u−δ/(β+δ)K(f, u;L1,W
β+δ
1 )]q1

du

u

)1/q1

.

Now simple substitutions, the characterizations of the K0-functionals via moduli of smooth-
ness of integer order give the assertion. �

Remark 2.4. Proposition 1.3 ′ contains the corresponding results for Lebesgue spaces
(for part (A), take p∗ = q1 = r1 and see [40, 41, 63], for part (B), take p∗ = q1 = r1,
q0 = 1 and see [40, 41, 42, 63]). We also note that even though (1.8) does not hold in
general for p = 1 and q <∞, it still valid for p = 1 and q =∞ ([40, Corollary 8.3]), i.e.,

there holds ωk(f, t)L∞ .
∫ t

0
u−nωk+n(f, u)L1

du
u
, k ∈ N.

Remark 2.5. Let us try to combine Proposition 1.3 ′ (A) with Proposition 1.1 (B).
Proposition 1.3 ′ (A) has the assumption q1 6 r1 . Proposition 1.1 (B) has the assumptions
r1 6 r2, q1 > max{p∗, 2, r1} if p∗ 6= 2, q1 > max{2, r1} if p∗ = 2, r2 > 2, q1 > 2
if p∗ = 2, r2 < 2. Thus we will have to choose q1 = r1. When setting γ = δ in
Proposition 1.1 (B), we arrive at

tβ
(∫ ∞

t

[u−δωβ+δ(f, u)Lp∗,r2 ]q1
du

u

)1/q1

.

(∫ t

0

[u−δωβ+δ(f, u)L1 ]q1
du

u

)1/q1

, t > 0,

for all f ∈ L1(Rn) provided δ > 1, n > 2, β + δ − 1 ∈ N and

r2 > q1 >

{
max{p∗, 2} , p 6= 2
2 , p = 2

, 0 <
1

p∗
= 1− δ

n
.
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3. Notation and Preliminaries

Throughout the paper, we write A . B (or A & B) if A 6 cB (or cA > B) for
some positive constant c, which depends only on nonessential variables involved in the
expressions A and B, and A ≈ B if A . B and A & B.

In the whole paper the symbol (R, µ) denotes a totally σ-finite measurable space
with a non-atomic measure µ, and M(R, µ) is the set of all extended complex-valued
µ-measurable functions on R. By M+(R, µ) we mean the family of all non-negative
functions from M(R, µ). When R is an interval (a, b) ⊆ R and µ is the Lebesgue
measure on (a, b), we denote these sets by M(a, b) and M+(a, b), respectively. More-
over, by M+(a, b; ↓) (and M+(a, b; ↑)) we mean the subset of M+(a, b) consisting of all
non-increasing (non-decreasing) functions on (a, b). We denote by λn the n-dimensional
Lebesgue measure on Rn.

For two normed spaces X and Y, we will use the notation Y ↪→ X if Y ⊂ X and
‖f‖X . ‖f‖Y for all f ∈ Y.

A normed linear space X of functions from M(R, µ), equipped with the norm ‖ · ‖X ,
is said to be a Banach function space if the following four axioms hold:

(1) 0 6 g 6 f µ-a.e. implies ‖g‖X 6 ‖f‖X ;
(2) 0 6 fn ↗ f µ-a.e. implies ‖fn‖X ↗ ‖f‖X ;
(3) ‖χE‖X <∞ for every E ⊂ R of finite measure;2

(4) if µ(E) <∞, then there is a constant CE such that∫
E
|f(x)| dµ(x) 6 CE‖f‖X for every f ∈ X.

Given a Banach function space X, which satisfies

(5) ‖f‖X = ‖g‖X whenever f ∗ = g∗,3

we obtain a rearrangement-invariant Banach function space (shortly r.i. space). Note
that, by [6, Chapter 2, Theorem 6.6] and [6, Chapter 2, Theorem 2.7], L1 ∩ L∞ ↪→ X ↪→
L1 + L∞ for any r.i. space X.

Given a Banach function space X on (R, µ), the set

X ′ =

{
f ∈M(R, µ) :

∫
R

|f(x)g(x)| dµ <∞ for every g ∈ X
}
,

equipped with the norm

‖f‖X′ = sup
‖g‖X61

∫
R

|f(x)g(x)| dµ,

is called the associate space of X. It turns out that X ′ is again a Banach function space
and that X ′′ = X. Furthermore, the Hölder inequality∫

R

|f(x)g(x)| dµ 6 ‖f‖X‖g‖X′

holds for every f and g in M(R, µ). It will be useful to note that

(3.1) ‖f‖X = sup
‖g‖X′61

∫
R

|f(x)g(x)| dµ.

2 The symbol χE stands for the characteristic function of the set E.
3 Recall that f∗ and g∗ denote the non-increasing rearrangements of functions f and g.
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For every r.i. space X on (R, µ), there exists an r.i. space X over ((0,∞), dt) such
that

‖f‖X = ‖f ∗‖X for every f ∈ X
(cf. [6, Chapter 2, Theorem 4.10]). This space, equipped with the norm

‖f‖X = sup
‖g‖X′61

∫ ∞
0

f ∗(t)g∗(t) dt,

is called the representation space of X.
A Banach space F of real valued measurable functions defined on the measurable space

(R, µ) is called a Banach function lattice if its norm has the following property:

|f(x)| 6 |g(x)| µ-a.e., g ∈ F ⇒ f ∈ F and ‖f‖F 6 ‖g‖F .
In this paper we will consider a Banach lattice F over a measurable space ((0,∞), dt/t),
satisfying the condition

Φ(1) <∞,(3.2)

where Φ(x) := ‖min(x, ·)‖F for all x ∈ (0,∞). (The function Φ is sometimes called the
fundamental function of the lattice F .) Note that Φ is a quasiconcave function on (0,∞),
which means that Φ ∈ M+((0,∞); ↑) and Φ

Id
∈ M+((0,∞); ↓) (here Id stands for the

identity map on (0,∞)). Condition (3.2) implies that Φ(x) < ∞ for any x ∈ (0,∞),
moreover, Φ ∈ C(0,∞) (cf. [27, Remark 2.1.2]).

Let (X, Y ) be a compatible couple of Banach spaces (cf., [6, p. 310]). The K-
functional is defined for each f ∈ X + Y and t > 0 by

K(f, t;X, Y ) := inf
f=f1+f2

(
‖f1‖X + t‖f2‖Y

)
,(3.3)

where the infimum extends over all representation f = f1 + f2 with f1 ∈ X and f2 ∈ Y .
As a function of t, K(t, f ;X, Y ) is quasiconcave on (0,∞).

Similarly, we define, for each f ∈ X + Y and t > 0,

K0(f, t;X, Y ) := inf
f=f1+f2

(
‖f1‖X + t|f2|Y

)
(3.4)

and

K1(f, t;X, Y ) := inf
f=f1+f2

(
|f1|X + t|f2|Y

)
,(3.5)

where | · |X and | · |Y are seminorms on X and Y .
If (X, Y ) is a compatible couple of Banach spaces and F is a Banach lattice, then we

define the space (X, Y )F to be the set of all f ∈ X + Y for which the norm

‖f‖(X,Y )F = ‖K(f, ·, X, Y )‖F
is finite. Note that if 1 6 r < ∞, θ ∈ (0, 1) and the Banach lattice F is the set of all
functions h ∈M(0,∞) such that

‖h‖F :=
(∫ ∞

0

(
s−θ|h(s)|

)r ds
s

)1/r

<∞,

then the space (X, Y )F coincides with the classical space (X, Y )θ,r defined, e.g., in [6,
p. 299].
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We will also work with more general classes of functions, which are not linear. Let ρ
be a functional on M+(Rn, λn) satisfying

(N1) ρ(f) > 0 for any f ∈M+(Rn, λn) and ρ(f) = 0⇔ f = 0, λn-a.e.,
(N2) ρ(αf) = |α|ρ(f) for any f ∈ (Rn, λn) and α ∈ R.

Such a functional is called a gage and the collection

X = X(Rn) = X(Rn, λn) = {f ∈M+(Rn, λn) : ρ(f) <∞}
is said a (function) gaged cone (cf. [17]). Moreover, we put

‖f‖X := ρ(f), f ∈ X.
An associate space of a gaged cone X is defined in the same way as for Banach function
spaces.

If X is a gaged cone, then the functional | · |X : X → R is called a semi-gage on X
provided that the functional | · |X is non-negative and positively homogeneous on X.

Given two function gaged cones X and Y , the embedding Y ↪→ X means that Y ⊂ X
and ‖f‖X . ‖f‖Y for all f ∈ Y.

A pair of function gaged cones (X, Y ) is said a compatible couple of function gaged
cones if there is some Hausdorff topological vector space, say Z, in which each of X and
Y is continuously embedded. Given a compatible couple (X, Y ) of function gaged cones,
the K-functionals K(f, t;X, Y ), K0(f, t;X, Y ), and K1(f, t;X, Y ) are defined analogously
to (3.3)–(3.5). Moreover, if F is a Banach lattice over a measure space ((0,∞), dt/t)
satisfying (3.2), then the space (X, Y )F is defined analogously to the case when (X, Y ) is
a compatible couple of Banach spaces.

In this paper we work with function gaged cones being the subsets of L1(Rn)+L∞(Rn).
Given k ∈ N and a Banach function space X = X(Rn), we denote by W kX the

corresponding Sobolev space, that is, the space of all functions on Rn whose distributional
derivatives Dαf , |α| 6 k, belong to X. This space is equipped with the norm

‖f‖WkX := ‖f‖X + |f |WkX := ‖f‖X +
∑
k=|α|

‖D αf‖X .

Note that W kX = AkX, where A is the Sobolev integral operator; see, for example, the
representation theorem in [12, Section 3.4]. If X is a function gage cone, then the Sobolev
class W kX is defined similarly.

We are going to use the classical equivalence between theK-functionalK0 and modulus
of smoothness: for any k ∈ N and an r.i. Banach function space X, one has

(3.6) ωk(f, t)X ≈ K0(f, tk;X,W kX) for all t > 0 and f ∈ X
provided that in the space W kX we choose the seminorm |f |WkX :=

∑
k=|α|
‖D αf‖X . The

proof follows the same reasoning as the one given for X = Lp in [6, pp. 339–341].
Let −∞ 6 a < b 6 +∞ and let ξ : (a, b)→ R be a non-decreasing function on (a, b).

Put ξ(a) = limt→a+ ξ(t) and ξ(b) = limt→b− ξ(t). The generalized reverse function Rξ of ξ
is defined by

(Rξ)(t) := inf
{
τ ∈ (a, b) : ξ(τ) > t

}
for all t ∈ (ξ(a), ξ(b)).

The following properties of the generalized reverse function can be easily verified.
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Lemma 3.1. If the function ξ given above is left continuous on (a, b), then

ξ
(
(Rξ)(t)

)
6 t for any t ∈ (ξ(a), ξ(b))

and

t 6 (Rξ)(ξ(t)) for any t ∈ (a, b).

Moreover, if ξ ∈ C((a, b)), then

ξ
(
(Rξ)(t)

)
= t for any t ∈ (ξ(a), ξ(b)).

We note that Lemma 3.1 does not hold without the assumption that ξ is left contin-
uous. Moreover, an analogue of ξ

(
(Rξ)(t)

)
= t, namely (Rξ)(ξ(t)) = t for any t ∈ (a, b),

need not hold even if ξ ∈ C((a, b)).
If (a, b) ⊂ R and p ∈ (0,∞], then the symbol ‖ · ‖p,(a,b) stands for the quasinorm in

the Lebesque space Lp((a, b)).
As usual, for p ∈ [1,∞], we define p′ by 1/p+ 1/p′ = 1. Throughout the paper we use

the abbreviations LHS(∗) (RHS(∗)) for the left- (right-) hand side of the relation (∗).

4. General inequalities for K-functionals

4.1. Holmstedt-type formulas. The next theorem is a folklore in some way and it
can be considered as an abstract form of the limiting cases of the Holmstedt-type formulas
(see, e.g., [6, Corollary 2.3, p. 310 and p. 430] and [11, p. 466]). Since we have not
been able to find an explicit reference of the needed general form (cf. [2, 48]), we prove
it below. The importance of this result can be seen in, e.g., [55].

Theorem 4.1. Let (X0, X1) be a compatible couple of Banach function spaces.
(A) Let F0 be a Banach lattice over ((0,∞), dt/t). Assume that the function Ξ(t) :=

‖min(·, t)‖F0, t ∈ (0,∞), satisfies Ξ(1) < ∞. If φ is the generalized reverse function of
Ξ, then

K(f, t; (X0, X1)F0 , X1) ≈ ‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0(4.1)

+K(f, φ(t);X0, X1)‖χ(φ(t),∞)(s)‖F0

for all t ∈ (Ξ(0),Ξ(∞)) and f ∈ (X0, X1)F0 +X1.
(B) Let F1 be a Banach lattice over ((0,∞), dt/t). Assume that the function Θ(t) :=

t/‖min(·, t)‖F1, t ∈ (0,∞), satisfies Θ(1) <∞. If ψ is the generalized reverse function of
Θ, then

K(f, t;X0, (X0, X1)F1) ≈ t
K(f, ψ(t);X0, X1)

ψ(t)
‖s χ(0,ψ(t))(s)‖F1(4.2)

+ t‖K(f, s;X0, X1)χ(ψ(t),∞)(s)‖F1

for all t ∈ (Θ(0),Θ(∞)) and f ∈ X0 + (X0, X1)F1 .

Remark 4.2. (i) Formulas (4.1) and (4.2) remain valid for K-functionals given by
(3.4) and (3.5).

(ii) By Theorem 4.1 estimate (4.1) holds for all t ∈ (Ξ(0),Ξ(∞)) and f ∈ (X0, X1)F0 +
X1, or equivalently, for all t ∈ (Ξ(0),Ξ(∞)) and f ∈ X for which RHS(4.1) is finite.
Similar remark can be made about equivalence (4.2).
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Proof of Theorem 4.1. We start with (A). As the function Ξ is quasiconcave, it
is continuous and hence Ξ(φ(t)) = ‖min(s, φ(t))‖F0 = t for any t ∈ (Ξ(0),Ξ(∞)) by
Lemma 3.1. If f = f0 + f1, where f0 ∈ X0 and f1 ∈ X1, then, for all t ∈ (Ξ(0),Ξ(∞)),

‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0 6 ‖K(f0, s;X0, X1)χ(0,φ(t))(s)‖F0

+ ‖K(f1, s;X0, X1)χ(0,φ(t))(s)‖F0

6 ‖K(f0, s;X0, X1)‖F0 + ‖sχ(0,φ(t))(s)‖F0‖f1‖X1

6 ‖f0‖(X0,X1)F0
+ ‖min(s, φ(t))‖F0‖f1‖X1

= ‖f0‖(X0,X1)F0
+ t‖f1‖X1

and

K(f, φ(t);X0, X1)‖χ(φ(t),∞)(s)‖F0 6 K(f0, φ(t);X0, X1)‖χ(φ(t),∞)(s)‖F0

+K(f1, φ(t);X0, X1)‖χ(φ(t),∞)(s)‖F0

6 ‖K(f0, s;X0, X1)‖F0 + φ(t)‖f1‖X1‖χ(φ(t),∞)(s)‖F0

6 ‖f0‖(X0,X1)F0
+ ‖min(s, φ(t))‖F0‖f1‖X1

= ‖f0‖(X0,X1)F0
+ t‖f1‖X1 .

Thus, taking the infimum over all decompositions f = f0 + f1 of the function f , with
f0 ∈ (X0, X1)F0 and f1 ∈ X1, we arrive at the estimate LHS(4.1)&RHS(4.1).

To prove the opposite estimate, take t ∈ (Ξ(0),Ξ(∞)) and suppose that f = f0 + f1,
with f0 ∈ X0, f1 ∈ X1, be such a representation that

‖f0‖X0 + φ(t)‖f1‖X1 6 2K(f, φ(t);X0, X1).

Since, for all s > 0,

K(f0, s;X0, X1) 6 ‖f0‖X0 6 2K(f, φ(t);X0, X1)

and

K(f1, s;X0, X1)

s
6 ‖f1‖X1 6

2

φ(t)
K(f, φ(t);X0, X1),

we get, for all f ∈ (X0, X1)F0 +X1,

K(f, t; (X0, X1)F0 , X1) 6 ‖f0‖(X0,X1)F0
+ t‖f1‖X1

. ‖K(f0, s;X0, X1)‖F0 + t
K(f, φ(t);X0, X1)

φ(t)

. ‖K(f0, s;X0, X1)χ(0,φ(t))(s)‖F0 + ‖K(f0, s;X0, X1)χ(φ(t),∞)(s)‖F0

+ t
K(f, φ(t);X0, X1)

φ(t)
=: J1 + J2 + J3.
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As f0 = f − f1, we obtain

J1 6 ‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0 + ‖K(f1, s;X0, X1)χ(0,φ(t))(s)‖F0

6 ‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0 + ‖f1‖X1‖sχ(0,φ(t))(s)‖F0

. ‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0 +
K(f, φ(t);X0, X1)

φ(t)
‖sχ(0,φ(t))(s)‖F0

. ‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0

and

J2 . ‖f0‖X0‖χ(φ(t),∞)(s)‖F0 . K(f, φ(t);X0, X1)‖χ(φ(t),∞)(s)‖F0 .

Since t = Ξ(φ(t)) 6 ‖s χ(0,φ(t))(s)‖F0 + φ(t)‖χ(φ(t),∞)(s)‖F0 , we get

J3 6
(
‖s χ(0,φ(t))(s)‖F0 + φ(t)‖χ(φ(t),∞)(s)‖F0

)K(f, φ(t);X0, X1)

φ(t)

6 ‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0 +K(f, φ(t);X0, X1)‖χ(φ(t),∞)(s)‖F0 .

Consequently, for all t ∈ (Ξ(0),Ξ(∞)) and f ∈ (X0, X1)F0 +X1,

K(f, t; (X0, X1)F0 , X1) . ‖K(f, s;X0, X1)χ(0,φ(t))(s)‖F0+K(f, φ(t);X0, X1)‖χ(φ(t),∞)(s)‖F0 .

To prove part (B), we notice that (cf. [6, Chapter V, Prop. 1.2])

K(f, t;X0, (X0, X1)F1) = tK(f, 1/t; (X0, X1)F1 , X0) = tK(f, 1/t; (X1, X0)F̃1
, X0),

where F̃1 = {f : tf(1/t) ∈ F1} and ‖f‖F̃1
= ‖tf(1/t)‖F1 . Now we apply part (A) and the

reverse preceding substitutions to arrive at the statement. �

4.2. Inequalities for K-functionals involving the potential-type operators.
Let {Aτ}τ∈M, where M = {τ : 0 6 τ < τ0} or M = {k ∈ N0 : k < τ0} for some
τ0 ∈ (0,∞), be a family of linear operators defined on L1(Rn) + L∞(Rn) satisfying

(P1) Aτ : X → X for any τ ∈ M and for any function gaged cone X ⊂ L1(Rn) +
L∞(Rn);

(P2) A0X = X for any function gage cone X ⊂ L1(Rn) + L∞(Rn);
(P3) Aτ (AσX) = Aσ(AτX) = Aτ+σX for any function gage cone X ⊂ L1(Rn) +

L∞(Rn) and for any σ, τ, σ + τ ∈M.

Here AτX, τ ∈M, is the range of Aτ equipped with the gage (or norm)

‖f‖AτX = ‖f‖X + |f |AτX , where |f |AτX = inf{‖g‖X : f = Aτg}.

Theorem 4.3. (Ul’yanov-type inequalities) Assume that X is an r.i. Banach function
space and Y, Z ⊂ L1 + L∞ are function gaged cones.

Let

(4.3) Aσ+τX ↪→ Y, AσX ↪→ Z, for some τ > 0 and σ > 0.

(A) Let F0 be a Banach lattice over ((0,∞), dt/t) satisfying

(4.4) (X, Y )F0 ↪→ Z.
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Assume that the function Ξ0(t) := ‖min(·, t)‖F0 , t ∈ (0,∞), is such that Ξ0(1) < ∞. If
φ0 is the generalized reverse function of Ξ0, then

K(f, t;Z,AτZ) . ‖K(f, s;X,Aσ+τX)χ(0,φ0(t))(s)‖F0(4.5)

+K(f, φ0(t);X,Aσ+τX)‖χ(φ0(t),∞)(s)‖F0

for all t ∈ (Ξ0(0),Ξ0(∞)) and f ∈ X (for which RHS(4.5) is finite).
(B) Let F1 be a Banach lattice over ((0,∞), dt/t) satisfying

(4.6) Z ↪→ (X, Y )F1 =: V.

Assume that the function Ξ1(t) := ‖min(·, t)‖F1 , t ∈ (0,∞), is such that Ξ1(1) < ∞. If
φ1 is the generalized reverse function of Ξ1, then

K(f, t;V,AτV ) . ‖K(f, s;X,Aσ+τX)χ(0,φ1(t))(s)‖F1(4.7)

+K(f, φ1(t);X,Aσ+τX)‖χ(φ1(t),∞)(s)‖F1

for all t ∈ (Ξ1(0),Ξ1(∞)) and f ∈ X (for which RHS(4.7) is finite).

Remark 4.4. (i) It is clear from the proof that inequality (4.5) holds provided that

Aσ+τX ↪→ Y for some τ > 0 and σ > 0

and
AσX ↪→ (X, Y )F0 =: Z.

(ii) A different, abstract approach to Ul’yanov inequalities, based on semi-groups of
linear equibounded operators in Banach spaces, is given in [65].

Proof of Theorem 4.3. The property (P3) of operators Aτ and the second em-
bedding in (4.3) imply that

(4.8) Aσ+τX ↪→ AτZ.

Further, using the first embedding in (4.3) and (4.4), we get

(X,Aσ+τX)F0 ↪→ (X, Y )F0 ↪→ Z.

This, (4.8), and Theorem 4.1 (A) (see also Remark 4.2 (ii)) yield, for all t ∈ (Ξ0(0),Ξ0(∞))
and f ∈ X,

K(f, t;Z,AτZ) . K(f, t; (X,Aσ+τX)F0 , A
σ+τX)

≈ ‖K(f, s;X,Aσ+τX)χ(0,φ0(t))(s)‖F0

+K(f, φ0(t);X,Aσ+τX)‖χ(φ0(t),∞)(s)‖F0 ,

and (4.5) is proved.
To obtain (4.7), using (4.8) and (4.6), we arrive at

Aσ+τX ↪→ AτV.

Moreover, applying the first embedding in (4.3) and definition of V , we obtain

(X,Aσ+τX)F1 ↪→ (X, Y )F1 = V.

Consequently, for all t > 0,

K(f, t;V,AτV ) . K(f, t; (X,Aσ+τX)F1 , A
σ+τX),

which, together with Theorem 4.1 (A) (and Remark 4.2 (ii)), yields (4.7). �
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Using part (B) of Theorem 4.1, one can prove the following results (Marchaud and
reverse Marchaud-type inequalities).

Theorem 4.5. Assume that X is an r.i. Banach function space. Let F1 be a Banach
lattice over ((0,∞), dt/t). Assume that the function Θ(t) := t/‖min(·, t)‖F1, t ∈ (0,∞),
satisfies Θ(1) <∞ and that ψ is the generalized reverse function of Θ.

(A) (Marchaud-type inequality) If

(4.9) (X,Aσ+τX)F1 ↪→ AτX, with some τ, σ > 0,

then

K(f, t;X,AτX) . t
K(f, ψ(t);X,Aσ+τX)

ψ(t)
‖s χ(0,ψ(t))(s)‖F1(4.10)

+ t‖K(f, s;X,Aσ+τX)χ(ψ(t),∞)(s)‖F1

for all t ∈ (Θ(0),Θ(∞)) and f ∈ X (for which RHS(4.10) is finite).

(B) (Reverse Marchaud-type inequality) If

(4.11) AτX ↪→ (X,Aσ+τX)F1 , with some τ, σ > 0,

then

t
K(f, ψ(t);X,Aσ+τX)

ψ(t)
‖s χ(0,ψ(t))(s)‖F1 +t‖K(f, s;X,Aσ+τX)χ(ψ(t),∞)(s)‖F1(4.12)

. K(f, t;X,AτX)

for all t ∈ (Θ(0),Θ(∞)) and f ∈ X (for which RHS(4.12) is finite).

Proof. To prove (A), we obtain, by (4.9) and Theorem 4.1 (B) (see also Remark 4.2 (ii)),

K(f, t;X,AτX) . K(f, t;X, (X,Aσ+τX)F1)

≈ t
K(f, ψ(t);X,Aσ+τX)

ψ(t)
‖s χ(0,ψ(t))(s)‖F1

+ t‖K(f, s;X,Aσ+τX)χ(ψ(t),∞)(s)‖F1

for any t ∈ (Θ(0),Θ(∞)) and f ∈ X.
In part (B) embedding (4.11) is reverse to (4.9), therefore the above inequality sign is

also reverse. �

Combining parts (A) and (B) of Theorem 4.1, we obtain the following result.

Theorem 4.6. (Kolyada-type inequality) Assume that X and Z, Z ⊂ X, are r.i.
Banach function spaces. Let F0, F1 be Banach lattices over ((0,∞), dt/t) satisfying, for
some τ > 0 and σ > 0,

(4.13) (X,Aτ+σX)F0 ↪→ Z

and

(4.14) Aτ+σX ↪→ (Z,AτZ)F1 .
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Assume that the functions Ξ(t) := ‖min(·, t)‖F0 and Θ(t) := t/‖min(·, t)‖F1, t ∈ (0,∞),
satisfy Ξ(1) < ∞ and Θ(1) < ∞. If φ and ψ are the generalized reverse functions of Ξ
and Θ, respectively, then

t
K(f, ψ(t);Z,AτZ)

ψ(t)
‖s χ(0,ψ(t))(s)‖F1 + t‖K(f, s;Z,AτZ)χ(ψ(t),∞)(s)‖F1(4.15)

. ‖K(f, s;X,Aτ+σX)χ(0,φ(t))(s)‖F0

+K(f, φ(t);X,Aτ+σX)‖χ(φ(t),∞)(s)‖F0

for all t ∈ (Ξ(0),Ξ(∞)) ∩ (Θ(0),Θ(∞)) and f ∈ X (for which RHS(4.15) is finite).

Proof. Taking into account (4.13) and (4.14), we get

K(f, t;Z, (Z,AτZ)F1) . K(f, t; (X,Aτ+σX)F0 , A
τ+σX) for all t > 0.

To complete the proof, note that, by Theorem 4.1 (B),

K(f, t;Z, (Z,AτZ)F1) ≈ LHS(4.15) for all t ∈ (Θ(0),Θ(∞))

and, by Theorem 4.1 (A),

K(f, t; (X,Aτ+σX)F0 , A
τ+σX) ≈ RHS(4.15) for all t ∈ (Ξ(0),Ξ(∞)).

�

Remark 4.7. (i) Note that Theorems 4.3, 4.5, and 4.6 remain true if the K-functional
K is replaced by the K-functional K0 or by the K-functional K1 given by (3.4) or by
(3.5).

(ii) Theorems 4.1, 4.3, 4.5, and 4.6 are true if the Banach function spaces are replaced
by function gaged cones.

To give a flavor of how to use Theorems 4.3, 4.5, and 4.6, we present the following
examples on the classical Ulyanov inequality (1.6) and sharp Ulyanov inequality in the
Lorentz setting, cf. Proposition 1.3.

Example 4.8. We obtain the following extension of the classical Ulyanov inequality
(1.6):

If 1 6 p <∞, k, n ∈ N, 0 < δ < k < n/p, and 1/p∗ = 1/p− δ/n, then

(4.16) tk−δ sup
t6u<1

ωk(f, u)Lp∗

uk−δ
.

(∫ t

0

[
u−δωk(f, u)Lp

]p∗ du
u

)1/p∗

as t→ 0+

holds for all f ∈ Lp(Rn).
Note that, since LHS(1.6)6 LHS(4.16), inequality (1.6) follows from (4.16). More-

over, (4.16) provides a sharper bound from below. Indeed, considering f ∈ C∞ implies
ωk(f, u)Lr ≈ uk, 0 < u < 1, for any 1 6 r 6 ∞. Thus, inequality (1.6) even for smooth
functions gives only the rough estimate tk . tk−δ while (4.16) becomes an equivalence.

To prove (4.16), first, we apply Sobolev’s embedding Ẇ kLp ↪→ Lcp̄ with 1 6 p < n/k

and 1/p̄ = 1/p − k/n (here, as usual, Ẇ kLp is the homogeneous Sobolev space and
Lcp̄ = Lp̄/{constants} is the factor space with the norm ‖f‖Lcp̄ = infc∈R1 ‖f−c‖p̄). See the

book [45, 1.77, 1.78] for the case k = 1. For k > 1, it follows from the Poincaré inequality,
namely,

‖f − c‖Lp̄ . ‖f#‖Lp̄ . ‖f
#
k ‖Lp . |f |WkLp , 1 < p < n/k,
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where c = limt→∞ f
∗(t) and f#

k is the maximal function given by f#
k (x) = sup

x∈Q

1

|Q|1+ k
n

∫
Q
|f−

Pkf |, Pkf is a linear projection mapping L1 onto the space of polynomials of degree at

most k, and f# = f#
0 . The first estimate follows from [5, Corollary 4.3] and Hardy type

inequalities, the second and third estimates from [19, Theorem 9.3, Theorem 5.6, and
Corollary 2.2].

For p = 1 we obtain by same way

‖f − c‖L n
n−k ,∞

. ‖f#‖L n
n−k ,∞

. ‖f#
k ‖L n

n−k ,∞
. |f |WkL1

.

By truncated method ([1, Theorem 7.2.1]), we can obtain

‖f − c‖L n
n−k
. |f |WkL1

,

By interpolation (see [53]),

(4.17) (Lp, Ẇ
kLp)α,p∗ ↪→ (Lp, L

c
p̄)α,p∗ = Lcp∗

with α := δ/k and 1/p∗ = 1/p− δ/n.
On the other hand, since Lp ↪→ Lp,∞ = (Lp∗n/(n+p∗k), L

c
p∗)1−α,∞ and Ẇ kLp∗n/(n+p∗k) ↪→

Lp∗ , we obtain

Ẇ kLp ↪→Ẇ k(Lp∗n/(n+p∗k), Lp∗)1−α,∞(4.18)

= (Ẇ kLp∗n/(n+p∗k), Ẇ
kLp∗)1−α,∞ ↪→(Lp∗ , Ẇ

kLp∗)1−α,∞,

where the equality follows from [51] and [50].
Embeddings (4.17), (4.18), Theorem 4.6 (with σ = 0 and K0 instead of K), and the

known relation ωk(f, t
1/k)Lp ≈ K0(f, t;Lp,W

kLp) give

(4.19) t1−α sup
t6s

ωk(f, s
1/k)Lp∗

s1−α .

(∫ t

0

[
u−αωk(f, u

1/k)Lp

]p∗ du
u

)1/p∗

for f ∈ Lp and t > 0 if 0 < α < 1 and 1/p∗ = 1/p− αk/n. Finally, (4.19) and the change
of variables yield (4.16).

Note that in the previous example we have not used optimal Sobolev embeddings and
thus not obtain sharp Ulyanov inequality. The optimal embeddings require to use Lorentz
spaces.

Example 4.9. Let β > 0, 1 < p <∞, 0 < δ < n/p, 1 6 r0 6 r1 6∞, and X = Lp,r0 ,
Z = Lp∗,r1 with 1

p∗
= 1

p
− δ

n
. By (2.6), Hδ

p,r0
↪→ Lp∗,r1 . Thus, the second embedding in

(4.3) holds with AδX = Hδ
p,r0

and σ = δ. Here A is the Sobolev integral operator; see, for
example, the representation theorem in [12, Section 3.4].

Since

Hδ+β
p,r0

↪→ Lp̄,r0 , where
1

p̄
=

1

p
− δ + β

n
,

and (cf. [7, Theorem 5.3.1])

Lp∗,r1 = (Lp,r0 , Lp̄,r0)θ,r1 , where
1

p∗
=

1− θ
p

+
θ

p̄
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(it is easy to see that θ = δ/(δ + β)), we derive that (4.3) and (4.4) hold with Y = Lp̄,r0 ,
σ = δ, τ = β, and the Banach lattice F0 defined as the set of all functions g ∈ M(0,∞)
such that ‖g‖F0 = ‖u−θ−1/r1g(u)‖r1,(0,∞).

Finally, Theorem 4.3 with φ0(t) ≈ t1/(1−θ) = t
β+δ
β implies

ωβ(f, t1/β)Lp∗,r1 ≈ K0(f, t;Lp∗,r1 , H
βLp∗,r1) .

(∫ t
β+δ
β

0

u−θr1−1ωβ+δ(f, u
1/(β+δ))r1Lp,r0

du
)1/r1

+ ωβ+δ(f, t
1/(β+δ))Lp,r0

(∫ ∞
t
β+δ
β

u−θr1−1ds
)1/r1

≈
(∫ t

β+δ
β

0

u−θr1−1ωβ+δ(f, u
1/(β+δ))r1Lp,r0

du
)1/r1

,

with the usual modifications for r1 = ∞. The latter is equivalent to the sharp estimate

ωβ(f, t)Lp∗,r1 .
( ∫ t

0
[u−δ ωβ+δ(f, u)Lp,r0 ]r1 du

u

)1/r1
as t→ 0+ for f ∈ Lp,r0 ; see (1.19).

5. The Ul’yanov inequality between weighted Lorentz spaces

5.1. Definitions and preliminaries. The following definition is motivated by the
known result on the equivalence between the classical Lorentz space norm and the one
involving f ∗∗(t)− f ∗(t), namely,

‖f‖Lp,r ≈
(∫ ∞

0

(
t1/p−1/r

(
f ∗∗(t)− f ∗(t)

))r
dt

)1/r

, 1 < p, r <∞,

where f ∗∗(t) = 1
t

∫ t
0
f ∗(s) ds provided that f ∗∗(∞) = 0, see [6, Proposition 7.12, p. 84].

Let X be an r.i. space over (Rn, λn) and let w be a weight, that is, a nonnegative
measurable function on (0,∞). We define the function gage cone

SX(w)(Rn, λn) := {f ∈M(Rn, λn) : f ∗(∞) = 0, ‖f‖SX(w) := ‖(f ∗∗ − f ∗)w‖X <∞},

where X is a representation space of X.
We will also need weighted Lorentz spaces defined as follows (cf., e.g., [16]): If 1 6

r <∞, we put

Λr(w)(Rn, λn) :=
{
f ∈M(Rn, λn) : ‖f‖Λr(w) :=

(∫ ∞
0

(
f ∗(s)

)r
w(s) ds

)1/r

<∞
}
,

Γr(w)(Rn, λn) :=
{
f ∈M(Rn, λn) : ‖f‖Γr(w) :=

(∫ ∞
0

(
f ∗∗(s)

)r
w(s) ds

)1/r

<∞
}
,

Sr(w)(Rn, λn) :=
{
f ∈M(Rn, λn) : f ∗(∞) = 0,

‖f‖Sr(w) :=
(∫ ∞

0

(
f ∗∗(s)− f ∗(s)

)r
w(s) ds

)1/r

<∞
}
.

We will use the following conditions on weights:

• w ∈ Br (i.e., w satisfies the Br condition) if there is c > 0 such that

tr
∫ ∞
t

s−rw(s) ds 6 c

∫ t

0

w(s) ds for every t > 0;
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• w ∈ B∗r (i.e., w satisfies the B∗r condition) if there is c > 0 such that

tr
∫ t

0

s−rw(s) ds 6 c

∫ t

0

w(s) ds for every t > 0;

• w ∈ B∗∞ (i.e., w satisfies the B∗∞ condition) if there is c > 0 such that∫ t

0

log
t

s
w(s) ds 6 c

∫ t

0

w(s) ds for every t > 0.

In general, Λr(w)(Rn, λn) and Sr(w)(Rn, λn) are not r.i. spaces, they are not even
linear. On the other hand, Γr(w)(Rn, λn) is always an r.i. space for 1 6 r < ∞ and in
this case the representation space of Γr(w)(Rn, λn) is Γr(w)((0,∞), dt).

If Λr(w)(Rn, λn) is an r.i. space (e.g., if 1 < r <∞ and w ∈ Br, see Lemma 5.1 below),
then the representation space of Λr(w)(Rn, λn) is the space Λr(w)((0,∞), dt).

Similarly, if Sr(w)(Rn, λn) is an r.i. space (e.g., if 1 < r < ∞ and w ∈ RBr;
see [16, Theorem 3.3]), then the representation space of Sr(w)(Rn, λn) is the space
Sr(w)((0,∞), dt). Moreover, if w ∈ RBr, 1 < r < ∞, then Sr(w)(Rn, λn) coincides
with Γr(w)(Rn, λn).

The dilation operator Et, t ∈ (0,∞), is defined on M+(0,∞) by

(Etf)(s) := f (ts) for all s ∈ (0,∞).

Given an r.i. space X and t ∈ (0,∞), the operator Et is bounded from X to X (cf. [6,
p. 148]). If hX denotes the dilation function, i.e.,

hX(t) := ‖E1/t‖X→X for all t ∈ (0,∞),

then the lower and upper Boyd index of the space X is given by

αX := lim
t→0+

log hX(t)

log t
and αX := lim

t→∞

log hX(t)

log t
,

respectively. The Boyd indices satisfy (cf. [6, p. 149])

0 6 αX 6 αX 6 1.

The Hardy averaging operator P and its dual Q are defined on M+(0,∞), for each
t ∈ (0,∞), by

(Pf)(t) :=
1

t

∫ t

0

f(s) ds and (Qf)(t) :=

∫ ∞
t

f(s)

s
ds,

respectively. Recall that (cf. [6, p. 150]) given an r.i. space X, the operator P is bounded
on X if and only if αX < 1, while the operator Q is bounded on X if and only if 0 < αX .

We will need the following result, which is partially known but it has never been
written in this form.

Lemma 5.1. Let w be a weight, 1 < r <∞, and X := Λr(w)(Rn, λn).
1. The following conditions are equivalent:

(a) w ∈ Br,
(b) X is an r.i. space,
(c) the operator P is bounded on X,
(d) αX < 1,
(e) X = Γr(w)(Rn, λn).
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2. If w ∈ Br and η ∈ (0, 1), then the following conditions are equivalent:

(a) w ∈ B∗q with q = ηr,
(b) the operator

(Qηf)(t) = t−η
∫ ∞
t

sηf(s)
ds

s
, t ∈ (0,∞),

is bounded on X,
(c) η < αX .

3. If w ∈ Br, then the following conditions are equivalent:

(a) w ∈ B∗∞,
(b) the operator Q is bounded on X,
(c) 0 < αX .

Proof. Part 1 is known; in more detail, for (a) ⇔ (b) see [56, Theorem 4], for
(a)⇔ (c) see [4, Theorem 1.7], for (c)⇔ (d) see [6, p. 150], and (c)⇔ (e) is clear.

The proof of part 2 easily follows from the paper [49, Theorem 3.1]. The condition
w ∈ B∗ηr is equivalent (cf. [49, Theorem 3.1]) to the fact that the operator Qη is bounded
in

L↓r(w) := {f ∈M+(0,∞; ↓) : ‖f‖L↓r(w) :=
(∫ ∞

0

|f(t)|rw(t) dt
)1/r

<∞}.

It remains to show that the operator Qη is bounded on L↓r(w) if and only if it is bounded
in Λr(w). Part “if” is clear. To prove the part “only if”, we first note that, by Fubini’s
theorem and the Hardy–Littlewood rearrangement inequality (see ([6, p. 44]),

(5.1)

∫ t

0

(Qηf)(x) dx =
1

1− η

∫ ∞
0

min
(
1,
t

u

)1−η
f(u) du

6
1

1− η

∫ ∞
0

min
(
1,
t

u

)1−η
f ∗(u) du =

∫ t

0

(Qηf
∗)(x) dx.

Therefore, the fact that Qηf ∈M+(0,∞; ↓), the Br condition, the first part of this lemma,
inequality (5.1), and the boundedness of Qη on L↓r(w) imply, for any f ∈M+(0,∞),(∫ ∞

0

(
(Qηf)∗(s)

)r
w(s) ds

)1/r

=
(∫ ∞

0

(
(Qηf)(s)

)r
w(s) ds

)1/r

≈
(∫ ∞

0

(1

s

∫ s

0

(Qηf)(u) du
)r
w(s) ds

)1/r

6
(∫ ∞

0

(1

s

∫ s

0

(Qηf
∗)(u) du

)r
w(s) ds

)1/r

.
(∫ ∞

0

(
(Qηf

∗)(s)
)r
w(s) ds

)1/r

.
(∫ ∞

0

(
f ∗(s)

)r
w(s) ds

)1/r

.

The proof of part 3 is similar, one makes use of the fact that the condition w ∈ B∗∞
is equivalent to the boundedness of the operator Q on the space L↓r(w) (cf. [49, Theo-
rem 3.3]). �

In the rest of this section we work with spaces over (Rn, λn) and sometimes we omit
the symbol (Rn, λn) from the notation of spaces in question.

Lemma 5.2. Let 1 < r < ∞, w ∈ Br, β ∈ R, and let v(t) := tβ for all t ∈ (0,∞). If
X := Λr(w)(Rn, λn), then

SX(v)(Rn, λn) ↪→ Sr(wv
r)(Rn, λn).
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Proof. Let β ∈ R, 1 < r < ∞, and f ∈ M+(Rn, λn). Since
∫ 2t

t
sβ−1 ds ≈ tβ for all

t > 0, and since

(5.2) the function t 7→ t(f ∗∗(t)− f ∗(t)) is non-decreasing on (0,∞)

(cf. [14, Prop. 4.2]), on putting

g(s) := (f ∗∗(s)− f ∗(s))sβ, s ∈ (0,∞),

we obtain that

(f ∗∗(t)− f ∗(t))tβ . 1

t

∫ 2t

t

g(s) ds 6 (Pg∗)(t) for all t > 0.

Therefore,(∫ ∞
0

(f ∗∗(t)− f ∗(t))r(v(t))rw(t) dt
)1/r

.
(∫ ∞

0

((Pg∗)(t))rw(t) dt
)1/r

.

Together with the condition w ∈ Br and the first part of Lemma 5.1 (recall that in our
case X = Λr(w)((0,∞), dt)), this implies that

‖f‖Sr(vrw) .
(∫ ∞

0

(g∗(t))rw(t) dt
)1/r

= ‖g‖X = ‖f‖SX(v)(Rn,λn),

the required result. �

In what follows, given γ > 0 and n ∈ N, we define the weight vγ,n by

(5.3) vγ,n(t) := t−
γ
n for all t > 0.

The next lemma represents a key step in the proof of Proposition 5.4 below. It was
proved in [32, Theorem 1.1] for k = 1, the proof for k ∈ N is analogous.

Lemma 5.3. If k, n ∈ N and X is an r.i. space, satisfying 0 < αX 6 αX < 1, then,
for all t > 0 and f ∈ X + SX(vk,n),

K(f, t;X,SX(vk,n))

≈ ‖(f ∗(s)− f ∗(t))χ
(0,t

n
k )

(s)‖X + t‖s−
k
n (f ∗∗(s)− f ∗(s))χ

(t
n
k ,∞)

(s)‖X

≈ ‖(f ∗∗(s)− f ∗(s))χ
(0,t

n
k )

(s)‖X + t‖s−
k
n (f ∗∗(s)− f ∗(s))χ

(t
n
k ,∞)

(s)‖X .

Proposition 5.4. If k,m, n ∈ N, 1 < r <∞, and w ∈ Br ∩B∗∞, then(
Λr(w), SΛr(w)(vk+m,n)

)
m
k+m

,r
= SΛr(wvmr,n)(v0,n).

Proof. Let X := Λr(w) = Λr(w)(Rn, λn). Then the space Λr(w)((0,∞), dt) is the
representation space of X. By Lemma 5.1, our assumptions guarantee that 0 < αX 6
αX < 1. Therefore, using Lemma 5.3 (with k + m instead of k), we obtain, for all t > 0
and and f ∈ X + SX(vk+m,n),

K(f, t;X,SX(vk+m,n)) ≈

(∫ t
n

k+m

0

([f ∗∗(s)− f ∗(s)]∗)r w(s)ds

)1/r

+ t

(∫ ∞
t

n
k+m

([
(f ∗∗(s)− f ∗(s)) s−

k+m
n

]∗)r
w(s)ds

)1/r

.
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If

Y :=
(
Λr(w), SΛr(w)(vk+m,n)

)
m
k+m

,r
,

then

‖f‖Y =

(∫ ∞
0

(
t−

m
k+mK(f, t; Λr(w), SΛr(w)(vk+m,n))

)r dt
t

)1/r

≈

(∫ ∞
0

t−
mr
k+m

∫ t
n

k+m

0

([f ∗∗(s)− f ∗(s)]∗)r w(s)ds
dt

t

)1/r

+

(∫ ∞
0

t
kr
k+m

∫ ∞
t

n
k+m

([
(f ∗∗(s)− f ∗(s)) s−

k+m
n

]∗)r
w(s)ds

dt

t

)1/r

=:I1 + I2.

Applying Fubini’s theorem, we arrive at

(5.4) I1 ≈
(∫ ∞

0

([f ∗∗(t)− f ∗(t)]∗)r t−
mr
n w(t)dt

)1/r

= ‖f‖SΛr(wvmr,n)
(v0,n)

and

(5.5) I2 ≈
(∫ ∞

0

t
kr
n

([
(f ∗∗(t)− f ∗(t)) t−

k+m
n

]∗)r
w(t) dt

)1/r

.

Thus, it remains to show that RHS(5.5) . RHS(5.4).
Let f ∈M+(Rn, λn) and g(s) := f ∗∗(s)− f ∗(s) for all s > 0. Making use of (5.2) and

the estimate t−
k+m
n
−1 ≈

∫∞
t
s−

k+m
n
−2 ds for all t > 0, we obtain that

(f ∗∗(t)− f ∗(t))t−
k+m
n .

∫ ∞
t

g(s)s−
k+m
n
−1 ds for all t > 0.

Together with the fact that the function t 7→ t
kr
n is non-decreasing on (0,∞), this implies

that

RHS(5.5) .
(∫ ∞

0

t
kr
n

(∫ ∞
t

g(s)s−
k+m
n
−1 ds

)r
w(t) dt

)1/r

.
(∫ ∞

0

(∫ ∞
t

g(s)s−
m
n
−1 ds

)r
w(t) dt

)1/r

.

Given t > 0, we define the non-increasing function ht by

ht(s) := min{s−
m
n
−1, t−

m
n
−1} for all s > 0.

Then ∫ ∞
t

g(s)s−
m
n
−1 ds 6

∫ ∞
0

g(s)ht(s) ds for all t > 0
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and, on applying the Hardy-Littlewood-Pólya rearrangement inequality, we arrive at∫ ∞
t

g(s)s−
m
n
−1 ds 6

∫ ∞
0

g∗(s)ht(s) ds

= t−
m
n
−1

∫ t

0

g∗(s) ds+

∫ ∞
t

g∗(s)s−
m
n
−1 ds

6 (P (g∗(s)s−
m
n ))(t) + (Q(g∗(s)s−

m
n ))(t) for all t > 0.

Consequently,

RHS(5.5) .
(∫ ∞

0

[(P (g∗(s)s−
m
n ))(t)]rw(t) dt

)1/r

+
(∫ ∞

0

[(Q(g∗(s)s−
m
n ))(t)]rw(t) dt

)1/r

=: N1 +N2.

Making use of the assumption w ∈ Br ∩ B∗∞ and Lemma 5.1, the fact that the function
t 7→ g∗(t)t−

m
n is non-increasing on (0,∞) and the definition of g, we get

N1 .
(∫ ∞

0

(
[g∗(t)t−

m
n ]∗
)r
w(t) dt

)1/r

=
(∫ ∞

0

(
g∗(t)t−

m
n

)r
w(t) dt

)1/r

=
(∫ ∞

0

(
[f ∗∗(t)− f ∗(t)]∗t−

m
n

)r
w(t) dt

)1/r

= RHS(5.4)

and, similarly,
N2 . RHS(5.4).

�

Lemma 5.5. If m,n ∈ N, 1 < r <∞, and w ∈ Br ∩B∗∞, then

(5.6) SΛr(wvmr,n)(v0,n) ↪→ SΛr(w)(vm,n).

Proof. Put X := Λr(wvmr,n), Y := Λr(w). Embedding (5.6) means that, for all
f ∈ SX(v0,n),

‖(f ∗∗ − f ∗)vm,n‖Y . ‖f ∗∗ − f ∗‖X ,
i.e.,(∫ ∞

0

(
[(f ∗∗ − f ∗)vm,n]∗(t)

)r
w(t) dt

)1/r

.
(∫ ∞

0

(
[f ∗∗ − f ∗]∗(t)

)r
w(t)vmr,n(t) dt

)1/r

.

This can be proved quite analogously as the estimate RHS(5.5) . RHS(5.4). �

To prove the needed embeddings for Sobolev spaces modelled upon weighted Lorentz
spaces given in Proposition 5.7 below, we make use of the following lemma, which is
closely related to the results from [47] and can be seen as a Sobolev-Gagliardo-Nirenberg
type inequality.

Lemma 5.6. Suppose that X(Rn) is an r.i. space such that k−1
n
< αX , k ∈ N, k < n,

and the set of bounded functions is dense in X. Then

‖t−
k
n (f ∗∗(t)− f ∗(t))||X .

∥∥|Dkf |∗
∥∥
X
, f ∈ W kX,
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where

|Dkf | =
( ∑
|α|=k

|Dαf |2
)1/2

.

Proof. First, from Theorem 2 in [47], we have

(5.7) ‖
(
t−

k
n (f ∗∗(t)− f ∗(t))

)∗
||X .

∥∥|Dkf |∗
∥∥
X
, f ∈ C∞0 (Rn).

Further, we show that the condition k−1
n
< αX implies limt→0+ ϕX(t) = 0, where ϕX is the

fundamental function of X. Indeed, for t ∈ (0, 1
2
), it follows that t

1−k
n . Q k−1

n

(
χ(0,1)

)
(t)

for k > 1 and log 1
t
. Q k−1

n

(
χ(0,1)

)
(t) for k = 1 and using boundedness of Q k−1

n
in X (see

[6, Theorem 5.15, p. 150]), we derive

ϕX(t) = ‖χ(0,t)‖X . t
k−1
n ‖Q k−1

n

(
χ(0,1)

)
‖X . t

k−1
n ‖χ(0,1)‖X if k > 1,

ϕX(t) = ‖χ(0,t)‖X .
(

log
1

t

)−1

‖Q k−1
n

(
χ(0,1)

)
‖X .

(
log

1

t

)−1

‖χ(0,1)‖X if k = 1.

Thus, limt→0+ ϕX(t) = 0. Using [6, Theorem 5.5, Chapter 2, p. 67], we obtain that
Xa = Xb and Xb is separable, where Xa is the subset of functions f ∈ X which have
absolutely continuous norms and Xb is the closure in X of the set of simple functions.
By our assumption X = Xb. Thus X = Xa = Xb. Then in light of Semenov’s theorem
(see [44, Theorem 8, Chapter II]), it follows that continuous functions are dense in Xb.
Further, by standard density argument, one can see that C∞0 (Rn) is dense in Xb. (For
another proof see Remark 3.13 in [25]. Somewhat similar argument can be found in [39].)

By Lorentz-Shimogaki result [6, Theorem 7.4, p. 169] and [6, Theorem 4.6, p. 61], if
‖fk − f‖X → 0, then ‖f ∗k − f ∗‖X → 0 as k → ∞. Thus, using a limiting argument, we
may extend the validity of (5.7) from functions in C∞0 (Rn) to all functions in W kX.

Since t(f ∗∗(t)− f ∗(t))∗ is an increasing function, we have

t−
k
n (f ∗∗(t)− f ∗(t)) . t(f ∗∗(t)− f ∗(t))

∫ 2t

t

x−
k
n
−2 dx

. Q k−1
n

(
t−

k
n (f ∗∗(t)− f ∗(t))

)
(t).

Taking into account the condition k−1
n

< αX , the operator Q k−1
n

is bounded on X and

therefore

‖t−
k
n (f ∗∗(t)− f ∗(t))||X . ‖Q k−1

n

(
t−

k
n (f ∗∗(t)− f ∗(t))

)
||X

. ‖
(
t−

k
n (f ∗∗(t)− f ∗(t))

)∗
||X .

∥∥|Dkf |∗
∥∥
X
.

�

Proposition 5.7. If k,m, n ∈ N, k + m < n, 1 < r < ∞, and w ∈ Br ∩ B∗r(k+m−1)
n

,

then

WmΛr(w) ↪→ SΛr(w)(vm,n)(5.8)

and

W k+mΛr(w) ↪→ SΛr(w)(vk+m,n).(5.9)
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Proof. Set X := Λr(w)(Rn, λn). By Lemma 5.1, part 2, the assumption w ∈ Br ∩
B∗r(k+m−1)

n

implies that k+m−1
n

< αX , which, in turn, gives m−1
n

< αX . Consequently, if

l ∈ {m, k +m}, then, by Lemma 5.6,∥∥|Dlf |∗
∥∥
X
& ‖t−

l
n (f ∗∗(t)− f ∗(t))||X ,

and embeddings (5.8) and (5.9) follow. �

5.2. The Ul’yanov inequality between weighted Lorentz spaces. The next
theorem provides an estimate of the K-functional K(f, t;Sr(w),W kSr(w)). Note that in
general, the function gaged cone Sr(w) is not linear (cf., e.g., [16]). For the definition of
the K-functional for the couple (Sr(w),W kSr(w)) see the discussion in Section 3.

Theorem 5.8. If k,m, n ∈ N, k + m < n, 1 < r < ∞, vmr,n(t) = t−
mr
n , and

w ∈ Br ∩B∗r(k+m−1)
n

, then

K(f, tk;Sr(wvmr,n),W kSr(wvmr,n))(5.10)

.

(∫ t

0

(
s−mK(f, sk+m; Λr(w),W k+mΛr(w))

)r ds
s

) 1
r

for all t > 0 and f ∈ Λr(w) (for which RHS(5.10) is finite).

Proof. By Lemma 5.2,

Z := SΛr(w)(vm,n) ↪→ Sr(wvmr,n),

which implies that

(5.11) K(f, t;Sr(wvmr,n),W kSr(wvmr,n)) . K(f, t;Z,W kZ)

for all f ∈ Z and all t > 0.
To estimate RHS(5.11), we are going to apply Theorem 4.3 (A), withX := Λr(w), Y :=

SΛr(w)(vk+m,n), the function gaged cone Z mentioned above, with the Sobolev integral
operator as the potential operator A, and the Banach lattice F0 defined as the set of all
functions h ∈M(0,∞) such that

‖h‖F0 :=
(∫ ∞

0

(
s−

m
k+m |h(s)|

)r ds
s

)1/r

<∞.

Note also that the assumption w ∈ Br ∩ B∗r(k+m−1)
n

and Lemma 5.1 imply that w ∈
Br ∩B∗∞.

Embeddings (5.9) and (5.8) of Proposition 5.7 show that assumption (4.3) of The-
orem 4.3 (A) is satisfied with σ := m and τ := k. Using Proposition 5.4, we arrive
at (

Λr(w), SΛr(w)(vk+m,n)
)

m
k+m

,r
= SΛr(wvmr,n)(v0,n).

Since, by Lemma 5.5,

SΛr(wvmr,n)(v0,n) ↪→ SΛr(w)(vm,n),

we obtain that (
Λr(w), SΛr(w)(vk+m,n)

)
m
k+m

,r
↪→ SΛr(w)(vm,n),
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which means that assumption (4.4) of Theorem 4.3 (A) is also satisfied. Consequently,
estimate (4.5) of Theorem 4.3 (A) implies that

K(f, t;Z,W kZ) .

∫ t
k+m
k

0

(
s−

m
k+mK(f, s; Λr(w),W k+mΛr(w))

)r ds
s

 1
r

(5.12)

+K(f, t
k+m
k ; Λr(w),W k+mΛr(w))

(∫ ∞
t
k+m
k

(
s−

m
k+m

)r ds
s

) 1
r

≈

∫ t
k+m
k

0

(
s−

m
k+mK(f, s; Λr(w),W k+mΛr(w))

)r ds
s

 1
r

.

Combining estimates (5.11) and (5.12), we obtain (5.10). �

Remark 5.9. Note that Theorem 5.8 remains true if the K-functionals K are replaced
by the K-functionals K0 (cf. Remark 4.7).

Since Sr(w) is not a linear space, the calculation of the K-functional
K(f, t;Sr(wvmr,n),W kSr(wvmr,n)) may cause additional difficulties. In order to use the
previous theorem, we would like to find a Banach function space Y such that Sr(wvmr,n) ↪→
Y . The smallest such space Y is the second associate space (Sr(wvmr,n))′′.

By [16, Theorem 4.1], if

(5.13)

∫ ∞
0

t−
mr
n
−rw(t)dt =∞,

then

(Sr(wvmr,n))′ = Γr′(w),

where

Γr(w) =

{
f ∈M(Rn) : ‖f‖Γr(w) :=

(∫ ∞
0

(
f ∗∗(s)

)r
w(s) ds

)1/r

<∞
}

and

(5.14) w(t) = t−
mr
n
−rw(t)

(∫ ∞
t

s−
mr
n
−rw(s)ds

)−r′
for all t > 0.

Now we can use [28, Theorem A] to get that

(Sr(wvmr,n))′′ = (Γr′(w))′ = Γr(ν),

where

(5.15) ν(t) =
tr+r

′−1
∫ t

0
w(s)ds

∫∞
t
s−r

′
w(s)ds(∫ t

0
w(s)ds+ tr′

∫∞
t
s−r′w(s)ds

)r+1 for all t > 0.

Consequently, Sr(wvmr,n) ↪→ Γr(ν). Hence, for all t > 0 and f ∈ Sr(wvmr,n),

K(f, t; Γr(ν),W kΓr(ν)) . K(f, t;Sr(wvmr,n),W kSr(wvmr,n)).
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Thus, using Theorem 5.8 (together with Remark 5.9), the facts that Γr(ν) and Λr(w) are
the r.i. spaces and that, for all t > 0,

K0(f, tk; Γr(ν),W kΓr(ν)) ≈ ωk(f, t)Γr(ν)

and

K0(f, tk+m; Λr(w),W k+mΛr(w)) ≈ ωk+m(f, t)Λr(w)

(cf. (3.6)), we arrive at the following result.

Corollary 5.10. Let k,m, n ∈ N, k + m < n, and 1 < r < ∞. Suppose w ∈
Br ∩B∗r(k+m−1)

n

satisfies (5.13) and ν is given by (5.15); then

(5.16) ωk(f, t)Γr(ν) .

(∫ t

0

(
s−mωk+m(f, s)Λr(w)

)r ds
s

) 1
r

for all t > 0 and f ∈ Λr(w) (for which RHS(5.16) is finite). Equivalently (see Lemma 5.1,
Part 1), we have

ωk(f, t)Γr(ν) .

(∫ t

0

(
s−mωk+m(f, s)Γr(w)

)r ds
s

) 1
r

.

As an important example, we obtain Ul’yanov’s inequalities between the Lorentz-
Karamata spaces. To define the Lorentz-Karamata spaces Lp,r;b(Rn), 1 6 p, r 6 ∞, we
introduce slowly varying functions.

Definition 5.11. A measurable function b : (0,∞) → (0,∞) is said to be slowly
varying on (0,∞), notation b ∈ SV (0,∞) if, for each ε > 0, there is a non-decreasing
function gε and a non-increasing function g−ε such that tεb(t) ≈ gε(t) and t−εb(t) ≈
g−ε(t), for all t ∈ (0,∞).

Clearly, `β(` ◦ `)γ ∈ SV (0,∞), etc., where β, γ ∈ R and `(t) = (1 + | log t|), t > 0.

Convention. For the sake of simplicity, in the following we assume that t±εb(t) are
already monotone.

5.3. The Ul’yanov inequality for Lorentz-Karamata spaces: a first look. We
introduce the Lorentz-Karamata space Lp,r;b(Rn), p, r ∈ [1,∞], b ∈ SV (0,∞), as the set
of all measurable functions f on Rn such that

‖f‖p,r;b :=
(∫ ∞

0

[t1/pb(t)f ∗(t)]r
dt

t

)1/r

<∞

(with the usual modification for r =∞).
If

w(t) = t
r
p
−1br(t), 1 < p <∞, 1 6 r <∞, b ∈ SV (0,∞),

then Λr(w) = Lp,r;b. Let 1 < r <∞. First we note that the condition 1 < p <∞ implies
that w ∈ Br. Moreover, if p < n/(k + m− 1), then w ∈ B∗r(k+m−1)

n

. It is easy to see that

the function given by (5.14) satisfies

w(t) ≈ t
mr′
n

+ r′
p′−1

b−r
′
(t) for all t > 0.
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Furthermore, if p < n/(k +m− 1), then∫ t

0

w(s)ds+ tr
′
∫ ∞
t

s−r
′
w(s)ds ≈ t

mr′
n

+ r′
p′ b−r

′
(t) for all t > 0,

which, together with (5.15), implies that

ν(t) ≈ tr(
1
p
−m
n

)−1br(t) for all t > 0,

and

Γr(ν) = Lp∗,r;b with
1

p∗
=

1

p
− m

n
.

Therefore, by Corollary 5.10, for all t > 0 and f ∈ Lp,r;b,

ωk(f, t)Lp∗,r;b .

(∫ t

0

(
s−mωk+m(f, u)Lp,r;b

)r du
u

) 1
r

, where
1

p∗
=

1

p
− m

n
.

Using the estimate ωk+m(f, u)Lp,r;b . ωk+m(f, u)Lp,r;b with r 6 r, we immediately obtain
the following corollary.

Corollary 5.12. If k,m, n ∈ N, k+m < n, 1 < p < n/(k+m− 1), 1 < r 6 r <∞,
b ∈ SV (0,∞), and 1/p∗ = 1/p−m/n, then

(5.17) ωk(f, t)Lp∗,r;b .

(∫ t

0

(
s−mωk+m(f, u)Lp,r;b

)r du
u

) 1
r

for all t > 0 and f ∈ Lp,r;b (for which RHS(5.17) is finite).

In particular, if b ≡ 1, then (5.17) yields the known estimate (1.19) for integer param-
eters k and m satisfying k+m < n. Note that the restriction r 6 r is natural since (5.17)
does not hold in general for r > r, see [30, Theorem 1.1(iii)].

In the next section we will investigate inequalities of type (5.17) in more details.

6. Sharp Ul’yanov inequality between the Lorentz–Karamata spaces

In the previous section we obtained the Ul’yanov-type inequalities for K-functionals
and moduli of smoothness between the general weighted Lorentz spaces, which causes
restrictions on the parameters. In particular, we assumed that k,m ∈ N. On the other
hand, it is clear that, when dealing with more specific Lorentz spaces, one could get better
results, i.e., sharp Ul’yanov inequalities for a wider range of parameters.

Our main goal in this section is to establish new sharp Ul’yanov inequalities between
the Lorentz-Karamata spaces introduced in the previous subsection.

First we mention some simple properties of slowly varying functions (recall that slowly
varying functions have been introduced in Definition 5.11 at the end of Subsection 5.2).
In what follows we write only SV instead of SV (0,∞).

Lemma 6.1. (cf. [31, Prop. 2.2]) Let b, b1, b2 ∈ SV.
(i) Then b1b2 ∈ SV, br ∈ SV and b(tr) ∈ SV for each r ∈ R.
(ii) If ε and κ are positive numbers, then there are positive constants cε and Cε

such that

cε min{κ−ε, κε}b(t) 6 b(κt) 6 Cε max{κε, κ−ε}b(t) for every t > 0.
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(iii) If α > 0 and q ∈ (0,∞], then, for all t > 0,

‖τα−1/qb(τ)‖q,(0,t) ≈ tαb(t) and ‖τ−α−1/qb(τ)‖q,(t,∞) ≈ t−αb(t).

If b ∈ SV , then also b−1 := 1/b ∈ SV . We will show that these functions have
comparable, sufficiently smooth regularizations:

(a) Given N ∈ N, following [35, Lemma 6.3], we set

(6.1) a0(t) := b−1(t) ≡ 1

b(t)
, a`(t) =

1

t

∫ t

0

a`−1(u) du , t > 0, ` ∈ N, 1 6 ` 6 N.

Then, by direct computation, we obtain, for all t > 0 and ` ∈ N, 1 6 ` 6 N, that

(6.2) a`(t) ≈ b−1(t) and a′`(t) = −1

t
[a`(t)− a`−1(t)],

and hence, for all t > 0 and j, ` ∈ N, 1 6 j 6 ` 6 N,

(6.3) |a(j)
` (t)| = |t−j

j∑
k=0

Cj,k a`−k(t)| . t−j b−1(t)

(with some constants Cj,k).
(b) Analogously, given N ∈ N, we define

(6.4) c0(t) := b(t) , c`(t) = t

∫ ∞
t

c`−1(u)

u2
du , t > 0, ` ∈ N, 1 6 ` 6 N,

to obtain, for all t > 0 and ` ∈ N, 1 6 ` 6 N,

(6.5) c`(t) ≈ b(t) and c′`(t) =
1

t
[c`(t)− c`−1(t)],

and hence, for all t > 0 and j, ` ∈ N, 1 6 j 6 ` 6 N,

(6.6) |c(j)
` (t)| = |t−j

j∑
k=0

Dj,k c`−k(t)| . t−j b(t)

(with some constants Dj,k).
Now we introduce the subclass SV↑ of non-decreasing slowly varying functions by

(6.7) SV↑ := {b ∈ SV : b is non-decreasing, lim
t→∞

b(t) =∞, lim
t→0+

b(t) > 0},

and extend the classical Riesz potential

Iσf := kσ ∗ f, where kσ(x) := F−1[|ξ|−σ](x), 0 < σ < n,

to a fractional integration with slowly varying component b−1, where b ∈ SV↑ . To this
end, if the slowly varying function aN , N ∈ N, is given by (6.1), set

Iσ,b
−1

N f := kσ,b−1;N ∗ f, where kσ,b−1;N := F−1[|ξ|−σaN(|ξ|)](x), 0 < σ < n.

When we choose N > (n+ 1)/2, we can apply the formula

|F−1[m(|ξ|2)](x)| .
∫ |x|−2

0

tN−1+n/2|m(N)(t)| dt+ |x|−N−(n−1)/2

∫ ∞
|x|−2

tN/2+(n−3)/4|m(N)(t)| dt,
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contained in [62], with m(t) = t−σ/2aN(
√
t). To this end, observe that

m(N)(t) =
N∑
`=0

t−N+`−σ/2
∑̀
k=0

ck,`,N a
(k)
N (
√
t)/(t`/2t(`−k)/2)

(with some constants ck,`,N) which, by (6.3), implies that |m(N)(t)| . t−N−σ/2b−1(
√
t),

and hence for all x 6= 0,

|kσ,b−1;N(x)| .
∫ |x|−2

0

tN−1+n/2t−N−σ/2b−1(
√
t) dt

+|x|−N−(n−1)/2

∫ ∞
|x|−2

tN/2+(n−3)/4t−N−σ/2b−1(
√
t) dt . |x|σ−nb−1(|x|−1).

Consequently,

k∗σ,b−1;N(t) . k∗∗σ,b−1;N(t) . tσ/n−1b−1(t−1/n) for all t > 0 .

Therefore, the proof of [26, Theorem 4.6] can be taken over to get the following analog
of a fractional integration theorem.

Lemma 6.2. Let 1 < p < ∞, 0 < σ < n/p, 1/p∗ = 1/p − σ/n, 1 6 r 6 s 6 ∞, and
B ∈ SV, b ∈ SV↑. If N ∈ N, N > (n+ 1)/2, and

(6.8) bn(t) := b−1(t−1/n) for all t > 0,

then
‖Iσ,b

−1

N f‖p∗,s;B . ‖ f‖p,r;bnB for all f ∈ Lp,r;bnB(Rn) .

The next lemma deals with a Bernstein inequality for slowly varying derivatives, based
on the regularization of b. Throughout this section, given R > 0, we put

BR(0) := {ξ ∈ Rn : |ξ| 6 R}
and denote by χ a C∞[0,∞) – function such that

(6.9) χ(u) = 1 if 0 6 u 6 1 and χ(u) = 0 if u > 2.

Lemma 6.3. Let 1 < p < ∞, 1 6 r 6 ∞, and g ∈ L1(Rn) + L∞(Rn) with supp ĝ ⊂
BR(0), R > 0. If B ∈ SV , b ∈ SV↑, and N ∈ N, N > n/2, then

‖F−1[cN(|ξ|)ĝ ] ‖p,r;B . b(R) ‖g‖p,r;B for all R > 0,

where the slowly varying function cN is given by (6.4).

Proof. Take R > 0, N ∈ N, N > n/2, and define

mR;N(t) := χ(t/R) cN(t)/b(R) for all t > 0.

Then mR;N satisfies (cf. (6.5) and (6.6)) the condition

(6.10) sup
t>0
|mR;N(t)|+ sup

`∈Z

∫ 2`+1

2`
tN−1|m(N)

R;N(t)| dt 6 C, N > n/2,

which, by e.g. [10, Theorem 0.2], implies that mR;N(|ξ|) generates a uniformly bounded
operator family on Lp(Rn) , 1 < p <∞, i.e., ‖F−1[mR;N(|ξ|)ĝ ] ‖p . ‖g‖p if 1 < p <∞.
Hence, cf. [25, Corollary 3.15], this is also true for the interpolation space Lp,r;B(Rn).
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Since b(R)mR;N(|ξ|)ĝ = cN(|ξ|)ĝ if g ∈ L1(Rn) + L∞(Rn) with supp ĝ ⊂ BR(0), the
assertion follows. �

A combination of these two lemmas gives the following embedding.

Lemma 6.4. Let 1 < p < ∞, 0 < σ < n/p, 1/p∗ = 1/p − σ/n, 1 6 r 6 s 6 ∞, B ∈
SV, b ∈ SV↑. If bn is defined by (6.8), then

‖Iσg‖p∗,s;B . b(R) ‖g‖p,r;bnB
for all R > 0 and for all entire functions g ∈ Lp,r;bnB(Rn) with supp ĝ ⊂ BR(0).

Proof. Let N ∈ N, N > (n + 1)/2 and let the slowly varying functions aN , cN be
given by (6.1) and (6.4). Then 1 = aNcN/(aNcN) on the interval (0,∞). Therefore,
supposing that the Fourier symbol 1/(aN(|ξ|)cN(|ξ|)) generates a bounded operator on
Lp(Rn), 1 < p <∞, then, by Lemma 6.2 and by Lemma 6.3, we obtain that

‖Iσg‖p∗,s;B . ‖F−1[|ξ|−σaN(|ξ|)cN(|ξ|)ĝ(ξ)] ‖p∗,s;B
. ‖F−1[cN(|ξ|)ĝ(ξ)] ‖p,r;bnB . b(R)‖g‖p,r;bnB

for all R > 0 and for all entire functions g ∈ Lp,r;bnB(Rn) with supp ĝ ⊂ BR(0).
Thus, by [10, Theorem 0.2], it remains to show that 1/(aNcN) satisfies the condition

(6.10) (with the function mR,N replaced by 1/(aNcN)). Introduce the differential operator
D = t(d/dt), define D0 to be the identity operator and Dj = DDj−1, j ∈ N. Now
note that tN(d/dt)N can be expressed as a linear combination of Dj, 1 6 j 6 N, that
D [aN(t)cN(t)] = aN−1(t)cN(t)− aN(t)cN−1(t) and, by induction, that

(6.11) Dj (aN(t) cN(t)) =

j∑
k=0

(−1)k+1

(
j

k

)
aN−k(t) cN−j+k(t) , 1 6 j 6 N.

Therefore,

(6.12)

∣∣∣∣Dj 1

aN(t) cN(t)

∣∣∣∣ . j∑
k=1

∣∣∣∣ Mj,k(t)

(aN(t) cN(t))k+1

∣∣∣∣ , 1 6 j 6 N, for all t > 0,

where the numerators Mj,k(t) are appropriate linear combinations of terms of the type

j∏
i=1

{(
Dαk,ji (ak(t) c`(t))

}βk,ji
, αk,j, βk,j ∈ Nj

0,

j∑
i=1

αk,ji βk,ji = j.

In view of (6.1) – (6.6), it is clear that the denominators on the right-hand side of (6.12)
satisfy (aN(t) cN(t))k+1 ≈ 1 for all t > 0, and that, on account of (6.11), |Mj,k(t)| . 1
for all t > 0 if 1 6 j 6 N and 1 6 k 6 j. Therefore, 1/(aNcN) satisfies (6.10) and the
proof is complete. �

The following variant of a Nikol’skǐi inequality will turn out to be useful.

Lemma 6.5. Let 1 < p < ∞, 0 < σ < n/p, 1/p∗ = 1/p − σ/n, 1 6 r 6 s 6 ∞, B ∈
SV, b ∈ SV↑. If bn is defined by (6.8), then

‖g‖p∗,s;B . Rn(1/p−1/p∗)b(R) ‖g‖p,r;bnB
for all R > 0 and for all g ∈ Lp,r;bnB(Rn) with supp ĝ ⊂ BR(0).
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Proof. Take χ defined by (6.9) and set vR(x) := F−1[χ(|ξ|/R)](x), x ∈ Rn, R > 0.
Then, for all x ∈ Rn, t ∈ (0,∞) and R > 0,

|vR(x)| . Rn

(1 +R|x|)n
, v∗R(t) .

Rn

(1 +Rt1/n)n
, v∗∗R (t) . min

{
Rn,

1

t

}
.

By the assumption on the support of the Fourier transform of g, we have vR ∗ g = g.
Therefore, by O’Neil’s inequality,

g∗(t) = (vR ∗ g)∗(t) . t v∗∗R (t)g∗∗(t) +

∫ ∞
t

v∗R(u)g∗(u) du.

Hence, for all R > 0, 4

‖g‖p∗,s;B .

(∫ ∞
0

[
t1/p

∗
B(t) min

{
Rn,

1

t

}∫ t

0

g∗(u) du
]sdt
t

)1/s

+Rn

(∫ ∞
0

[
t1/p

∗
B(t)

∫ ∞
t

g∗(u)

(1 +Ru1/n)n
du
]sdt
t

)1/s

=: N1 +N2.

Since tεbn(t), ε > 0, is almost non-decreasing and t−εbn(t) is almost non-increasing,
elementary estimates lead to

N1 6 Rn

(∫ R−n

0

[
{t1/p∗+1−1/pb−1

n (t)} t1/p−1bn(t)B(t)

∫ t

0

g∗(u) du
]sdt
t

)1/s

+

(∫ ∞
R−n

[
{t1/p∗−1/pb−1

n (t)} t1/p−1bn(t)B(t)

∫ t

0

g∗(u) du
]sdt
t

)1/s

. Rn(1/p−1/p∗)b(R)

(∫ ∞
0

[
t1/p−1bn(t)B(t)

∫ t

0

g∗(u) du
]sdt
t

)1/s

for all R > 0.

Now apply a Hardy-type inequality [29, Lemma 4.1] to obtain

N1 . Rn(1/p−1/p∗)b(R) ‖g‖p,r;bnB .

Similarly, handle the term N2 , use [29, Lemma 4.1] to arrive at

N2 . Rn

(∫ ∞
0

[
t1/p

∗+1−1/rB(t)
g∗(t)

(1 +Rt1/n)n

]r
dt

)1/r

= Rn

(∫ R−n

0

. . .+

∫ ∞
R−n

. . .

)1/r

.

Apply Minkowski’s inequality, observe that

(1 +Rt1/n)n ≈
{

1, 0 < t < R−n,
Rnt, t > R−n,

and use again almost monotonicity properties of t±εbn(t) to get

N2 . Rn(1/p−1/p∗)b(R) ‖g‖p,r;bnB .

�

4 We assume that r, s <∞. If s =∞ or r =∞, then the proof is going along the same lines.



36 AMIRAN GOGATISHVILI, BOHUMÍR OPIC, SERGEY TIKHONOV, AND WALTER TREBELS

We will need the Besov-type space B σ,b
(p,r;B),s(R

n), modelled upon the Lorentz-Karamata

space Lp,r;B(Rn), 1 < p <∞, 1 6 r 6 s 6∞, B ∈ SV, whose smoothness order σ > 0 is
perturbed by a slowly varying function b ∈ SV↑. To this end, we introduce the modulus
of smoothness of fractional order κ > 0 on the Lorentz-Karamata space Lp,r;B(Rn) by (cf.
(1.1))

ωκ(f, δ)Lp,r;B := sup
|h|6δ
‖∆κ

hf(x)‖Lp,r;B(Rn)

and then we set

(6.13) B σ,b
(p,r;B),s(R

n) :=
{
f ∈ Lp,r;B(Rn) : |f |∗

B σ,b
(p,r;B),s

<∞
}
,

where
|f |∗

B σ,b
(p,r;B),s

:= ‖u−σ−1/sb(u−1)ωκ+σ(f, u)Lp,r;B‖s.

This definition does not depend upon κ > 0, which follows from the Marchaud inequality
(cf. [64, (1.12)]).

The following lemma is the key result to prove Theorem 6.7 mentioned below.

Lemma 6.6. If 1 < p < ∞, 0 < σ < n/p, 1/p∗ = 1/p − σ/n, 1 6 r 6 s 6 ∞, and
B ∈ SV, b ∈ SV↑, then

‖f‖p∗,s;B . |f |∗B σ,b
(p,r;bnB),s

for all f ∈ B σ,b
(p,r;bnB),s(R

n).

The proof follows the same lines as the one of [30, Lemma 2.6]. Indeed, we use the
Nikol’skǐi inequality from Lemma 6.5, and the sequence space `σq (X), X a normed space,
as the space of X-valued sequences (Fj)j∈Z with

‖(Fj)j‖`σq :=
(∑
j∈Z

[2jσ‖b(2j)Fj‖X ]q
)1/q

<∞ .

Since, by [36] (see also [31, Lemma 5.5]),

(Lp∗0,s;B, Lp∗1,s;B)θ,q = Lp∗,q;B, 1/p∗ = (1− θ)/p∗0 + θ/p∗1, 0 < θ < 1,

the rest of the proof of [30, Lemma 2.6] carries over. �

We will also need the Riezs potential space Hλ
p,r;B := HλLp,r;B(Rn) modelled upon

the Lorentz-Karamata space Lp,r;B , B ∈ SV, and defined analogously to the space Hσ
p,r

introduced in Subsection 1.2. If 1 < p <∞, then the estimate

(6.14) ωλ(f, t)Lp,r;B ≈ K0(f, tλ;Lp,r;B, H
λ
p,r;B) for all f ∈ Lp,r;B and t > 0

can be verified analogously to estimate (1.3) in [30, Lemma 1.4].

Now we are in a position to prove the sharp Ul’yanov inequality between Lorentz–
Karamata spaces.

Theorem 6.7. Let κ > 0, 1 < p <∞, 0 < σ < n/p, 1/p∗ = 1/p− σ/n, 1 6 r 6 s 6
∞, and B ∈ SV, b ∈ SV↑. If bn is defined by (6.8), then

(6.15) ωκ(f, δ)Lp∗,s;B .
(∫ δ

0

[t−σb(t−1)ωκ+σ(f, t)Lp,r;bnB ]s
dt

t

)1/s

, δ → 0+,

for all f ∈ B σ,b
(p,r;bnB),s(R

n).
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As an example, recalling that b is non-decreasing, we consider in Theorem 6.7

b(t) =

{
1, t ∈ (0, 1]

(1 + | ln t|)γ, γ > 0, t ∈ (1,∞)

and
B(t) = (1 + | ln t|)α, α ∈ R, t ∈ (0,∞);

cf. [30].

Remark 6.8. Let all the assumptions of Theorem 6.7 be satisfied. Note that if
f ∈ Lp,r;bnB(Rn) and RHS(6.15) < ∞ for some δ > 0, then f ∈ B σ,b

(p,r;bnB),s(R
n). Indeed,

if δ > 0, then, by Lemma 6.1 (iii), for all f ∈ Lp,r;bnB(Rn),

‖u−σ−1/s b(u−1)ωκ+σ(f, u)p,r;bnB‖s,(δ,∞) . ‖f‖p,r;bnB ‖u−σ−1/sb(u−1)‖s,(δ,∞)

≈ ‖f‖p,r;bnB δ−σb(δ−1).

Consequently, for all f ∈ Lp,r;bnB(Rn),

|f |∗
B σ,b

(p,r;bnB),s

. RHS(6.15) + ‖f‖p,r;bnB δ−σb(δ−1) <∞,

and the result follows.
Since also

RHS(6.15) < |f |∗B(p,r;bnB),s
for all f ∈ B σ,b

(p,r;bnB),s(R
n),

we see that

B σ,b
(p,r;bnB),s(R

n) = {f ∈ Lp,r;bnB(Rn) : RHS(6.15) <∞ for some δ > 0}.

Proof of Theorem 6.7. By (6.14), for all f ∈ B σ,b
(p,r;bnB),s, g ∈ Hκ

p∗,s;B and t > 0,

ωκ(f, t)Lp∗,s;B ≈ K0(f, tκ;Lp∗,s;B, H
κ
p∗,s;B)(6.16)

6 ‖f − g‖p∗,s;B + tκ‖(−∆)κ/2g‖p∗,s;B.
Take g ∈ Hκ+σ

p,r;bnB
and consider its de la Vallée-Poussin means defined by

gt := F−1[χ(t|ξ|)] ∗ g, t > 0,

where χ is the cut-off function from (6.9). Then supp ĝt ⊂ B2/t(0). Note also that

‖gt‖Hκ+σ
p,r;bnB

. ‖g‖Hκ+σ
p,r;bnB

for all t > 0 and g ∈ Hκ+σ
p,r;bnB

since ‖F−1[χ(t|ξ|)]‖1 . 1 for all t > 0 by [61, Corollary 2.3]. Thus, using Lemma 6.4, we
obtain

(6.17) ‖(−∆)κ/2gt‖p∗,s;B . b(1/t) ‖(−∆)(κ+σ)/2gt‖p,r;bnB for all t > 0 and g ∈ Hκ+σ
p,r;bnB

.

Moreover, by Lemma 6.6,

(6.18) ‖f − gt‖p∗,s;B . |f − gt|∗B σ,b
(p,r;bnB),s

for all t > 0 and g ∈ Hκ+σ
p,r;bnB

.

Combining estimates (6.16)-(6.18), we arrive at

ωκ(f, t)Lp∗,s;B . |f − gt|
∗
B σ,b

(p,r;bnB),s

+ tκb(1/t)‖(−∆)(κ+σ)/2gt‖p,r;bnB

for all f ∈ B σ,b
(p,r;bnB),s, g ∈ Hκ

p∗,s;B and t > 0.
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One gets rid of gt estimating gt by g in a way analogous to the proof of [30, Theo-
rem 1.1 (i)]. Thus,

ωκ(f, t)Lp∗,s;B . |f − g|
∗
B σ,b

(p,r;bnB),s

+ tκb(1/t)‖(−∆)(κ+σ)/2g‖p,r;bnB.

for all f ∈ B σ,b
(p,r;bnB),s, g ∈ Hκ

p∗,s;B and t > 0. Hence, for all f ∈ B σ,b
(p,r;bnB),s and t > 0,

(6.19) ωκ(f, t)Lp∗,s;B . K0(f, tκb(1/t);B σ,b
(p,r;bnB),s, H

κ+σ
p,r;bnB

).

If we change the variable tκ to t1−θ, with θ = σ/(κ + σ), set b0(t) := b(t−(1−θ)/κ), and

observe that B σ,b
(p,r;bnB),s = (Lp,r;bnB, H

κ+σ
p,r;bnB

)θ,s;b0 , then we can use the Holmstedt formula

K0(f, t1−θb0(t); (X, Y )θ,s;b, Y ) ≈
(∫ t

0

[u−θb0(u)K0(f, u;X, Y )]s
du

u

)1/s

,

with X = Lp,r;bnB and Y = Hκ+σ
p,r;bnB

, which is proved in [31, Theorem 3.1 c)]. Thus,

K0(f, t1−θb0(t);B σ,b
(p,r; bnB),s, H

κ+σ
p,r; bnB

) ≈
(∫ t

0

[u−θb0(u)K0(f, u;Lp,r; bnB, H
κ+σ
p,r; bnB

) ]s
du

u

)1/s

or, after the substitution u = vκ+σ under the integral sign and after cancelling the change
of the variable t, one obtains

K0(f, tκb(1/t);B σ,b
(p,r; bnB),s, H

κ+σ
p,r; bnB

)≈
(∫ t

0

[v−σb(1/v)K0(f, vκ+σ;Lp,r; bnB, H
κ+σ
p,r; bnB

) ]s
du

u

)1/s

.

Together with (6.19) and (6.14), this implies the assertion of the theorem. �
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and Universitat Autònoma de Barcelona.
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