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Abstract

In this paper, we consider a flow of heat-conducting self-gravitating compressible fluid in a
time-dependent domain. The flow is governed by the 3-D Navier-Stokes-Fourier-Poisson equations
where the velocity is supposed to fulfill the full-slip boundary condition and the temperature on
the boundary is given by a non-homogeneous Dirichlet condition. We establish the global-in-
time weak solution to the system. Our approach is based on the penalization of the boundary
behavior, viscosity, and the pressure in the weak formulation. Moreover, to accommodate the
non-homogeneous boundary heat flux, we introduce the concept of ballistic energy in this work.

Keywords. Compressible fluids, Navier-Stokes-Fourier-Poisson equations, non-homogeneous bound-
ary, time-dependent domain.
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1 Introduction and general setting

1.1 Problem statement

In this article, we study the flow of a viscous gaseous star with the influence of self-gravitation in a time-
dependent domain. It is by now well-understood that the stars may be considered as a compressible
fluid (e.g., [24]) and their dynamics are very often shaped and controlled by self-gravitation and
high-temperature radiation effects (see for instance [3, 8]). The mathematical model of such flows is
governed by the 3-D compressible Navier-Stokes-Fourier-Poisson system, namely

∂tρ+ divx(ρu) = 0, (1.1)

∂t(ρu) + divx(ρu⊗ u) +∇xp(ρ, θ) = divxS+ ρ∇xΨ, (1.2)

∂t(ρe(ρ, θ)) + divx(ρe(ρ, θ)u) + divxq+ p(ρ, θ)divxu = S : ∇xu, (1.3)

−∆xΨ = 4πgρ,

∫
Ωt

ψ dx = 0, (1.4)

The density ρ, velocity u, and absolute temperature θ are three typical macroscopic quantities that
describe the motion of the fluid, while p(ρ, θ) is the pressure, s(ρ, θ) is the specific entropy and e(ρ, θ)
is the specific internal energy of the fluid, interrelated through the Gibb’s equation

θDs = De+ pD(1/ρ), (1.5)

where D stands for the total differential of the corresponding functions.
The viscous stress tensor S satisfies the classical Newton rheological law

S(θ,∇xu) = µ(θ)

(
∇xu+∇t

xu− 2

3
divxuI

)
+ η(θ)divxuI, (1.6)
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with shear viscosity coefficient µ(θ) > 0 and bulk viscosity coefficient η(θ) ≥ 0.
In momentum equation (1.2), ρ∇xΨ is an external force acting on the fluid due to self-gravitation,

and the gravitational potential Ψ (of the star) solves the Poisson equation given by (1.4) with the
gravity g > 0.

Moreover, the heat flux q is determined by the Fourier’s law,

q(θ,∇xθ) = −κ(θ)∇xθ, (1.7)

with the heat conductivity coefficient κ(θ) > 0.

Description of the time-dependent domain. Let us consider a regular domain Ω0 ⊂ R3 occupied
by the fluid at the initial time t = 0. Then, we investigate the domain Ωt (w.r.t. time t) described by
a given velocity field V(t, x) with t ≥ 0 and x ∈ R3. More specifically, when V is regular enough, we
solve the associated system of differential equations

d

dt
X(t, x) = V(t, x), t > 0, X(0, x) = x, (1.8)

and set {
Ωτ = X(τ,Ω0), Γτ := ∂Ωτ , and

Qτ := ∪t∈(0,τ){t} × Ωt.
(1.9)

We assume that the volume of the domain cannot degenerate in time, meaning that

∃M0 > 0 such that |Ωτ | ≥M0 ∀τ ∈ [0, T ]. (1.10)

Moreover, we make the following assumption

divxV = 0 in the neighborhood of Γτ ∀τ ∈ [0, T ]. (1.11)

The condition (1.11) is not restrictive. Indeed, as it has been indicated in [18, Remark 5.3], for a
general V ∈ C1([0, T ]; C3

c (R3,R3), one can find w ∈ W 1,∞(QT ) such that (V − w)|Γτ
= 0 for all

τ ∈ [0, T ] such that divxw = 0 on some neighborhood of Γτ ; see [11, Section 4.3.1]. We again refer
[18, Remark 5.3] for more details about this point.

We further consider a reference domain B (will be specified later), smooth and bounded, such that
for each τ ∈ [0, T ], one has Ωτ ⊂ B.

Boundary conditions. Here we prescribe the boundary conditions for the original system (1.1) –
(1.4).

• We first impose the Navier-slip boundary conditions

[Sn]tan + α[u−V]tan = 0, in Γt, for any t ∈ [0, T ], (1.12)

where α ≥ 0 represents a friction coefficient and S is the viscous stress tensor. For simplicity, we take
α = 0 which gives the full-slip condition. Furthermore, the impermeability condition for u is given by

(u−V) · n = 0, in Γt, for any t ∈ [0, T ]. (1.13)

• The fluid temperature on the lateral boundary of the domain is given by

θ
∣∣⋃

t∈(0,T )

(
{t}×Γt

) = θB , (1.14)

where θB = θB(t, x) is a strictly positive smooth function and which can be extended smoothly in the
whole reference domain B, more precisely the extended θB satisfies

θB ∈ C1([0, T ]× B), (1.15)

where we use the same notation for this extension.

• The gravitational potential Ψ satisfies the Neumann boundary condition

∂Ψ

∂n
= 0 on Γt for each t ∈ [0, T ]. (1.16)
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Initial conditions. The system (1.1) – (1.4) is also supplemented with the initial conditions

ρ(0, ·) = ρ0 ∈ L
5
3 (Ω0), (ρu)(0, ·) = (ρu)0 in Ω0, θ(0, ·) = θ0 in Ω0 (1.17)

where we assume that the fluid density is zero outside the domain Ω0, more precisely,

ρ0 ≥ 0 in Ω0, ρ0 ̸≡ 0 and ρ0 = 0 in R3 \ Ω0. (1.18)

Furthermore, it holds that 0 < θ ≤ θ0 ≤ θ for some positive constants θ and θ, and

(ρs)0 = ρ0s(ρ0, θ0) ∈ L1(Ω0). (1.19)

We further assume that

E0 :=

∫
Ω0

(
1

2ρ0
|(ρu)0|2 + ρ0e(ρ0, θ0)

)
< +∞. (1.20)

Our goal is to establish the global-in-time existence of weak solutions to the whole system (1.1) –
(1.4) in the domain QT with the boundary conditions (1.12)-(1.16) and initial conditions (1.17)-(1.20).

1.2 Bibliographic comments and main goal of our work

The self-gravitating flows have wide applications in astrophysics and the theory of nuclear fluids.
In that regard, we mention that the global in time weak solutions for the compressible barotropic
self-gravitating fluids governed by Navier-Stokes-Poisson equations has been initially studied by B.
Ducomet and E. Feireisl [7] in the fixed spatial domain. Later on, they established the existence theory
of weak solutions for the compressible Navier-Stokes-Fourier-Poisson (in short N-S-F-P) system in
[6]. On the other hand, B. Ducomet et al [5] considered a compressible N-S-F-P system describing a
motion of a viscous heat-conducting rotating fluid on a thin domain Ωϵ = ω× (0, ϵ) with a 2D domain
ω and positive ϵ. More precisely, the authors in [5] proved that the weak solutions in the 3D domain
converge to the strong solutions of the 2D system as ϵ → 0 in the time interval where the strong
solution exists.

In the context of compressible fluids in time dependent domains, we first address the work [11] by
E. Feireisl et al where the existence of weak solutions of the barotropic compressible Navier-Stokes
systems has been addressed on time dependent domains as prescribed in (1.8) – (1.10). Their approach
is based on the penalization of the boundary behavior, viscosity and pressure in the weak formulation.
Later on, the existence of weak solutions to the full Navier-Stokes-Fourier (in short N-S-F) systems in
the time dependent domain has been treated by O. Kreml et al [19], see also [18]. We also note here
that the compressible micropolar fluids on a time-dependent domain with slip boundary conditions
was considered in [16]. Furthermore, the local-in-time existence of strong solutions to the compressible
Navier-Stokes on the moving domains was given in [21]. The global well-posedness of compressible
Navier–Stokes equations on a moving domain in the Lp-Lq frame was investigated in [20]. Recently, the
authors in [23] studied the existence of a weak solution to a nonlinear fluid-structure interaction model
with heat exchange where the shell is governed by linear thermoelasticity equations and encompasses
a time-dependent domain that is filled with a fluid governed by the full N-S-F system. In this regard,
we also mention the work [17], where the authors analyze a system governing the interaction between
two compressible mutually noninteracting fluids and a shell of Koiter type that actually encompasses
a time dependent 3-D domain filled by the fluids.

In fixed spatial domains, the existence theory of compressible barotropic Navier-Stokes systems
was developed by P. L. Lions [22] and later it has been extended in [14] to a class of physically relevant
pressure-density state equations. The existence of weak solutions to the full N-S-F system has been
then established by E. Feireisl [9, 10] and by E. Feireisl and A. Novotný in [12].

The global in time weak solutions to the Navier-Stokes-Fourier system with nonhomogeneous
Dirichlet data (for both velocity and temperature) in fixed spatial domain has been rigorously studied
by N. Chaudhuri and E. Feireisl [2]; they also investigated the weak-strong uniqueness result for their
system. To handle the nonhomogeneous Dirichlet data for temperature and boundary heat flux, the
authors in [2] introduced the concept of ballistic energy (see also [1]).
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In the present work, we study the weak existence theory for the compressible Navier-Stokes-
Fourier-Poisson equations in time dependent domain where we allow the nonhomogeneous Dirichet
condition for the temperature and non-vanishing heat flux on the boundary, which is certainly more
physical in the viewpoint of the motion of nuclear fluids or gaseous stars, and to the best of our
knowledge, this problem has not been considered in the literature yet. As a reason, we shall intensively
use the concept of ballistic energy to accommodate the nonhomogeneous heat flux on the spatial
boundary.

Before going to more details, we note down the constitutive relations that will be used to proceed
our work.

1.3 Hypothesis

Motivated by [9, 10], let us now make the following set of assumptions.

• Viscosity coefficients. We consider the viscosity coefficients µ(θ) and η(θ) to be continuously
differentiable functions depending on the temperature θ, namely µ(θ), η(θ) ∈ C1([0,+∞)) and satisfy

0 < µ(1 + θ) ≤ µ(θ) ≤ µ(1 + θ), sup
θ∈[0,+∞)

|µ′(θ)| ≤ m,

0 ≤ η(1 + θ) ≤ η(θ) ≤ η(1 + θ).
(1.21)

• Heat conductive coefficient. In accordance with the recent work [2] (see also [1]), we need a
much stricter assumption on the heat conducting coefficient κ(θ) appearing in the Fourier’s law (1.7).
More precisely, we assume κ(θ) ∈ C1([0,+∞)) such that

0 < κ(1 + θα) ≤ κ(θ) ≤ κ(1 + θα), for α > 6. (1.22)

In above, all the quantities µ, µ, m, η, η, κ, κ are positive.

• Constitutive relations for pressure, internal energy and entropy. We consider the following
constitutive relations for the pressure and the internal energy, namely

p(p, θ) = pM (ρ, θ) +
a

3
θ4, a > 0, (1.23)

e(ρ, θ) = eM (ρ, θ) +
a

ρ
θ4, (1.24)

s(ρ, θ) = sM (ρ, θ) +
4a

3ρ
θ3. (1.25)

According to the hypothesis of thermodynamic stability, the molecular components satisfies

∂pM
∂ρ

> 0 ∀ ρ, θ > 0, (1.26)

and there exists some positive constant c > 0 such that

0 <
∂eM
∂θ

≤ c ∀ ρ, θ > 0. (1.27)

Moreover, it holds that

lim
θ→0+

eM (ρ, θ) = eM (ρ) > 0 for any fixed ρ > 0, (1.28)

and ∣∣∣∣ρ∂eM∂ρ (ρ, θ)

∣∣∣∣ ≤ ceM (ρ, θ) ∀ ρ, θ > 0. (1.29)
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We also suppose that there is a function

P ∈ C1[0,∞), P (0) = 0, P ′(0) > 0, (1.30)

and two positive constants Z,Z such that

pM (ρ, θ) = θ
5
2P

(
ρ

θ
3
2

)
whenever 0 <

ρ

θ
3
2

≤ Z, or
ρ

θ
3
2

> Z, (1.31)

and satisfying the relation

pM (ρ, θ) =
2

3
ρeM (ρ, θ), for

ρ

θ
3
2

> Z. (1.32)

Based on the above assumption, we derive that

ρe(ρ, θ) ≥ aθ4 +
3

2
p∞ρ

5
3 . (1.33)

This estimate can be shown in the following explicit way. First, observe that P ′(Z) > 0 for all
0 < Z < Z or Z > Z. Now, we extend P as a strictly increasing function in [Z,Z] so that we have

P ′(Z) > 0 ∀Z > 0. (1.34)

Next, by (1.29), (1.31) and (1.32) we infer that

lim
Z→∞

P (Z)

Z
5
3

= p∞ > 0. (1.35)

Using (1.31), (1.32) and (1.35) one can deduce that

lim
θ→0+

eM (ρ, θ) =
3

2
ρ

2
3 p∞. (1.36)

Moreover, eM is a strictly increasing function of θ in (0,∞) (see (1.27)) for any fixed ρ, which together
with (1.24) and (1.36), we obtain the required estimate (1.33).

Further, in agreement with the Gibb’s relation (1.5), the molecular component sM of the entropy
s satisfies

∂sM
∂θ

=
1

θ

∂eM
∂θ

and
∂sM
∂ρ

= − 1

ρ2
∂pM
∂θ

. (1.37)

We set

sM (ρ, θ) = S(Z), Z =
ρ

θ3/2
, S′(Z) = −3

2

5
3P (Z)− ZP ′(Z)

Z2
< 0 (1.38)

in the degenerate area ρ > Zθ3/2. We also require that the Third law of thermodynamics is satisfied,

lim
Z→∞

S(Z) = 0. (1.39)

We refer [12, Chapter 2], for more details on the hypothesis (1.23) – (1.39).

2 Weak formulations

In this section, we shall prescribe the expected weak formulations for the system (1.1) – (1.4). Through-
out the section, we assume that the density ρ remains “zero” outside the fluid domain Ωt for each
t ∈ [0, T ]. The reason is that, we will eventually show that if the initial density ρ0 = 0 outside Ω0,
then ρ will also vanish outside Ωt for any t ∈ (0, T ] (see Section 5.4).
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I. Continuity equation. It is convenient to consider the continuity equation in the whole physical
space R3 provided the density is supposed to be zero outside the fluid domain Ωt for each t ∈ [0, T ].
Specifically, the weak formulation of the continuity equation (1.1) is supposed to be

−
∫ T

0

∫
Ωt

(ρ∂tφ+ ρu · ∇xφ) =

∫
Ω0

ρ0(·)φ(0, ·), (2.1)

for any test function φ ∈ C1([0, T ]× R3;R) with φ(T, ·) = 0. Of course, we assume that ρ ≥ 0 a.e. in
R3.

Moreover, the equation (1.1) will also be satisfied in the sense of renormalized solutions introduced
by DiPerna and Lions [4]:

−
∫ T

0

∫
Ωt

ρB(ρ) (∂tφ+ u · ∇xφ) +

∫ τ

0

∫
Ωt

b(ρ)divxuφ =

∫
Ω0

ρ0B(ρ0)φ(0, ·), (2.2)

for any test function φ ∈ C1([0, T ]× R3;R) with φ(T, ·) = 0, b ∈ L∞ ∩ C([0,+∞)) such that b(0) = 0

and B(ρ) = B(1) +

∫ ρ

1

b(z)

z2
.

II. Momentum equation. We write the expected weak formulation for the momentum equation as

−
∫ T

0

∫
Ωt

(
ρu · ∂tφ+ ρ[u⊗ u] : ∇xφ+ p(ρ, θ)divxφ

)
−
∫
Ω0

(ρu)0 ·φ(0, ·)

=

∫ T

0

∫
Ωt

ρ∇xΨ ·φ−
∫ T

0

∫
Ωt

S : ∇xφ (2.3)

for any test function φ ∈ C1(QT ;R3) satisfying

φ(T, ·) = 0, in ΩT , and (φ · n)|Γt
= 0, for any t ∈ [0, T ].

The impermeability condition will be then satisfied in the sense of trace,

(u,∇xu) ∈ L2(QT ;R3), (u−V) · n|Γt
= 0, for any t ∈ [0, T ].

III. Entropy inequality. Using the Gibbs’ equation (1.5), we deduce the entropy equation from
(1.3), given by

∂t(ρs) + divx(ρsu) + divx

(
q

θ

)
=

1

θ

(
S : ∇xu− q

θ
· ∇xθ

)
. (2.4)

Based on the fact that the a priori bounds only provide the L1 bound for the entropy production
rate, the entropy equation is formulated by an inequality (see [12]).

∂t(ρs) + divx(ρsu) + divx

(
q

θ

)
≥ 1

θ

(
S : ∇xu− q

θ
· ∇xθ

)
. (2.5)

The weak formulation for (2.5) should be of the form:

−
∫ T

0

∫
Ωt

(
ρs∂tφ+ ρsu · ∇xφ+

q

θ
· ∇xφ

)
−
∫
Ω0

(ρs)0φ(0, ·)

≥
∫ T

0

∫
Ωt

φ

θ

(
S : ∇xu− q

θ
· ∇xθ

)
, (2.6)

for any test function φ ∈ C1(QT ;R) with φ ≥ 0, φ(T, ·) = 0 and φ|Ωt
= 0 for all t ∈ [0, T ].

IV. Poisson equation. The Poisson equation (1.4) will be considered in the whole space R3 provided
ρ = 0 outside the domain Ωt for each t ∈ [0, T ]. Accordingly, the expected weak formulation for the
Poisson equation will be ∫ T

0

∫
Ωt

∇xΨ · ∇xφ =

∫ T

0

∫
Ωt

ρφ, (2.7)

6



for any test function φ ∈ C1(QT ;R).

V. Ballistic energy inequality. We note that the weak formulation of energy equation (1.3) cannot
be directly used to define the weak solution to system (1.1)-(1.4), due to the absence of information
about heat flux on the boundary. The method we adopted here is combining the weak formulation of
entropy with the energy balance to get the ballistic energy.

Assuming all the quantities of concern are smooth and multiplying the momentum equation (1.2)
by (u−V), then integrating by parts w.r.t. space variable and integrating the energy equation (1.3),
one has by summing up (as well as using the continuity equation)

d

dt

∫
Ωt

(
1

2
ρ|u|2 + ρe

)
+

∫
Γt

q · n−
∫
Ωt

ρ∇xΨ · (u−V)

=−
∫
Ωt

(
ρ[u⊗ u] : ∇xV − S : ∇xV + pdivxV

)
+

∫
Ωt

∂t(ρu) ·V.
(2.8)

We now observe that

−
∫
Ωt

ρ∇xΨ · u =

∫
Ωt

Ψdivx(ρu) = −
∫
Ωt

Ψ ∂tρ =
1

4πg

∫
Ωt

Ψ∂t(∆xΨ)

= − 1

8πg

d

dt

∫
Ωt

|∇xΨ|2,
(2.9)

where no boundary integral will appear after the first integration by parts since the density is supposed
to be “zero” outside the fluid domain Ωt for any t ∈ [0, T ] (indeed, we shall discuss it later in Section

5.4). In the second integration by parts we simply use that
∂Ψ

∂n
= 0 on Γt for each t ∈ [0, T ].

Using (2.9), we have

d

dt

∫
Ωt

(
1

2
ρ|u|2 + ρe− 1

8πg
|∇xΨ|2

)
+

∫
Γt

q · n

=−
∫
Ωt

(
ρ[u⊗ u] : ∇xV − S : ∇xV + pdivxV

)
+

∫
Ωt

∂t(ρu) ·V −
∫
Ωt

ρ∇xΨ ·V.
(2.10)

The last term in the r.h.s. of the above equality can be computed as follows:

−
∫
Ωt

ρ(∇xΨ ·V) =
1

4πg

∫
Ωt

∆xΨ(∇xΨ ·V) = − 1

4πg

∫
Ωt

∇xΨ · ∇x(∇xΨ ·V),

thanks to the homogeneous Neumann boundary condition of Ψ, and eventually one has,

−
∫
Ωt

ρ(∇xΨ ·V) = − 1

8πg

∫
Ωt

|∇xΨ|2divxV. (2.11)

But from the Poisson equation (1.4) we have∫
Ωt

|∇xΨ|2 ≤ C(g)∥ρ∥
L

6
5 (Ωt)

∥Ψ∥L6(Ωt) ≤ ϵ∥Ψ∥2W 1,2(Ωt)
+
C(g)

ϵ
∥ρ∥2

L
6
5 (Ωt)

,

for some constant C(g) > 0 and for any ϵ > 0, thanks to the fact that W 1,2(Ωt) ↪→ L6(Ωt) (as we are

in dimension 3). Now, since

∫
Ωt

Ψdx = 0, by using generalized Poincaré inequality (see Lemma A.1)

we have

∥Ψ∥W 1,2(Ωt) ≤ C(g)∥ρ∥
L

6
5 (Ωt)

≤ Cg∥ρ∥
7
12

L1(Ωt)
∥ρ∥

5
12

L
5
3 (Ωt)

≤ C(ρ0, g)
(∫

Ωt

ρ
5
3

) 1
4

≤
(∫

Ωt

ρ
5
3

) 1
2

+ C(ρ0, g),

(2.12)

where we also used the standard interpolation inequality.

This leads to the following two facts:
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(i) We have ∣∣∣∣∣
∫
Ωt

ρ∇xΨ ·V

∣∣∣∣∣ ≤ C(V)

∫
Ωt

ρ
5
3 + C(g,V, ρ0), (2.13)

(recall that the fluid satisfies the mass conservation law, i.e.,

∫
Ωt

ρdx =

∫
Ω0

ρ0 dx.)

(ii) The negative term − 1

8πg
∥∇xΨ∥2L2(Ωt)

can be absorbed by the term ρe(ρ, θ) in the equation

(2.10). In fact, the estimate (2.12) can be written in a more precise way, namely

∥Ψ∥2W 1,2(Ωt)
≤ 6πgp∞

∫
Ωt

ρ
5
3 + C(ρ0, g, p∞),

so that using the lower bound of ρe(ρ, θ) from (1.33), we have

1

8πg
∥∇xΨ∥2L2(Ωt)

≤ 3p∞
4

∫
Ωt

ρ
5
3 + C(ρ0, g, p∞) ≤ 1

2
ρe(ρ, θ) + C(ρ0, g, p∞), (2.14)

and thus the required result follows.

However, the relation (2.10) cannot be used in the weak formulation as the boundary integral∫
Γt

q · n

cannot be controlled in the formulation. To get rid of this, we shall multiply the entropy inequality
(2.5) by some θ̃ ∈ C1(QT ;R) such that

inf
QT

θ̃ > 0 and θ̃(t, x) = θB(t, x), for (t, x) ∈ ∪t∈(0,T )

(
{t} × Γt

)
, (2.15)

and integrating by parts we have

− d

dt

∫
Ωt

ρsθ̃ +

∫
Ωt

[
ρs
(
∂tθ̃ + u · ∇xθ̃

)
+

q

θ
· ∇xθ̃

]
−
∫
Γt

θ̃

θ
q · n

≤ −
∫
Ωt

θ̃

θ

(
S : ∇xu− q

θ
· ∇xθ

)
.

(2.16)

Let us first add (2.10) and (2.16) and use the bound (2.14) to absorb the negative term− 1

8πg
∥∇xΨ∥2L2(Ωt)

in terms of ρe(ρ, θ). Then, using (1.14), (2.15) and replacing q = −κ(θ)∇xθ, we obtain

d

dt

∫
Ωt

(
1

2
ρ|u|2 + ρe− ρsθ̃

)
+

∫
Ωt

θ̃

θ

(
S : ∇xu+

κ(θ)

θ
|∇xθ|2

)
≤ −

∫
Ωt

(
ρ[u⊗ u] : ∇xV − S : ∇xV + pdivxV

)
+

∫
Ωt

∂t(ρu) ·V

−
∫
Ωt

ρ∇xΨ ·V −
∫
Ωt

[
ρs
(
∂tθ̃ + u · ∇xθ̃

)
− κ(θ)

θ
∇xθ · ∇xθ̃

]
,

(2.17)

where we observe that (2.17) does not contain the boundary heat flux and therefore, it is suitable for
the weak formulation.

Till here, we get the ballistic energy for the system (1.1)-(1.4), and rewrite it in an explicit way as
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below:

−
∫ T

0

∂tψ

∫
Ωt

(
1

2
ρ|u|2 + ρe− ρsθ̃

)
+

∫ T

0

ψ

∫
Ωt

θ̃

θ

(
S : ∇xu+

κ(θ)

θ
|∇xθ|2

)
≤ ψ(0)

∫
Ω0

(
1

2

|(ρu)0|2

ρ0
+ ρ0e0(ρ0, θ0)− ρ0s(ρ0, θ0)θ̃(0, ·)

)
−
∫ T

0

ψ

∫
Ωt

(
ρ[u⊗ u] : ∇xV − S : ∇xV + pdivxV

)
+

∫ T

0

ψ

∫
Ωt

∂t(ρu) ·V

− C

∫ T

0

ψ

∫
Ωt

ρ∇xΨ ·V −
∫ T

0

ψ

∫
Ωt

[
ρs
(
∂tθ̃ + u · ∇xθ̃

)
− κ(θ)

θ
∇xθ · ∇xθ̃

]
,

(2.18)

for any ψ ∈ C1
c ([0, T )) with ψ ≥ 0 and ∂tψ ≤ 0.

Definition 1. We say that the trio (ρ,u, θ) is a weak solution of the problem (1.1)–(1.4) with boundary
conditions (1.12)–(1.16) and initial conditions (1.17)–(1.20) if the following items hold:

• ρ ∈ L∞(0, T ;L
5
3 (R3)) , ρ ≥ 0, ρ ∈ Lq(QT ) with some certain q > 1,

• u, ∇xu ∈ L2(QT ), ρu ∈ L∞(0, T ;L1(R3)),

• θ > 0 a.e. on QT , θ ∈ L∞(0, T ;L4(R3)), θ,∇xθ, log θ,∇x log θ ∈ L2(QT ),

• relations (2.1), (2.2), (2.3), (2.7), (2.18)are satisfied.

3 Main result

Here we state the main theorem of this paper:

Theorem 3.1. Assume that Ω0 ⊂ R3 is a bounded domain of the class C3, and suppose that
V ∈ C1([0, T ];C3

c (R3;R3)) satisfying (1.8) and the hypothesis in subsection 1.3 are satisfied. Then
the Naiver-Stokes-Fourier-Poisson (1.1)–(1.4) with boundary conditions (1.12)–(1.16) and initial con-
ditions (1.17)–(1.20) admits a weak solution in the sense of Definition 1 on any finite time interval
(0, T ).

4 Penalized problem

Let us choose R > 0 such that

V|[0,T ]×{|x|>R} = 0, Ω0 ⊂ {x ∈ R3 : |x| ≤ R},

and then take the reference domain

B := {x ∈ R3 : |x| < 2R}.

4.1 Mollification of the coefficients and initial data

• The viscosity coefficients are taken as

µω(θ) = fωµ(θ) ∈ C∞
c ([0, T ]× B), (4.1)

ηω(θ) = fωη(θ) ∈ C∞
c ([0, T ]× B), (4.2)

where the function fω ∈ C∞
c ([0, T ]× B) such that

0 < ω ≤ fω ≤ 1 in [0, T ]× B, for ω > 0,

fω(t, ·)|Ωτ = 1 for any τ ∈ [0, T ],

∥fω∥L∞((0,T )×(B\Ωt)) ≤ c ω.

(4.3)
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From the above definitions, it obviously holds that

µω, ηω → 0 a.e. in ((0, T )× B) \QT as ω → 0. (4.4)

• We also set the heat conductivity coefficient as follows:

κν(θ, t, x) = χνκ(θ), (4.5)

where χν ∈ L∞((0, T )× B) such that

χν = 1 in QT and χν = ν in ((0, T )× B) \QT for ν > 0. (4.6)

• Similarly, we introduce a variable coefficient aξ := aξ(t, x) representing the radiative parts of the
pressure, internal energy and entropy, given by

aξ(t, x) = χξa, (4.7)

with χξ ∈ L∞((0, T )× B) such that

χξ = 1 in QT and χξ = ξ in ((0, T )× B) \QT for ξ > 0. (4.8)

We now set

pξ,δ(ρ, θ) = pM (ρ, θ) +
aξ
3
θ4 + δρβ , β ≥ 4, δ > 0, (4.9)

eξ(ρ, θ) = eM (ρ, θ) +
aξθ

4

ρ
, sξ(ρ, θ) = sM (ρ, θ) +

4aξθ
3

3ρ
. (4.10)

• Let us now define the modified initial data ρ0,δ, (ρu)0,δ and θ0,δ. We consider ρ0,δ such that

ρ0,δ ≥ 0, ρ0,δ ̸≡ 0 in Ω0, ρ0,δ = 0 in R3 \ Ω0,

∫
B

(
ρ

5
3

0,δ + δρβ0,δ

)
≤ c,

ρ0,δ → ρ0 in L
5
3 (B) as δ → 0, |{ρ0,δ < ρ0}| → 0 as δ → 0.

(4.11)

In above, the constant c > 0 is independent of the parameter δ.
Next, the initial data for the momentum part is taken in such a way

(ρu)0,δ =

{
(ρu)0 if ρ0,δ ≥ ρ0,

0 else.
(4.12)

For the temperature part, we consider 0 < θ ≤ θ0,δ ≤ θ with θ0,δ ∈ L∞(B) ∩ C2+ν0(B) for some
exponent ν0 ∈ (0, 1) where θ, θ are positive real numbers as introduced in Section 1.1.

Moreover, ρ0,δ and θ0,δ are taken in such a way that∫
Ω0

ρ0,δe(ρ0,δ, θ0,δ) →
∫
Ω0

ρ0e(ρ0, θ0), (4.13)

ρ0,δs(ρ0,δ, θ0,δ) → ρ0s(ρ0, θ0) weakly in L1(Ω0). (4.14)

4.2 Penalization in the fixed domain and weak formulations

We begin this subsection by shortly describing the strategy of the proof for Theorem 3.1.

1. In the momentum equation, we add the penalized term

1

ε

∫ T

0

∫
Γt

(u−V) · n φ · n for ε > 0 small, (4.15)
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which was originally proposed by Stokes and Carey in [25]. In principle, this allows to deal
with the slip boundary conditions. Indeed, as ε → 0, this additional term yields the boundary
condition (u −V) · n = 0 on Γt, after reaching some uniform estimates w.r.t. ε. Accordingly,
the reference domain (0, T )× B is separated by an impermeable interface ∪t∈(0,T ){t} × Γt to a
fluid domain QT and a solid domain ((0, T )× B) \QT .

As a matter of fact, we need to take care the behaviour of the solution in the solid domain. To
do so, we consider the variable coefficients µω, ηω, κν , aξ as presented in Section 4.1. Moreover,
similar to the existence theory developed in [12], we introduce the artificial pressure pξ,δ with an
extra term δρβ (see (4.9)), which gives some more (regularity) information about the density.

2. We add a term λθα into the energy balance and λθα−1 into the entropy balance, where λ > 0 and
α is appearing in (1.22) in the hypothesis of heat conductivity coefficient κ. These terms yield
a control over the temperature in the solid domain. More precisely, these extra penalized terms
help to get rid of some unusual terms in solid domain while passing to the limit as ξ, ν → 0.

3. Keeping ε, ω, ν, λ, ξ and δ > 0 fixed, we use the existence theory for the compressible N-S-F
system with nonhomogeneous boundary data in the fixed reference domain, developed in [2]
(the part of Poisson equation with the N-S-F can be easily handled in the fixed domain).

4. Taking the initial density ρ0 vanishing outside Ω0 and letting ε → 0 for fixed ω, ν, λ, ξ, δ > 0
we obtain a “two-fluid” system where the density vanishes in the solid part

(
(0, T )×B

)
\QT .

Then, in order to get rid of the terms in
(
(0, T )×B

)
\QT , we tend all other parameters to zero.

To this end, it is required to introduce a proper scaling to let the parameters ω, ν, ξ, λ to zero
simultaneously. This has been rigorously prescribed in Section 5.5. Finally, we let δ → 0 in a
standard fashion, as already used in other related works.

Now we are ready to state the weak formulation for the penalized problem. We consider that the
extended ρ and u vanish on the boundary (0, T )× ∂B, that is

u|∂B = 0, for all t ∈ (0, T ), (4.16)

and θ satisfies

θ|∂B = θB , for all t ∈ (0, T ), (4.17)

where the above θB is introduced in (1.15) as an smooth extended version of the nonhomogeneous
temperature on the boundary Γt, t ∈ [0, T ] given by (1.14).

I. Continuity equation. The weak formulation for the continuity equation reads as

−
∫ T

0

∫
B
ρB(ρ) (∂tφ+ u · ∇xφ) +

∫ T

0

∫
B
b(ρ)divxuφ =

∫
B
ρ0,δB(ρ0,δ)φ(0, ·), (4.18)

for any test function φ ∈ C1
c ([0, T ) × B;R) and any b ∈ L∞ ∩ C([0,+∞)) such that b(0) = 0 and

B(ρ) = B(1) +

∫ ρ

1

b(z)

z2
.

II. Momentum equation. The momentum equation is represented by the family of integral identities

−
∫ T

0

∫
B

(
ρu · ∂tφ+ ρ[u⊗ u] : ∇xφ+ pξ,δ(ρ, θ)divxφ

)
+

∫ T

0

∫
B
Sω : ∇xφ

−
∫ T

0

∫
B
ρ∇xΨ ·φ+

1

ε

∫ τ

0

∫
Γt

(u−V) · n φ · n =

∫
B
(ρu)0,δ ·φ(0, ·),

(4.19)

for any test function φ ∈ C1
c ([0, T )× B;R3) and

Sω(θ,∇xu) = µω(θ, t, x)

(
∇xu+∇t

xu− 2

3
divxuI

)
+ ηω(θ, t, x)divxuI, (4.20)
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III. Poisson equation. The weak formulation for the Poisson equation is given by∫ T

0

∫
B
∇xΨ · ∇xφ =

∫ T

0

∫
B
ρφ, (4.21)

for any test function φ ∈ C1((0, T )× B;R), under the assumption that ρ = 0 outside B.

IV. Entropy inequality. Next, we write the penalized entropy inequality, given by

−
∫ T

0

∫
B

(
ρsξ(ρ, θ) (∂tφ+ u · ∇xφ)−

κν(θ, t, x)

θ
∇xθ · ∇xφ

)
−
∫
B
ρ0,δs(ρ0,δ, θ0,δ)φ(0, ·) +

∫ T

0

∫
B
λθα−1φ

≥
∫ T

0

∫
B

φ

θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
,

(4.22)

for any test function φ ∈ C1
c ([0, T )× B;R) with φ ≥ 0.

V. Ballistic energy inequality. Before giving the penalization for the ballistic energy (2.18), we
need to extend the boundary data θB to the whole domain B.

To this end, we fix a test function θ̃ which is the unique solution to

−∆xθ̃(t, ·) = 0 in B, θ̃(t, ·)|∂B = θB(t, ·), ∀t ∈ [0, T ], (4.23)

where θB is given by (4.17). We still denote this function θ̃ as θB in the following part.

Finally, we write the ballistic energy to the penalized problem as follows:

−
∫ T

0

∂tψ

∫
B

(
1

2
ρ|u|2 + ρeξ(ρ, θ)− ρsξ(ρ, θ)θB +

δ

β − 1
ρβ
)
+

∫ T

0

ψ

∫
B
λθα

+

∫ T

0

ψ

∫
B

θB
θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
+

1

ε

∫ T

0

ψ

∫
Γt

|(u−V) · n|2

≤ ψ(0)

∫
B

(
1

2

|(ρu)0,δ|2

ρ0,δ
+ ρ0,δeξ(ρ0,δ, θ0,δ)− ρ0,δsξ(ρ0,δ, θ0,δ)θB(0, ·) +

δ

β − 1
ρβ0,δ

)
+

∫ T

0

ψ

∫
B
λθα−1θB

−
∫ T

0

ψ

∫
B

(
ρ[u⊗ u] : ∇xV − Sω : ∇xV + pξ,δ(ρ, θ)divxV

)
+

∫ T

0

ψ

∫
B
∂t(ρu) ·V

−
∫ T

0

ψ

∫
B
ρ∇xΨ ·V −

∫ T

0

ψ

∫
B

[
ρsξ (∂tθB + u · ∇xθB)−

κν(θ, t, x)

θ
∇xθ · ∇xθB

]
,

(4.24)

for any ψ ∈ C1
c ([0, T )) with ψ ≥ 0 and ∂tψ ≤ 0.

Definition 2. We say that the trio (ρ,u, θ) is a weak solution to the penalized problem with initial
data (4.11)–(4.14) if the following items hold:

• ρ ∈ L∞(0, T ;L
5
3 (R3)) ∩ L∞(0, T ;Lβ(R3)), ρ ≥ 0, ρ ∈ Lq((0, T )× B) with some certain q > 1,

• u, ∇xu ∈ L2((0, T )× B), ρu ∈ L∞(0, T ;L1(B)),

• θ > 0 a.e. on QT , θ ∈ L∞(0, T ;L4(B)), θ,∇xθ, log θ,∇x log θ ∈ L2((0, T )× B),

• relations (4.18), (4.19), (4.21), (4.22), (4.24) are satisfied.

Theorem 4.1. Assume that V ∈ C1([0, T ];C3
c (R3;R3)), and the hypotheses in subsections 1.3–4.1

for viscosity, conductive heat coefficients, and equations of states are all satisfied. Moreover, the initial
data satisfy (4.11)–(4.14). Then there exists a weak solution to the penalized problem on any time
interval (0, T ) in the sense of Definition 2.
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Proof. Here we just give a short explanation on the proof. The existence of weak solution with the
non-homogeneous Dirichlet condition for the temperature in the fixed domain is similar to [2]. It
is necessary to consider the continuity equation with a viscous term ∆xρ, solving the momentum
equations via Faedo-Galerkin approximations and the Poisson equation. Instead of pursuing the
solution to the entropy equation, we look for the solution to the internal energy equation. Note that
(4.24) is adopted by dealing with the particular non-homogeneous boundary conditions. As pointed
out in [18, Theorem 3.1], here also we face the following difficulties.

• The penalized terms 1
ε

∫ τ

0

∫
Γt
(u−V) · n φ · n in (4.19) and 1

ε

∫ T

0
ψ
∫
Γt

|(u−V) · n|2 in (4.24).

• The jumps in functions κν(θ, t, x) in (4.5), and aξ(t, x) in (4.7).

The strategy to overcome these difficulties has already been discussed in the beginning of the
proof of Theorem 3.1 in [18]. In the present work, we employ similar methodology for the proof. We
emphasize that the term λθα (α > 6) is necessary for our modified internal energy equation to provide
uniform bounds of high power of the temperature on B. Moreover, additional difficulty will arise
to get a proper bound of the term ρsξ(ρ, θ)u appearing in right hand side of the energy inequality
(4.24).

The rest of the paper is devoted to proof the main result of this paper, that is, Theorem 3.1.

4.3 Uniform bounds

This subsection is devoted to establish the uniform bounds for the weak solution which is constructed
by virtue of Theorem (4.1).

Let us define the following Helmholtz-type function (see [12, Chapter 2.2.3]):

HθB ,ξ(ρ, θ) := ρeξ(ρ, θ)− ρsξ(ρ, θ)θB , (4.25)

and in what follows, we denote

HθB ,ξ(ρ0,δ, θ0,δ) = ρ0,δeξ(ρ0,δ, θ0,δ)− ρ0,δsξ(ρ0,δ, θ0,δ)θB(0, ·). (4.26)

We now consider ψζ ∈ C1
c ([0, T )) with

ψζ(t) =

{
1 for t < τ − ζ,

0 for t ≥ τ,
for any given τ ∈ (0, T ), 0 < ζ < τ,

and using it as a test function in (4.24) we derive after passing to the limit ζ → 0,∫
B

(
1

2
ρ|u|2 +HθB ,ξ(ρ, θ) +

δ

β − 1
ρβ
)
(τ, ·) + 1

ε

∫ τ

0

∫
Γt

|(u−V) · n|2

+

∫ τ

0

∫
B
λθα +

∫ τ

0

∫
B

θB
θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
≤
∫
B

(
1

2

|(ρu)0,δ|2

ρ0,δ
+HθB ,ξ(ρ0,δ, θ0,δ) +

δ

β − 1
ρβ0,δ

)
+

∫ τ

0

∫
B
λθα−1 θB

+

∫
B
(ρu ·V)(τ, ·)−

∫
B
(ρu)0,δV(0, ·)

−
∫ τ

0

∫
B

(
ρ[u⊗ u] : ∇xV − Sω : ∇xV + pξ,δ(ρ, θ) divxV + ρu · ∂tV

)
−
∫ τ

0

∫
B
ρ∇xΨ ·V −

∫ τ

0

∫
B

[
ρsξ(ρ, θ)

(
∂tθB + u · ∇xθB

)
− κν(θ, t, x)

θ
∇xθ · ∇xθB

]
,

(4.27)

for almost all τ ∈ (0, T ).

Let us now find the uniform bounds of the right hand side of the modified energy inequality (4.27).
First, we recall that the fluid system satisfies the mass conservation law, that is∫

B
ρ(τ, ·) =

∫
B
ρ0,δ(·) =

∫
Ω0

ρ0(·) = C(ρ0) > 0.
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Keeping that in mind, we proceed to find the estimates.

• Step 1. (i) For any ϵ > 0 small, we have∫
B
(ρu ·V)(τ, ·) ≤ C(V)

∣∣∣∣∫
B

√
ρ
√
ρu(τ, ·)

∣∣∣∣ ≤ C(V, ρ0) + ϵ

∫
B
ρ|u|2. (4.28)

(ii) Next, recall how we obtain (2.13), and we reach to the following:∣∣∣∣∫ τ

0

∫
B
ρ∇xΨ ·V

∣∣∣∣ ≤ C(V)

∫ τ

0

∫
B
ρ

5
3 + C(V, ρ0, g)

≤ C(V, p∞, g)

(∫ τ

0

∫
B
ρeξ(ρ, θ) + 1

)
.

(4.29)

(iii) Without loss of generality we assume 0 < λ ≤ 1 from now onwards. Then, by using Hölder’s and
Cauchy-Schwarz inequality, we obtain∫ τ

0

∫
B
Sω : ∇xV ≤ 1

2

∫ τ

0

∫
B

θB
θ
Sω : ∇xu+ C(V, θB)

∫ τ

0

∫
B
θ

≤ 1

2

∫ τ

0

∫
B

θB
θ
Sω : ∇xu+ ϵ

∫ τ

0

∫
B
λθα +

C(V, θB , ϵ)

λ1/(α−1)
. (4.30)

We also have that ∣∣∣∣∫ τ

0

∫
B
ρ[u⊗ u] : ∇xV

∣∣∣∣ ≤ C(V)

∫ τ

0

∫
B
ρ|u|2, (4.31)

∣∣∣∣∫ τ

0

∫
B
ρu · ∂tV

∣∣∣∣ ≤ C(V, ρ0) + C

∫ τ

0

∫
B
ρ|u|2. (4.32)

(iv) Next, since 0 < λ ≤ 1, it is easy to observe that∫ τ

0

∫
B
λθα−1 θB ≤ C(θB)

ϵ
+ ϵ

∫ τ

0

∫
B
λθα. (4.33)

(v) The pressure term pξ,δ(ρ, θ) in (4.9) can be estimated as follows. First, we recall the point (1.34)
which indeed tells that P ′(Z) > 0 for all Z > 0. Further, we recall the fact (1.35) which gives

lim
Z→∞

P (Z)

Z
5
3

= p∞ > 0. Therefore, we obtain the following bounds on the molecular pressure pM ,

cρθ ≤pM ≤ cρθ if ρ < Zθ
3
2 ,

cρ
5
3 ≤pM ≤

{
cθ

5
2 if ρ < Zθ

3
2 ,

cρ
5
3 if ρ > Zθ

3
2 ,

(4.34)

and pM is monotone in Zθ
3
2 ≤ ρ ≤ Zθ

3
2 .

With the above information, we deduce that∣∣∣∣∫ τ

0

∫
B
pξ,δ(ρ, θ)divxV

∣∣∣∣ ≤ C(V)

∫ τ

0

∫
B

δ

β − 1
ρβ + C(V)

∫ τ

0

∫
B
aξθ

4 + C(V)

∫ τ

0

∫
B
ρ

5
3

+ϵ

∫ τ

0

∫
B
λθα +

C(V, ϵ)

λ5/(2α−5)
.

(4.35)

In fact, we have that

ρeξ ≥ aξθ
4 +

3

2
p∞ρ

5
3 , (4.36)
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which can be shown in the same way as we have obtained (1.33), and therefore,∫ τ

0

∫
B

(
aξθ

4 + ρ
5
3

)
≤ C(p∞)

∫ τ

0

∫
B
ρeξ.

Using the above inequality in (4.35) and together with all other estimates above, we have from
(4.27) (by fixing ϵ > 0 small enough),∫

B

(
1

2
ρ|u|2 +HθB ,ξ(ρ, θ) +

δ

β − 1
ρβ
)
(τ, ·) + 1

ε

∫ τ

0

∫
Γt

|(u−V) · n|2

+

∫ T

0

∫
B
λθα +

∫ τ

0

∫
B

θB
θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
≤
∫
B

(
1

2

|(ρu)0,δ|2

ρ0,δ
+HθB ,ξ(ρ0,δ, θ0,δ) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0, ·)

)
+ C

∫ τ

0

∫
B

(
1

2
ρ|u|2 + ρeξ(ρ, θ) +

δ

β − 1
ρβ
)

+

∣∣∣∣ ∫ τ

0

∫
B

[
ρsξ(ρ, θ) (∂tθB + u · ∇xθB)−

κν(θ, t, x)

θ
∇xθ · ∇xθB

]∣∣∣∣+ C
(
1 +

1

λ5/(2α−5)

)
,

(4.37)

for almost all τ ∈ (0, T ), where HθB ,ξ(ρ, θ) and HθB ,ξ(ρ0,δ, θ0,δ) are defined by (4.25) and (4.26)
respectively and C > 0 is some constant that may depend on the quantities V, ρ0, p∞, g and θB but
not on the parameters λ, ω, ξ, ν, ε or δ.

• Step 2. (i) To the next, we recall the expression of Sω from (4.20) and using (4.1), (4.2) and (1.21),
we obtain ∫ τ

0

∫
B

θB
θ
Sω : ∇xu ≥ c1(ω) inf

(0,T )×B
|θB |

∫ τ

0

∫
B

∣∣∣∇xu+∇t
xu− 2

3
divxuI

∣∣∣2, (4.38)

for some constant c1(ω) > 0.
On the other hand, by the Korn-Poincaré inequality (see Lemma A.2) we have

∥u∥2W 1,2(B;R3) ≤ C
∥∥∥∇xu+∇t

xu− 2

3
divxuI

∥∥∥2
L2(B,R3)

+ C
(∫

B
ρ|u|

)2
≤ C

∥∥∥∇xu+∇t
xu− 2

3
divxuI

∥∥∥2
L2(B,R3)

+ C(ρ0)

∫
B
ρ|u|2.

(4.39)

Therefore,

c1(ω)

∫ τ

0

∥u∥2W 1,2(B;R3) ≤ C(θB)

∫ τ

0

∫
B

θB
θ
Sω : ∇xu+ C(ρ0, θB)

∫ τ

0

∫
B
ρ|u|2. (4.40)

Remark 1. From the definition of µω and ηω it is clear that the constant c1(ω) behaves like “cω” in
B \ Ωt for some constant c > 0 which is independent in ω.

(ii) We still need to estimate of the last couple of terms containing θB in the right hand side of (4.37).
Recall the definition of κν from (4.5), we get∫ τ

0

∫
B

κν(θ)

θ
∇xθ · ∇xθB =

∫ τ

0

∫
B
∇xKν(θ) · ∇xθB

= −
∫ τ

0

∫
B
Kν(θ) ·∆xθB +

∫ τ

0

∫
∂B
Kν(θB)∇xθB · n,

(4.41)

where ∂
∂θKν(θ) =

κν(θ)
θ . Now, thanks to the choice of test function θB in (4.23), we have ∆xθB = 0

and as a consequence, one has ∣∣∣∣ ∫ τ

0

∫
B

κν(θ)

θ
∇xθ · ∇xθB

∣∣∣∣ ≤ C(θB). (4.42)
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(iii) We now need to find a proper bound of ρsξ(ρ, θ)|u|. Recall (1.39), there exists some c > 0 such
that

sM (ρ, θ) = S

(
ρ

θ
3
2

)
≤ c when

ρ

θ3/2
> 1, (4.43)

and therefore,

ρsξ(ρ, θ) = ρsM (ρ, θ) +
4aξ
3
θ3 ≤ cρ+

4aξ
3
θ3, for

ρ

θ3/2
> 1. (4.44)

On the other hand, when
ρ

θ3/2
≤ 1, we use the strategy developed in [13, Section 4, formula

(4.6)] and according to that, one has (using the Gibb’s relation (1.5), the hypothesis (1.23)–(1.32) and
(1.37))

sM (ρ, θ) ≤ C(1 + | log ρ|+ [log θ]+).

This yields

ρsξ(ρ, θ) = ρsM (ρ, θ) +
4aξ
3
θ3 ≤ C

(
ρ+ |ρ log ρ|+ |ρ|[log θ]+

)
+

4aξ
3
θ3. (4.45)

Now, observe that

|ρ log ρ| ≤


Cρ

1
2 , when 0 < ρ ≤ 1,

3

2
ρ[log θ]+, when ρ > 1 (consequently θ > 1 since

ρ

θ3/2
≤ 1),

(4.46)

where we have used the fact that |ρ 1
2 log ρ| is bounded for 0 < ρ ≤ 1.

Using (4.46) in (4.45), we get

ρsξ(ρ, θ) ≤ C
(
ρ+ ρ

1
2 + ρ[log θ]+

)
+

4aξ
3
θ3, for

ρ

θ3/2
≤ 1. (4.47)

Thus, the inequalities (4.44) and (4.47) yield∫ τ

0

∫
B
ρsξ(ρ, θ)|u|

≤C
∫ τ

0

∫
B
ρ|u|+ C

∫ τ

0

∫
B
ρ

1
2 |u|+ C

∫ τ

0

∫
B
ρ|u|[log θ]+ + C

∫ τ

0

∫
B
aξθ

3|u|

≤C(ρ0) + C

∫ τ

0

∫
B
ρ|u|2 + C

∫ τ

0

∫
B
ρ([log θ]+)2 +

c1(ω)

2

∫ τ

0

∫
B
|u|2 + 1

2c1(ω)

∫ τ

0

∫
B
a2ξθ

6,

(4.48)

where c1(ω) is appearing in (4.40).

Here, we observe that the third term in the last inclusion is arising due to the case when
ρ

θ3/2
≤ 1.

Keeping in mind this point, we have∫ τ

0

∫
B
ρ([log θ]+)2 ≤

∫ τ

0

∫
B
θ

3
2 ([log θ]+)2 ≤

∫ τ

0

∫
B
θ

5
2 ≤ ϵ

∫ τ

0

∫
B
λθα +

C(ϵ)

λ5/(2α−5)
(4.49)

for any chosen ϵ > 0 (since [log θ]+ ≤ θ1/2).

We now need further care to compute the integral containing θ6 in the r.h.s. of (4.48).

– First observe that∫
B
θBκν(θ)

|∇xθ|2

|θ|2
≥ κc2(ν) inf

(0,T )×B
|θB |

∫
B

(
θ−2 + θα−2

)
|∇xθ|2, (4.50)

in the l.h.s. of (4.37), for some constant c2(ν) > 0 which behaves like “cν” in B \ Ωt for some
constant c > 0 that is independent in ν and in Ωt, c2(ν) does not depend on ν since χν = 1 in
Ωt for any t ∈ [0, T ].
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– Now, using the Hölder’s and Young’s inequalities, we have

1

2c1(ω)

∫
B
a2ξθ

6 ≤ ϵc2(ν)

∫
B
θα + C(ϵ)

∫
B

(
a2ξ

2c1(ω)
c2(ν)

− 6
α

) α
α−6

, where α > 6. (4.51)

for any given ϵ > 0.

But W 1,2(B) ↪→ L6(B); using this and the generalized Poincaré inequality (see Lemma A.1), we
deduce that∫

B
θα ≤ ∥θα∥L3(B) =

∥∥θ α
2

∥∥2
L6(B)

≤
∥∥θ α

2

∥∥2
W 1,2(B)

≤ C
∥∥∇xθ

α
2

∥∥2
L2(B)

+ C

∫
B
|θ|

≤ C

∫
B
θα−2|∇xθ|2 + C

∫
B
λθα +

C

λ1/(α−1)
.

(4.52)

By using (4.52) and (4.51) in (4.48), and thanks to (4.49), we obtain∫ τ

0

∫
B
ρsξ(ρ, θ)|u|

≤ C(ρ0) + C

∫ τ

0

∫
B
ρ|u|2 + c1(ω)

2

∫ τ

0

∫
B
|u|2 + Cϵ c2(ν)

∫ τ

0

∫
B
θα−2|∇xθ|2

+ Cϵ

∫ τ

0

∫
B
λθα +

C(ϵ)

λ5/(2α−5)
+

C

λ1/(α−1)
+ C(ϵ)

∫
B

(
a2αξ

c1(ω)αc2(ν)6

) 1
α−6

.

(4.53)

Collecting the bounds (4.42), (4.53) along with (4.38)–(4.40), we have from (4.37) (by fixing ϵ > 0
small enough) that∫

B

(
1

2
ρ|u|2 +HθB ,ξ(ρ, θ) +

δ

β − 1
ρβ
)
(τ, ·) + 1

ε

∫ τ

0

∫
Γt

|(u−V) · n|2 +
∫ T

0

∫
B
λθα

+ c1(ω)

∫ τ

0

∥u∥2W 1,2(B;R3) + c2(ν)

∫ τ

0

∫
B

(
θ−2 + θα−2

)
|∇xθ|2

≤
∫
B

(
1

2

|(ρu)0,δ|2

ρ0,δ
+HθB ,ξ(ρ0,δ, θ0,δ) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0, ·)

)
+ C

∫ τ

0

∫
B

(
1

2
ρ|u|2 + ρeξ(ρ, θ) +

δ

β − 1
ρβ
)
+ C

(
1 +

1

λ5/(2α−5)
+
( ξ2α

ωαν6

) 1
α−6

)
,

(4.54)

for almost all τ ∈ (0, T ), and the constant C > 0 may depend on the quantities V, ρ0, p∞, g and θB
but not on the parameters λ, ω, ξ, ν, ε or δ.

Applying the Grönwall’s inequality in (4.54), we deduce that∫
B

(
1

2
ρ|u|2 +HθB ,ξ(ρ, θ) +

δ

β − 1
ρβ
)
(τ, ·) + 1

ε

∫ τ

0

∫
Γt

|(u−V) · n|2 +
∫ τ

0

∫
B
λθα

+ c1(ω)

∫ τ

0

∥u∥2W 1,2(B;R3) + c2(ν)

∫ τ

0

∫
B

(
θ−2 + θα−2

)
|∇xθ|2

≤C
∫
B

(
1

2

|(ρu)0,δ|2

ρ0,δ
+HθB ,ξ(ρ0,δ, θ0,δ) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0, ·)

)
+ C

(
1 +

1

λ5/7
+
( ξ2α

ωανα

) 1
α−6

)
,

(4.55)

for almost all τ ∈ (0, T ) and C > 0 constant which has been specified in (4.54). In above, we have
used the following facts: since 0 < λ ≤ 1 and α > 6, one has

1

λ5/(2α−5)
<

1

λ5/7
as

5

(2α− 5)
<

5

7
,
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and, moreover
ν6 > να since 0 < ν ≤ 1.

To ensure that the left hand side of (4.55) is positive. we proceed as follows. Setting a constant

ρ such that

∫
B
(ρ − ρ) = 0 for almost all τ ∈ [0, T ) and we rewrite the estimate (4.55) as the total

dissipation inequality:∫
B

(
1

2
ρ|u|2 +HθB ,ξ(ρ, θ)− (ρ− ρ)

∂HθB ,ξ(ρ, θB)

∂ρ
−HθB ,ξ(ρ, θB) +

δ

β − 1
ρβ
)
(τ, ·)

+
1

ε

∫ τ

0

∫
Γt

|(u−V) · n|2 +
∫ τ

0

∫
B
λθα

+ c1(ω)

∫ τ

0

∥u∥2W 1,2(B;R3) + c2(ν)

∫ τ

0

∫
B

(
θ−2 + θα−2

)
|∇xθ|2

≤C
∫
B

(
1

2

|(ρu)0,δ|2

ρ0,δ
+HθB ,ξ(ρ0,δ, θ0,δ) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0, ·)

)
−
∫
B

(
(ρ0,δ − ρ)

∂HθB ,ξ(ρ, 1)

∂ρ
+HθB ,ξ(ρ, 1)

)
+ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
,

(4.56)

for almost all τ ∈ (0, T ). In (4.56), the left hand side is positive due to the hypothesis of thermody-
namic stability (1.26), (1.27).

• The uniform bounds. (i) From (4.56), we directly have∫ T

0

∫
Γt

|(u−V) · n|2 ≤ εC

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
, (4.57)

ess sup
τ∈[0,T ]

∥δρβ(τ, ·)∥L1(B) ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
, (4.58)

ess sup
τ∈[0,T ]

∥√ρu(τ, ·)∥2L2(B) ≤ C

((
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
, (4.59)

∥λθα∥L1((0,T )×B) ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
. (4.60)

(ii) We also have

c1(ω)∥u∥2L2(0,T ;W 1,2(B;R3)) ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
. (4.61)

(iii) From (4.56), we get

c2(ν)

∫ T

0

∫
B

(
θ−2 + θα−2

)
|∇xθ|2 ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
. (4.62)

In other words,

c2(ν)

∫ T

0

∫
B

(∣∣∇x log(θ)
∣∣2 + ∣∣∇xθ

α
2

∣∣2) ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
. (4.63)

(iv) Now, since HθB ,ξ is coercive (this can be proved in accordance with [12, Proposition 3.2]) and
bounded from below, we get

ess sup
τ∈[0,T ]

∥ρeξ(τ, ·)∥L1(B) ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
, (4.64)
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and consequently we have

ess sup
τ∈(0,T )

∥aξθ4(τ, ·)∥L1(B) ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
, (4.65)

ess sup
τ∈(0,T )

∥ρ(τ, ·)∥
5
3

L
5
3 (B)

≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
. (4.66)

(v) The bound (4.66) gives the uniform bound for the gravitational potential Ψ w.r.t. “ε”. In fact,
by following the steps as we obtained (2.12), one could get

∥Ψ∥2L2(0,T ;W 1,2(B)) ≤ ∥ρ∥
5
3

L∞(0,T ;L
5
3 (B))

+ C(ρ0, g) ≤ C

(
1 +

1

λ5/7
+
( ξ2
ων

) α
α−6

)
. (4.67)

(vi) Then by (4.63), (4.60) and generalized Poincaré inequality from Lemma A.1 (since the condition
(1.10) satisfies), we deduce that

∥θγ∥2L2(0,T ;W 1,2(B)) ≤ Ĉ1, for any 1 ≤ γ ≤ α

2
, where α > 6, (4.68)

where the constant Ĉ1 > 0 may depend on the parameters ξ, ν, ω, λ but not on ε.
The estimate (4.63) also provides us

∥∇x log θ∥2L2(0,T ;L2(B)) ≤ Ĉ2, (4.69)

for some constant Ĉ2 > 0 that is independent in ε.

(vii) Further, we have∫ T

0

∫
B

κν(θ, t, x)

θ
|∇xθ| ≤

1

2

∫ T

0

∫
B

κν(θ, t, x)

θ2
|∇xθ|2 +

∫ τ

0

∫
B
κν(θ, t, x)

≤ C(ν)

∫ T

0

∫
B

(∣∣∇x log(θ)
∣∣2 + ∣∣∇xθ

α
2

∣∣2)+ C(ν)

∫ T

0

∫
B
(1 + θα)

≤ Ĉ3,

(4.70)

where we have used the bounds (4.63) and (4.52). The constant Ĉ3 > 0 does depend on the parameters
ξ, ν, ω, λ but not on ε.

(viii) Using the technique based on the Bogovskii operator, one can get more information about the
modified pressure, namely

pξ,δ(ρ, θ) = pM (ρ, θ) +
aξ
3
θ4 + δρβ (β ≥ 4).

The idea is to use the multipliers of the form

ψL
[
ρ− 1

|B|

∫
B
ρ
]
, ψ ∈ D(0, T ), 0 ≤ ψ ≤ 1

in the momentum equation(1.2), where L is defined as follows: the function v = L[f ] such that it
solves the problem

div(v) = f in B, v|∂B = 0.

In what follows, one can ensure that there exists some υ > 0 such that∫∫
K

(
pξ,δ(p, θ)ρ

υ + δρβ+υ
)
≤ C(K), (4.71)

for any compact set K ⊂ (0, T )× B such that

K ∩
(
∪τ∈[0,T ]

(
{τ} × Γτ

))
= ∅. (4.72)

19



Moreover, the constant υ can be chosen independently of ε, ω, λ, ξ, ν and δ. For more details, we
refer [10, Section 4.2] or [15].

(ix) To find a suitable estimate for the term ρsξ(ρ, θ), we recall the estimates (4.44) and (4.47), which
gives

ρsξ(ρ, θ) ≤


cρ+

4aξ
3
θ3, for

ρ

θ3/2
> 1,

C
(
ρ

1
2 + ρ+ ρ[log θ]+

)
+

4aξ
3
θ3 ≤ C

(
θ

3
4 + θ

3
2 + θ2

)
+

4aξ
3
θ3, for

ρ

θ3/2
≤ 1.

Now, using the estimates (4.60), (4.66), one can deduce that

∥ρsξ(ρ, θ)∥Lp((0,T )×B) ≤ Ĉ4, for certain p ≥ 1, (4.73)

where the constant Ĉ4 > 0 that may depend on the parameters ξ, ν, λ, ω but not on ε.

5 Passing to the limit

In this section, we first perform the limit ε→ 0 and then together we pass to the limit λ, ξ, ν, ω and
finally δ to 0.

5.1 Penalization limit: passing with ε → 0

In this subsection, we fix all the parameters δ, λ, ν, ξ and ω. Then, passing to the limit ε → 0, we
directly obtain

(u−V) · n
∣∣
Γτ

= 0, for a.a. τ ∈ [0, T ], (5.1)

so we retrieve the impermeability boundary condition (1.13).

• By (4.65), (4.66) and (4.68), we respectively have (up to a suitable subsequence)

θε → θ weakly∗ in L∞(0, T ;L4(B)) as ε→ 0, (5.2)

ρε → ρ weakly∗ in L∞(0, T ;L
5
3 (B)) as ε→ 0, (5.3)

θε → θ weakly in L2(0, T ;W 1,2(B)) as ε→ 0, (5.4)

Due to (4.60) and (4.65), we also have

θαε → θα weakly in L1((0, T )× B) as ε→ 0, (5.5)

θ4ε → θ4 weakly in L1((0, T )× B) as ε→ 0. (5.6)

Here and in the sequel, the “bar” denotes a weak limit of a composed or nonlinear function.

• Thanks to (4.61) and (4.67), we respectively have

uε → u weakly in L2(0, T ;W 1,2(B,R3)) as ε→ 0, (5.7)

Ψε → Ψ weakly in L2(0, T ;W 1,2(B)) as ε→ 0. (5.8)

• We have also better convergence result of {ρε}ε than (5.3): using the continuity equation (4.18) one
indeed get

ρε → ρ in Cweak([0, T ];L
5
3 (B)) as ε→ 0. (5.9)

The above fact, together with (5.7) and the fact L
5
3 (B) ↪→W−1,2(B) is compact, one has

ρεuε → ρu weakly∗ in L∞(0, T ;L
5
4 (B,R3)) as ε→ 0 (5.10)
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• Now, by using (5.6) and (4.71), the asymptotic behavior (4.34) of pM , and then by utilizing (5.9),
(5.4) we have

pξ,δ(ρε, θε) = pM (ρε, θε) +
aξ
3
θ4ε + δρβε → pM (ρ, θ) +

aξ
3
θ4 + δρβ weakly in L1(K), (5.11)

where K is as given by (4.71)–(4.72).

• Further, since W 1,2
0 (B,R3) ↪→ L6(B,R3) is compact, using (5.7), the convective term satisfies (by

following the steps of [19, Section 4] or [12, Chapter 3.6.4])

ρεuε ⊗ uε → ρu⊗ u weakly in L2(0, T ;L
30
29 (B,R3)), (5.12)

and indeed,

ρu⊗ u = ρu⊗ u a.a. in (0, T )× B, (5.13)

since L
5
4 (B) ↪→W−1,2(B) is compact.

5.2 Pointwise convergence of the temperature and the density

• In order to show a.e. convergence of the temperature, we follow the technique based on the Div–Curl
Lemma and Young measures methods (see [12, Section 3.6.2]). Let us set

Uε =

[
ρεsξ(ρε, θε), ρεsξ(ρε, θε)uε +

κν(θε)∇xθε
θε

]
, (5.14)

Wε =
[
G(θε), 0, 0, 0

]
, (5.15)

where G is bounded and globally Lipschitz function in [0,∞). Then due to the estimates obtained
in previous section, divt,xUε is precompact in W−1,s((0, T ) × B) and Curlt,xWε is precompact in
W−1,s((0, T ) × B)4×4 with certain s > 1. Therefore using the Div-Curl lemma for Uε and Wε, we
may derive that

ρsξ(ρε, θε)G(θε) = ρsξ(ρε, θε) G(θε) (5.16)

In fact, by applying the theory of parameterized (Young) measures (see [12, Section 3.6.2]), one can
show that

ρsM (ρ, θ)G(θ) ≥ ρsM (ρ, θ) G(θ), θ3G(θ) ≥ θ3 G(θ). (5.17)

Combining (5.16)–(5.17) and taking G(θ) = θ, we deduce

θ4 = θ3 θ,

which yields

θε → θ a.a. in (0, T )× B. (5.18)

Moreover, thanks to (4.69) and using the generalized Poincaré inequality in Lemma A.1, one can
prove that log θ ∈ L2((0, T )× B) which ensures that the limit temperature is positive a.e. on the set
(0, T )× B.

• Next proceeding as [18, Section 4.1.2], one can further obtain

ρε → ρ a.a. in (0, T )× B. (5.19)

• Then, using (5.18), (5.19) and (5.7), we identify the following limits:
Sω(θε,∇xuε) → Sω(θ,∇xu) weakly in L1((0, T )× B),
ρεsξ(ρε, θε) → ρsξ(ρ, θ) weakly in L1((0, T )× B),
ρεsξ(ρε, θε)uε → ρsξ(ρ, θ)u weakly in L1((0, T )× B),

(5.20)

up to a suitable subsequence.
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5.3 The limiting system as ε → 0

In this subsection, we summarize the limiting behaviors of all the quantities from the previous two
subsections, and write weak formulation for the limiting system (as ε→ 0).

• Passing to the limit as ε→ 0, we can obtain the continuity equation exactly as (4.18).

• Next, we proceed to pass to the limit in the momentum equation (4.19). Having in hand the local
estimates (and limits) of the pressure term (see (4.71) and (5.11)), we consider the test functions

φ ∈ C1
c ([0, T );W

1,∞(B,R3)), Supp [divxφ(τ, ·)] ∩ Γτ = ∅, φ · n|Γτ
= 0, ∀τ ∈ [0, T ]. (5.21)

Then in accordance with the limits in the previous two subsections, we have upon ε→ 0,

−
∫ T

0

∫
B

(
ρu · ∂tφ+ ρ[u⊗ u] : ∇xφ+ pξ,δ(ρ, θ)divxφ

)
+

∫ T

0

∫
B
Sω : ∇xφ∫ T

0

∫
B
ρ∇xΨ · ∇xφ =

∫
B
(ρu)0,δ ·φ(0, ·),

(5.22)

for any test function as in (5.21).

• The weak formulations for Ψ has same expressions as (4.21) after passing to the limit as ε→ 0.

• Further, by using (4.70), we have

κν(θε)

θε
|∇xθε| →

κν(θ)

θ
|∇xθ| weakly in L1((0, T )× B). (5.23)

We also have that the terms
1

θε
Sω(θε,∇xuε) : ∇xuε and

κν(θε)|∇xθε|2

θε
are weakly lower semicontin-

uous. These, together with (5.6), (5.18) and (5.19), the entropy inequality follows (as ε→ 0)

−
∫ T

0

∫
B

(
ρsξ(ρ, θ) (∂tφ+ u · ∇xφ)−

κν(θ, t, x)

θ
∇xθ · ∇xφ

)
−
∫
B
ρ0,δs(ρ0,δ, θ0,δ)φ(0, ·) +

∫ T

0

∫
B
λθα−1φ

≥
∫ T

0

∫
B

φ

θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
,

(5.24)

for any test function φ ∈ C1
c ([0, T )× B;R) with φ ≥ 0.

• Let us pass to the limit ε → 0 in the modified energy inequality (4.24). Thanks to the almost
everywhere convergence results (5.18), (5.19), the bound (4.64) and the fact that {ρεeξ(ρε, θε)}ε is
nonnegative, we have, using the Fatou’s lemma,

lim sup
ε→0

∫ T

0

∫
B
ρεeξ(ρε, θε)∂tψ ≤

∫ T

0

∫
B
ρeξ(ρ, θ)∂tψ

by choosing ψ ∈ C1
c ([0, T )) such that ∂tψ ≤ 0. Similarly, one has

lim sup
ε→0

∫ T

0

∫
B
ρε|uε|2∂tψ ≤

∫ T

0

∫
B
ρ|u|2∂tψ.

Using the above information and gathering all the limits (5.18), (5.19), (5.11), (5.23), (5.12), the
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limiting ballistic energy inequality reads as (passing to the limit as ε→ 0 in (4.24))

−
∫ T

0

∂tψ

∫
B

(
1

2
ρ|u|2 +HθB ,ξ(ρ, θ) +

δ

β − 1
ρβ
)
+

∫ T

0

ψ

∫
B
λθα

+

∫ T

0

ψ

∫
B

θB
θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
≤ψ(0)

∫
B

(
1

2

|(ρu)0,δ|2

ρ0,δ
+HθB ,ξ(ρ0,δ, θ0,δ) +

δ

β − 1
ρβ0,δ − (ρu)0V(0)

)
+

∫ T

0

ψ

∫
B
λθα−1θB −

∫ T

0

∫
B
ρu · ∂t(ψV)

−
∫ T

0

ψ

∫
B

(
ρ[u⊗ u] : ∇xV − Sω : ∇xV + pξ,δ(ρ,θ) divxV

)
−
∫ T

0

ψ

∫
B
ρ∇xΨ ·V −

∫ T

0

ψ

∫
B

[
ρsξ(ρ, θ)

(
∂tθB + u · ∇xθB

)
− κν(θ, t, x)

θ
∇xθ · ∇xθB

]
,

(5.25)

for all ψ ∈ C1
c ([0, T )) with ψ ≥ 0 and ∂tψ ≤ 0.

5.4 Get rid of the density dependent solid part

Let us take care the density-dependent terms in the solid part ((0, T )×B) \QT . We use [11, Lemma
4.1] (see also [19, Section 4.1.4]) to conclude that the density ρ remains “zero” on the solid part if it
was so initially, thanks to the continuity equation and the fact that density is square-integrable. Here,
we must mention that the square-integrability of density is identified from the estimate of δρβ given
by (4.58).

We also recall that, the parameters ω, ξ and ν are not involved in Ωt (t ∈ [0, T ]) as per our
extension strategy given in the beginning of Section 4.

• Since, we have set the initial data ρ0,δ to be zero in B \ Ω0, it remains zero in B \ Ωt due to [11,
Lemma 4.1]. This leads to the following weak formulation for the continuity equation upon passing
to the limit as ε→ 0,

−
∫ T

0

∫
Ωt

ρB(ρ) (∂tφ+ u · ∇xφ) +

∫ T

0

∫
Ωt

b(ρ)divxuφ =

∫
Ω0

ρ0,δB(ρ0,δ)φ(0, ·), (5.26)

for any test function φ ∈ C1
c ([0, T ) × B;R) and any b ∈ L∞ ∩ C([0,+∞)) such that b(0) = 0 and

B(ρ) = B(1) +

∫ ρ

1

b(z)

z2
.

• Using the fact ρ = 0 in B \ Ωt for any t ∈ [0, T ], the momentum equation now reads

−
∫ T

0

∫
Ωt

(
ρu · ∂tφ+ ρ[u⊗ u] : ∇xφ+ pδ(ρ, θ)divxφ

)
+

∫ T

0

∫
Ωt

S : ∇xφ−
∫ T

0

∫
Ωt

ρ∇xΨ ·φ

=

∫
Ω0

(ρu)0,δ ·φ(0, ·)−
∫ T

0

∫
B\Ωt

Sω : ∇xφ+

∫ T

0

∫
B\Ωt

aξ
3
θ4divxφ,

(5.27)

for any test function φ satisfying

φ ∈ C1
c ([0, T )× B;R3) with φ(τ, ·) · n

∣∣
Γτ

= 0 for any τ ∈ [0, T ].

• Since ρ = 0 in B \ Ωt for each t ∈ [0, T ], the weak formulation for Ψ from (4.21) simply reduces to∫ T

0

∫
Ωt

∇xΨ · ∇xφ =

∫ T

0

∫
Ωt

ρφ, (5.28)

for any test function φ ∈ C1((0, T )× B;R).
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• Next, we write the limiting entropy inequality (recall the fact that sξ(ρ, θ) = sM (ρ, θ) +
4aξ

3ρ θ
3)

−
∫ T

0

∫
Ωt

ρs(ρ, θ) (∂tφ+ u · ∇xφ)−
∫ T

0

∫
B\Ωt

4aξ
3
θ3 (∂tφ+ u · ∇xφ)

+

∫ T

0

∫
Ωt

κ(θ, t, x)

θ
∇xθ · ∇xφ+

∫ T

0

∫
B\Ωt

κν(θ, t, x)

θ
∇xθ · ∇xφ

−
∫
Ω0

ρ0,δs(ρ0,δ, θ0,δ)φ(0, ·)−
∫
B\Ω0

4aξ
3
θ30,δφ(0, ·) +

∫ T

0

∫
B
λθα−1φ

≥
∫ T

0

∫
Ωt

φ

θ

(
S : ∇xu+

κ(θ, t, x)

θ
|∇xθ|2

)
+

∫ T

0

∫
B\Ωt

φ

θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
,

(5.29)

for any test function φ ∈ C1
c ([0, T )× B) with φ ≥ 0.

• We shall now look at the ballistic energy inequality (5.25). It has the following form now.

−
∫ T

0

∫
Ωt

∂tψ

(
1

2
ρ|u|2 + ρe(ρ, θ)− ρs(ρ, θ)θB +

δ

β − 1
ρβ
)
−
∫ T

0

∫
B\Ωt

aξθ
4∂tψ

+

∫ T

0

∫
B\Ωt

4aξ
3
θ3θB∂tψ +

∫ T

0

ψ

∫
B
λθα +

∫ T

0

ψ

∫
Ωt

θB
θ

(
S : ∇xu+

κ(θ, t, x)

θ
|∇xθ|2

)
+

∫ T

0

ψ

∫
B\Ωt

θB
θ

(
Sω : ∇xu+

κν(θ, t, x)

θ
|∇xθ|2

)
≤ψ(0)

∫
Ω0

(
1

2

|(ρu)0,δ|2

ρ0,δ
+ ρ0,δe(ρ0,δ, θ0,δ)− ρ0,δs(ρ0,δ, θ0,δ)θB(0) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0)

)
+ ψ(0)

∫
B\Ω0

aξ

(
θ40,δ −

4

3
θ30,δθB

)
+

∫ T

0

ψ

∫
B
λθα−1 θB −

∫ T

0

∫
Ωt

ρu · ∂t(ψV)

−
∫ T

0

ψ

∫
Ωt

(
ρ[u⊗ u] : ∇xV − S : ∇xV + pδ(ρ, θ) divxV

)
−
∫ T

0

ψ

∫
Ωt

ρ∇xΨ ·V

+

∫ T

0

ψ

∫
B\Ωt

Sω : ∇xV −
∫ T

0

ψ

∫
B\Ωt

aξ
3
θ4divxV

−
∫ T

0

ψ

∫
Ωt

[
ρs(ρ, θ)

(
∂tθB + u · ∇xθB

)
− κ(θ, t, x)

θ
∇xθ · ∇xθB

]
−
∫ T

0

ψ

∫
B\Ωt

4aξ
3
θ3
(
∂tθB + u · ∇xθB

)
+

∫ T

0

ψ

∫
B\Ωt

κν(θ, t, x)

θ
∇xθ · ∇xθB

(5.30)
for any ψ ∈ C1

c ([0, T )) with ψ ≥ 0 and ∂tψ ≤ 0.

5.5 Passing to the limit of other parameters

In this section, we first consider the following scaling for all the parameters ω, ξ, ν, λ. Let

λ = ν
1
3 = ω

1
3 = ξ

1
6 = h for h > 0. (5.31)

5.5.1 Step 1. Bounds of the integrals in ((0, T )× B) \QT

In this step, we shall find suitable bounds of the integrals in ((0, T )× B) \QT .

• We start with the following. Recall the weak formulation (5.27) for the momentum equation and
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focus on the integrals on B \ Ωt. First, we compute∣∣∣∣∣
∫ T

0

∫
B\Ωt

aξ
3
θ4divxφ

∣∣∣∣∣ ≤ C∥divxφ∥L∞((0,T )×B)
ξ

λ
4
α

(∫ T

0

∫
B
λθα

) 4
α

≤ Cξ

λ
4
α

(
1 +

1

λ
5
7

+
( ξ2
ων

) α
α−6

) 4
α

≤ Cξ

λ
4
α

(
1 +

1

λ
20
7α

+
( ξ2
ων

) 4
(α−6)

)
≤ Cξ

λ
2
3

(
1 +

1

λ
10
21

+
( ξ2
ων

) 4
(α−6)

)
=: A1(ξ, ω, λ).

(5.32)

thanks to the bound (4.60) and using the fact that

1

λ1/α
<

1

λ1/6
since α > 6 and 0 < λ ≤ 1. (5.33)

Utilizing the scaling (5.31), we conclude

A1(ξ, ω, λ) = Ch6

(
1

h
2
3

+
1

h
8
7

+
(h12
h6

) 4
α−6

)
. (5.34)

• Secondly, we compute the following:∣∣∣∣∣
∫ T

0

∫
B\Ωt

Sω : ∇xφ

∣∣∣∣∣
≤∥∇xφ∥L∞((0,T )×B)

(∫ T

0

∫
B\Ωt

( 1√
θ
|Sω|

) 2α
2α−1

) 2α−1
2α
(∫ T

0

∫
B\Ωt

θα

) 1
2α

≤ C

λ
1
2α

(∫ T

0

∫
B\Ωt

λθα

) 1
2α

∫ T

0

∫
B\Ωt

(
1√
θ

√
|Sω : ∇xu|

√
|fω|(1 + θ)

) 2α
2α−1


2α−1
2α

≤ C

λ
1
2α

(∫ T

0

∫
B\Ωt

λθα

) 1
2α
(∫ T

0

∫
B\Ωt

1

θ
|Sω : ∇xu|

) 1
2
(∫ T

0

∫
B\Ωt

(
fω(1 + θ)

) α
α−1

)α−1
2α

≤ C

λ
1
2α

(∫ T

0

∫
B\Ωt

λθα

) 1
2α
(∫ T

0

∫
B\Ωt

1

θ
|Sω : ∇xu|

) 1
2 √

ω

[
1 +

1

λ
1
2α

(∫ T

0

∫
B\Ωt

λθα
) 1

2α

]

≤C
√
ω

λ
1
2α

(
1 +

1

λ
5
7

+
( ξ2
ων

) α
(α−6)

) 1
2α
(
1 +

1

λ
5
7

+
( ξ2
ων

) α
(α−6)

) 1
2

×[
1 +

1

λ
1
2α

(
1 +

1

λ
5
7

+
( ξ2
ων

) α
(α−6)

) 1
2α

]

≤C
√
ω

λ
1
2α

(
1 +

1

λ
5

14α

+
( ξ2
ων

) 1
2(α−6)

)(
1 +

1

λ
5
14

+
( ξ2
ων

) α
2(α−6)

)
+
C
√
ω

λ
1
α

(
1 +

1

λ
5
7α

+
( ξ2
ων

) 1
(α−6)

)(
1 +

1

λ
5
14

+
( ξ2
ων

) α
2(α−6)

)
≤C

√
ω

λ
9
14

+
C
√
ω

λ
11
21

( ξ2
ων

) 1
(α−6)

+
C
√
ω

λ
2
7

( ξ2
ων

) α
2(α−6)

+
C
√
ω

λ
1
6

( ξ2
ων

) α+2
2(α−6)

(using (5.33))

=:A2(ξ, ω, λ). (5.35)

Here, we have utilized that

|Sω| ≤
√

|Sω : ∇xu|(µω(θ) + ηω(θ)) ≤ C
√
|Sω : ∇xu||fω|(1 + θ),
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thanks to the definitions of µω(θ), ηω(θ) given by (4.1)–(4.2) and the hypothesis (1.21). Using the
same ingredients and from the expression of Sω in (4.20), we further deduce∫ T

0

∫
B\Ωt

1

θ
|Sω : ∇xu| ≤ C|fω|∥u∥2L2(0,T ;W 1,2(B,R3)).

By means of the above inequalities followed by the bounds (4.60), (4.61) and the fact ∥fω∥L∞((0,T )×B) ≤
c ω (see (4.3)), we obtained the required bound in (5.35).

Using the scaling (5.31) in (5.35), we further deduce that

A2(ξ, ω, λ) =
Ch3/2

h
9
14

+
Ch3/2

h
11
21

h6/(α−6) +
Ch3/2

h
2
7

h
6α

2(α−6) +
Ch3/2

h1/6
h

6(α+2)
2(α−6) . (5.36)

• Next, we look to the entropy inequality (5.29). We observe that∣∣∣∣∣
∫ T

0

∫
B\Ωt

4aξ
3
θ3(∂tφ+ u · ∇xφ)

∣∣∣∣∣
≤Cξ
λ

3
α

(∫ T

0

∫
B\Ωt

λθα
) 3

α

+ Cξ

∫ T

0

∫
B\Ωt

|u|2 + Cξ

∫ T

0

∫
B\Ωt

θ6

≤Cξ
λ

3
α

(∫ T

0

∫
B\Ωt

λθα
) 3

α

+ Cξ

∫ T

0

∫
B\Ωt

|u|2 + Cξ

λ
6
α

(∫ T

0

∫
B\Ωt

λθα
) 6

α

≤Cξ
λ

3
α

(
1 +

1

λ
15
7α

+
( ξ2
ων

) 3
(α−6)

)
+
Cξ

ω

(
1 +

1

λ
5
7

+
( ξ2
ων

) α
α−6

)
+
Cξ

λ
6
α

(
1 +

1

λ
30
7α

+
( ξ2
ων

) 6
(α−6)

)
≤Cξ
λ

1
2

(
1 +

1

λ
5
14

+
( ξ2
ων

) 3
(α−6)

)
+
Cξ

ω

(
1 +

1

λ
5
7

+
( ξ2
ων

) α
α−6

)
(using (5.33))

+
Cξ

λ

(
1 +

1

λ
5
7

+
( ξ2
ων

) 6
(α−6)

)
=:A3(ξ, ω, λ), (5.37)

thanks to the estimates (4.60), (4.61) and the fact that α > 6.

By means of (5.31), we deduce

A3(ξ, ω, λ) = Ch6
(

1

h
1
2

+
1

h
6
7

+
1

h
1
2

h
18

(α−6)

)
+ Ch3

(
1 +

1

h
5
7

+ h
6α

(α−6)

)
+Ch5

(
1 +

1

h
5
7

+ h
36

(α−6)

)
.

(5.38)

• The next term in the entropy inequality (5.29) in B \ Ωt satisfies the following:∣∣∣∣∣
∫ T

0

∫
B\Ωt

κν(θ, t, x)

θ
∇xθ · ∇xφ

∣∣∣∣∣
≤
(∫ T

0

∫
B\Ωt

κν(θ, t, x)

θ2
|∇xθ|2

) 1
2
(∫ T

0

∫
B\Ωt

κν(θ, t, x)|∇xφ|2
) 1

2

≤ C∥∇xφ∥L∞((0,T )×B)

(
1 +

1

λ
5
14

+
( ξ2
ων

) α
2(α−6)

)
√
ν

(∫ T

0

∫
B\Ωt

(1 + θα)

) 1
2

≤ C
√
ν

(
1 +

1

λ
5
14

+
( ξ2
ων

) α
2(α−6)

)(
1 +

1

λ
1
2

(∫ T

0

∫
B
λθα

) 1
2

)

≤ C
√
ν

(
1 +

1

λ
5
14

+
( ξ2
ων

) α
2(α−6)

)
+
C
√
ν√
λ

(
1 +

1

λ
5
7

+
( ξ2
ων

) α
(α−6)

)
=: A4(ν, ξ, ω, λ).

(5.39)

26



We further compute (thanks to the choice (5.31))

A4(ν, ξ, ω, λ) = Ch3/2
(
1 +

1

h
5
14

+ h
6α

2(α−6)

)
+ Ch

(
1 +

1

h
5
7

+ h
6α

(α−6)

)
. (5.40)

• In a similar way, we can bound the following terms appearing in the energy inequality (5.30). Indeed,
the estimates (5.32) and (5.37) yield∣∣∣∣∣

∫ T

0

∫
B\Ωt

aξ

(
θ4 − 4

3
θ3θB

)
∂tψ

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
B\Ωt

4aξ
3
θ3
(
∂tθB + u · ∇xθB

)
ψ

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

∫
B\Ωt

aξ
3
θ4divxVψ

∣∣∣∣∣ ≤ C
(
A1(ξ, ω, λ) +A3(ξ, ω, λ)

)
.

(5.41)

On the other hand, the information (5.35) and (5.39) give∣∣∣∣∣
∫ T

0

∫
B\Ωt

Sω : ∇xVψ

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

∫
B\Ωt

κν(θ, t, x)

θ
∇xθ · ∇xθBψ

∣∣∣∣∣
≤ C

(
A2(ξ, ω, λ) +A4(ν, ξ, ω, λ)

)
.

(5.42)

5.5.2 Step 2. Finding suitable estimate for the term λθα−1 in the entropy balance

In this step, we shall find a suitable bound of the term

∫ T

0

∫
B\Ωt

λθα−1φ appearing in the entropy

inequality (5.29). To do that, we need a more precise bound of the term ∥λθα∥L1((0,T )×B).

In fact, we have already computed that the integrals in B\Ωt are “small” w.r.t. all the parameters,
and as per construction there is no parameter involved in the integrals in Ωt. We shall make use of
these information to get a sharper estimate of ∥λθα∥L1((0,T )×B).

Let us first rewrite the energy inequality (5.30) in the following form: (which can be written by
using the similar strategy as we have used to obtain (4.27))∫

Ωt

(
1

2
ρ|u|2 + ρe(ρ, θ)− ρs(ρ, θ)θB +

δ

β − 1
ρβ
)
(τ, ·) +

∫ τ

0

∫
B
λθα

+

∫ τ

0

∫
Ωt

θB
θ

(
S : ∇xu+

κ(θ, t, x)

θ
|∇xθ|2

)
≤
∫
Ω0

(
1

2

|(ρu)0,δ|2

ρ0,δ
+ ρ0,δe(ρ0,δ, θ0,δ)− ρ0,δs(ρ0,δ, θ0,δ)θB(0) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0)

)

+

∫
B\Ω0

aξ

(
θ40,δ −

4

3
θ30,δθB

)
+

∫ τ

0

∫
B
λθα−1θB +

∫
Ωt

(ρu ·V)(τ, ·)

+

∣∣∣∣∣
∫ τ

0

∫
Ωt

(
ρ[u⊗ u] : ∇xV − S : ∇xV + pδ(ρ, θ) divxV + ρu · ∂tV

)∣∣∣∣∣
+

∣∣∣∣∣
∫ τ

0

∫
Ωt

[
ρs(ρ, θ)

(
∂tθB + u · ∇xθB

)
− κ(θ, t, x)

θ
∇xθ · ∇xθB

]∣∣∣∣∣
+

∣∣∣∣∣
∫ τ

0

∫
Ωt

ρ∇xΨ ·V

∣∣∣∣∣+
∣∣∣∣∣
∫ τ

0

∫
B\Ωt

Sω : ∇xV

∣∣∣∣∣+
∣∣∣∣∣
∫ τ

0

∫
B\Ωt

aξ
3
θ4divxV

∣∣∣∣∣
+

∣∣∣∣∣
∫ τ

0

∫
B\Ωt

4aξ
3
θ3
(
∂tθB + u · ∇xθB

)∣∣∣∣∣+
∣∣∣∣∣
∫ τ

0

∫
B\Ωt

κν(θ, t, x)

θ
∇xθ · ∇xθB

∣∣∣∣∣

(5.43)

for almost all τ ∈ (0, T ).
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• Now, the estimations of the terms

∫
Ωt

(ρu · V)(τ, ·),
∫ τ

0

∫
Ωt

ρ∇xΨ · V,

∫ τ

0

∫
Ωt

ρ[u ⊗ u] : ∇xV,∫ τ

0

∫
Ωt

ρu · ∂tV and

∫ τ

0

∫
B
λθα−1θB can be done in a similar fashion as previous; see (4.28), (4.29),

(4.31), (4.32) and (4.33) respectively (since all of those estimates are uniform w.r.t. λ).

• We also recall that all the terms in fluid domain QT is independent of the parameters ω, ξ, ν. In
what follows, let us estimate∫ τ

0

∫
Ωt

S : ∇xV ≤ 1

2

∫ τ

0

∫
Ωt

θB
θ
S : ∇xu+ C(V, θB)

∫ τ

0

∫
Ωt

θ

≤ 1

2

∫ τ

0

∫
Ωt

θB
θ
S : ∇xu+ C(V, a, θB)

(
1 +

∫ τ

0

∫
Ωt

aθ4
)

≤ 1

2

∫ τ

0

∫
Ωt

θB
θ
S : ∇xu+ C(V, a, θB)

(
1 +

∫ τ

0

∫
Ωt

ρe(ρ, θ)

)
, (5.44)

since aθ4 ≤ ρe(ρ, θ). Note that, the term
1

2

∫ τ

0

∫
Ωt

θB
θ
S : ∇xu can be absorbed by the associated

term in the l.h.s. of (5.43).

• In a similar way as we have obtained (4.42), here we get∣∣∣∣∣
∫ τ

0

∫
Ωt

κ(θ, t, x)

θ
∇xθ · ∇xθB

∣∣∣∣∣ ≤ C(θB). (5.45)

• Let us now recall the pressure term pδ(ρ, θ) = pM (ρ, θ) +
a

3
θ4 + δρβ and the bound of pM given by

(4.34). To this end, we find∣∣∣∣∣
∫ τ

0

∫
Ωt

pξ,δ(ρ, θ)divxV

∣∣∣∣∣ ≤ C(V)

∫ τ

0

∫
Ωt

(
δ

β − 1
ρβ + aθ4 + ρ

5
3 + θ

5
2

)
≤ C(V, p∞, a)

∫ τ

0

∫
Ωt

(
δ

β − 1
ρβ + ρe(ρ, θ) + 1

)
,

(5.46)

• Next, using the bounds (4.44)–(4.47), we deduce that∫ τ

0

∫
Ωt

ρs(ρ, θ)|u|

≤
∫ τ

0

∫
Ωt

ρ|u|+ C

∫ τ

0

∫
Ωt

ρ|u|[log θ]+ + C

∫ τ

0

aθ3|u|

≤ C(ρ0) + C

∫ τ

0

∫
Ωt

ρ|u|2 + C

ϵ

∫ τ

0

∫
Ωt

ρ2([log θ]+)2 + C(a, ϵ)

∫ τ

0

∫
Ωt

aθ4 + ϵ

∫ τ

0

∫
Ωt

(|u|2 + |u|4)

≤ C(ρ0) + C

∫ τ

0

∫
Ωt

ρ|u|2 + C(a, ϵ)

∫ τ

0

∫
Ωt

aθ4 + 2ϵ

∫ τ

0

∥u∥2W 1,2(Ωt)

≤ C(ρ0) + C

∫ τ

0

∫
Ωt

ρ|u|2 + C(a, ϵ)

∫ τ

0

∫
Ωt

ρe(ρ, θ) + 2ϵ

∫ τ

0

∥u∥2W 1,2(Ωt)

(5.47)
using the fact that ρ ≤ θ3/2 and [log θ]+ ≤ θ1/2 in the integral

∫ τ

0

∫
Ωt
ρ2([log θ]+)2. Also, we have used

that aθ4 ≤ ρe(ρ, θ) in the above estimate.

• Now, as we described in (4.38)–(4.40), here we have∫ τ

0

∥u∥2W 1,2(Ωt)
≤ C(θB)

∫ τ

0

∫
Ωt

θB
θ
S : ∇xu+ C(ρ0, θB)

∫ τ

0

∫
Ωt

ρ|u|2. (5.48)

• One can also deduce that ∣∣∣∣∣
∫
B\Ω0

aξ

(
θ40,δ −

4

3
θ30,δθB(0)

)∣∣∣∣∣ ≤ C(θ0, θB)ξ, (5.49)
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for fixed 0 < δ < 1.

• Using all the above estimates and the bounds of the terms in B \ Ωt from (5.41)–(5.42), we have
from (5.43) (by applying Grönwall’s lemma)∫

Ωt

(
1

2
ρ|u|2 + ρe(ρ, θ)− ρs(ρ, θ)θB +

δ

β − 1
ρβ
)
(τ, ·) +

∫ τ

0

∫
B
λθα

+

∫ τ

0

∥u∥2W 1,2(Ωt)
+

∫ τ

0

∫
Ωt

θB
κ(θ, t, x)

θ2
|∇xθ|2

≤C
∫
Ω0

(
1

2

|(ρu)0,δ|2

ρ0,δ
+ ρ0,δe(ρ0,δ, θ0,δ)− ρ0,δs(ρ0,δ, θ0,δ)θB(0) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0) + 1

)
+ C(θB , θ0)ξ + C

(
A1(ξ, ω, λ) +A2(ξ, ω, λ) +A3(ξ, ω, λ) +A4(ν, ξ, ω, λ)

)
,

(5.50)
for almost all τ ∈ (0, T ), where the constant C > 0 does not depend on any of the parameters λ, ω, ν, ξ.

Bounds of the terms λθα−1. Let us recall the entropy balance (5.29). The only term left to
estimate is the integral concerning λθα−1. Indeed, we have∣∣∣∣∣
∫ T

0

∫
B
λθα−1φ

∣∣∣∣∣ ≤ λ
1
α ∥φ∥L∞((0,T )×B)

(∫ T

0

∫
B
λθα

)α−1
α

≤ Cλ
1
α

(
1 + ξ +A1(ξ, ω, λ) +A2(ξ, ω, λ) +A3(ξ, ω, λ) +A4(ν, ξ, ω, λ)

)α−1
α

,

(5.51)

where the constant C > 0 is independent on the parameters λ, ξ, ω, ν, δ.

5.5.3 Passing to the limits of ω, ξ, ν, λ

Now, we are in position to pass to the limits of all the parameters ω, ξ, ν, λ together. We keep in
mind the scaling introduced in (5.31) w.r.t. h. Then, recall the points (5.32)–(5.34), (5.35)–(5.36),
(5.37)–(5.38), (5.39)–(5.40), from which it is not difficult to observe that

A1(ξ, ω, λ) = Ch6
(

1

h
2
3

+
1

h
8
7

+ h
24

(α−6)

)
→ 0 as h→ 0,

A2(ξ, ω, λ) =
Ch3/2

h
9
14

+
Ch3/2

h
11
21

h6/(α−6) +
Ch3/2

h
2
7h

6α
2(α−6)

+
Ch3/2

h1/6
h

6(α+2)
2(α−6) → 0 as h→ 0,

A3(ξ, ω, λ) = Ch6
(

1

h
1
2

+
1

h
6
7

+
1

h
1
2

h
18

(α−6)

)
+ Ch3

(
1 +

1

h
5
7

+ h
6α

(α−6)

)
+ Ch5

(
1 +

1

h
5
7

+ h
36

(α−6)

)
→ 0 as h→ 0,

A4(ν, ξ, ω, λ) = Ch3/2
(
1 +

1

h
5
14

+ h
6α

2(α−6)

)
+ Ch

(
1 +

1

h
5
7

+ h
6α

(α−6)

)
→ 0 as h→ 0.

(5.52)

Next, from the estimate (5.41), one has∫ T

0

∫
B\Ωt

aξ

(
θ4 − 4

3
θ3θB

)
∂tψ → 0 as h→ 0,∫ T

0

∫
B\Ωt

4aξ
3
θ3
(
∂tθB + u · ∇xθB

)
ψ → 0 as h→ 0,∫ T

0

∫
B\Ωt

aξ
3
θ4divxVψ → 0 as h→ 0,
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and analogously, from (5.42) we have∫ T

0

∫
B\Ωt

Sω : ∇xVψ → 0 as h→ 0,∫ T

0

∫
B\Ωt

κν(θ, t, x)

θ
∇xθ · ∇xθBψ → 0 as h→ 0,

in the energy inequality (5.30).
Also, from (5.49), one has (in the energy inequality (5.30))∫

B\Ω0

aξ

(
θ40,δ −

4

3
θ30,δθB(0)

)
→ 0 as ξ → 0

We can also show that ∫
B\Ω0

4aξ
3
θ30,δφ(0, ·) → 0 as ξ → 0,

in the entropy inequality (5.29).
Now, thanks to the estimate (5.51), and the limiting behaviors of A1, A2, A3 and A4 from (5.52),

we have ∫ T

0

∫
B
λθα−1φ→ 0 as h→ 0, (5.53)

in the entropy inequality (5.29). Similarly, the term

∫ T

0

∫
B
λθα−1θBψ in the energy estimate (5.30)

vanishes as h→ 0.

5.5.4 Resultant weak formulations.

Taking into account all the above limits of ξ, ω, ν, λ to 0 (equivalently h → 0) from the previous
subsection, we now write the weak formulations and the ballistic energy inequality for our system.

• The weak formulation of the continuity equation will be the same as (5.26) after passing to the
limits.

• The weak formulation of the momentum equation becomes (from (5.27))

−
∫ T

0

∫
Ωt

(
ρu · ∂tφ+ ρ[u⊗ u] : ∇xφ+ pδ(ρ, θ)divxφ

)
+

∫ T

0

∫
Ωt

S : ∇xφ

=

∫ T

0

∫
Ωt

ρ∇xΨ ·φ+

∫
Ω0

(ρu)0,δ ·φ(0, ·)
(5.54)

for any test function φ satisfying

φ ∈ C∞
c ([0, T ]× B;R3) with φ(τ, ·) · n

∣∣
Γτ

= 0 for any τ ∈ [0, T ].

• The weak formulation for the Poisson equation has the same expression as (5.28) after the limiting
process. So, we do not write it again.

• The entropy inequality can be written as (from (5.29))

−
∫ T

0

∫
Ωt

ρs(ρ, θ) (∂tφ+ u · ∇xφ) +

∫ T

0

∫
Ωt

κ(θ, t, x)

θ
∇xθ · ∇xφ−

∫
Ω0

ρ0,δs(ρ0,δ, θ0,δ)φ(0, ·)

≥
∫ T

0

∫
Ωt

φ

θ

(
S : ∇xu+

κ(θ, t, x)

θ
|∇xθ|2

)
,

(5.55)

for any test function φ ∈ C1
c ([0, T )× B) with φ ≥ 0.
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• The ballistic energy inequality (5.30) now reduces to the following:

−
∫ T

0

∫
Ωt

∂tψ

(
1

2
ρ|u|2 + ρe(ρ, θ)− ρs(ρ, θ)θB +

δ

β − 1
ρβ
)

+

∫ T

0

∫
Ωt

θB
θ

(
S : ∇xu+

κ(θ, t, x)

θ
|∇xθ|2

)
ψ

≤
∫
Ω0

ψ(0)

(
1

2

|(ρu)0,δ|2

ρ0,δ
+ ρ0,δe(ρ0,δ, θ0,δ)− ρ0,δs(ρ0,δ, θ0,δ)θB(0) +

δ

β − 1
ρβ0,δ − (ρu)0,δV(0)

)

−
∫ T

0

∫
Ωt

(
ρ[u⊗ u] : ∇xV − S : ∇xV + pδ(ρ, θ) divxV

)
ψ −

∫ T

0

∫
Ωt

ρu · ∂t(Vψ)

−
∫ T

0

∫
Ωt

[
ρs(ρ, θ)

(
∂tθB + u · ∇xθB

)
− κ(θ, t, x)

θ
∇xθ · ∇xθB

]
ψ −

∫ T

0

ψ

∫
Ωt

ρ∇xΨ ·V,

(5.56)

for all ψ ∈ C1
c ([0, T )) with ψ ≥ 0 and ∂tψ ≤ 0. In the above, we can simply omit the term

(
−∫ T

0

∫
B
λθαψ

)
from the l.h.s. of the energy inequality since this term is non-positive.

5.6 Conclusion of the proof: vanishing artificial pressure

In the final step, we proceed with δ → 0 in a similar way as developed in [10]; see also the book [12].
We skip the details in this paper since the arguments are by now well-understood.
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A Appendix

Lemma A.1 (Generalized Poincaré inequality). Let 1 ≤ p ≤ ∞, 0 < γ <∞, U0 > 0 and Ω ⊂ RN be
a bounded Lipschitz domain.

Then, there exists a positive constant C = C(p, γ, U0) such that

∥v∥W 1,p(Ω) ≤ C

[
∥∇xv∥Lp(Ω,RN ) +

(∫
U

|v|γ
) 1

γ

]
(A.1)

for any measurable U ⊂ Ω, |U | ≥ U0 and any v ∈W 1,p(Ω).

A formal proof of the above result is given in [12, Theorem 11.20, Chapter 11.9].

Lemma A.2 (Korn-Poincaré inequality). Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that
r is a non-negative function such that

0 < m0 ≤
∫
Ω

rdx,

∫
Ω

rγ ≤ K,

for some certain γ > 1. Then

∥v∥W 1,p(Ω,R3) ≤ C(p,m0,K)

(∥∥∥∥∇xv +∇t
xv −

2

3
divxvI

∥∥∥∥
Lp(Ω,R3)

+

∫
Ω

r|v|

)
(A.2)

for any v ∈W 1,p(Ω,R3) and 1 < p <∞.

We refer [12, Theorem 11.22, Chapter 11.10] for the proof of the above lemma.
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[13] E. Feireisl and A. Novotný. Weak-strong uniqueness property for the full Navier-Stokes-Fourier
system. Archive for Rational Mechanics and Analysis, 204:683–706, 2012.
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