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A multifluid model with chemically reacting components –
construction of weak solutions

Piotr B. Mucha, Šárka Nečasová, Maja Szlenk

Abstract
We investigate the existence of weak solutions to the multi-component system, consisting of

compressible chemically reacting components, coupled with the compressible Stokes equation for
the velocity. Specifically, we consider the case of irreversible chemical reaction and assume the
nonlinear relation between the pressure and the particular densities. These assumptions cause the
additional difficulties in the mathematical analysis, due to the possible presence of vacuum.

It is shown that there exists a global weak solution, satisfying the L∞ bounds for all the compo-
nents. Moreover, despite the lack of the regularity on the gradients, we obtain strong compactness
of densities in Lp spaces. The applied method captures the properties of the models of high gen-
erality, which admit an arbitrary number of components. Furthermore, the framework we develop
can handle models that contain both diffusing and non-diffusing elements.

keywords: compressible Stokes system, multi-component flow, weak solutions, irreversible chemical
reaction
MSC: 35Q35,76N10, 35D30

1 Description of the multifluid system

In the recent years, a significant progress has been done in the mathematical theory of mixtures, both
compressible and incompressible. The physical background for modeling of mixtures can be found in
[35], approach closer to modern understanding of continuum mechanics and thermodynamics in [36].
Let us mention also the book [16], where a general model of compressible chemically reacting mixtures
under very general conditions is analyzed from the mathematical point of view, however, only in a
small neighborhood of a given static solution. We will be more concerned about results which are not
restricted to small data. As the results differ with respect to studied complexity, we mention here for
the case of incompressible fluids the paper [37] and the book [31].

In the paper we analyze the system of N compressible, reacting fluids with densities

ϱ1, . . . , ϱN : Ω ⊂ Rd → R,

moving along a common velocity vector u : Ω → Rd. We assume the slow motion, therefore the
momentum equation is given by the Stokes equation. The pressure p depends on the vector of the
densities ϱ⃗ = (ϱ1, . . . , ϱN ). The interactions between the particular components are described by the
production rates ω1, . . . , ωN : RN

+ → R, ω1, . . . , ωN ∈ C1(RN
+ ) and dissipation is prescribed by fluxes

Fi.
The full system, incorporating all these phenomena reads

∂tϱi + div (ϱiu)− divFi = ωi(ϱ⃗ ), i = 1, . . . , N, in Ω× (0, T ),

−µ∆u−∇((µ+ λ)div u) +∇p(ϱ⃗ ) = 0, in Ω× (0, T ),
(1.1)

where we assume that µ, λ are constants such that µ > 0 and λ+ 2
3µ > 0.

The system is considered with the slip boundary conditions for u and the Neumann type constrain
for the fluxes, namely on ∂Ω× (0, T )

u · n = 0 at ∂Ω× (0, T ),

n · T(u, p) · τk + fu · τk = 0, k = 1, . . . , d− 1, at ∂Ω× (0, T ),

Fi · n = 0, i = 1, ..., N, at ∂Ω× (0, T ),

(1.2)
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where n and τk are the normal and tangent vectors respectively, f describes the friction and the stress
tensor T is given by

T(u, p(ϱ⃗ )) = 2µDu+ (λdiv u− p(ϱ⃗ ))I.

The system is finally supplemented by the set of initial data for the species’ densities

ϱi|t=0
= ϱ0,i.

The kernel of the system is the constitutive relation giving us the form of the pressure. We assume
the total pressure p is in the form

p(ϱ⃗ ) =
N∑
i=1

pi(ϱi), with pi(ϱi ) =
1

mi
ϱγii ,

where mi are molar masses of the components and γi > 1. The diffusion fluxes are depending on the
pressure. Following [16], we assume that the fluxes have the form

Fi = ∇pi −
ϱi
ϱ
∇p. (1.3)

A such form guarantees the fundamental feature of fluxes, namely
∑N

i=1 Fi = 0, and also non-negativity
of densities ρi. Regarding the reaction terms, we focus on the irreversible reactions in the form

A1 + ...+AK → C1 + ...+ CL. (1.4)

We impose the conditions on ωi so that the densities remain non-negative for non-negative initial
densities, and that the total mass of the system is preserved. To obtain the first property, we have to
assume

ωi(ϱ⃗ ) ≥ 0 for ϱi = 0 and ϱj ≥ 0, j ̸= i. (1.5)

Moreover, the latter is satisfied if
∑N

i=1 ωi(ϱ⃗ ) = 0. This, together with the fact that
∑N

i=1 Fi = 0,
ensures us that the sum of the densities ϱ =

∑N
i=1 ϱi satisfies the continuity equation

∂tϱ+ div (ϱu) = 0

and as a consequence the total mass
∫
Ω ϱ dx remains constant.

1.1 Main results

To begin with, we state the three main theorems. The first result is the following.

Theorem 1.1. Let ϱ⃗0 ∈ L∞(Ω). In addition, let us assume that all γi = 2. Then there exist

ϱ1, . . . , ϱN ∈ L∞([0,∞)× Ω),

F̄1, . . . , F̄N ∈ L2((0,∞)× Ω),

N∑
i=1

F̄i = 0

and
u ∈ L2(0,∞;H1), div u ∈ L∞((0,∞)× Ω)

solving the system

∂tϱi + div (ϱiu)− div F̄i = ωi(ϱ⃗ ), i = 1, . . . , N,

−µ∆u−∇((µ+ λ)div u) +∇p(ϱ⃗ ) = 0
(1.6)

in (0,∞) × Ω in the sense of distributions with the boundary conditions (1.2). Moreover, assuming
ϱi ∈ L2(0, T ;H1), i = 1, . . . , N , it gives us that the fluxes F̄i satisfy the relation

1

2

N∑
i=1

1

ϱi
|F̄i|2 ≤

N∑
i=1

F̄i ·
1

mi
∇ϱi a. e. in (0,∞)× Ω. (1.7)
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The inequality (1.7) can be also rewritten in the following way: if Fi = ∇pi − ϱi
ϱ ∇p, then (1.7) is

equivalent to
N∑
i=1

1

ϱi
F̄i · (F̄i − Fi) ≤ 0.

Remark 1.2. Let us discuss the above result. A careful analysis notes that the solutions obtained by
this way are not satisfactory enough. It opens rather a lot of questions, then it delivers answers. The
first question concerns the meaning of obtained fluxes F̄i. The ground regularity of solutions is too weak
to determine F̄i in terms of ρi. It is acceptable, but then Theorem 1.1 implies the question:

Question. Assume the solution constructed in Theorem 1.1 is smooth. Does F̄i correspond to Fi given
by (1.3)?

A hint to resolve this problem seems to be in (1.7), but on the other hand it looks that it is
not enough. Note that in the literature we find some positive answers to similar questions, but for
slightly or significantly different systems. In [41, 42] the author were able to control the fluxes F̄i in
terms of gradients of species, but in that framework the densities have L2 integrable gradients. It is
a consequence of a very special dependence of viscous coefficients on the density. Here, there is no
such possibility. In [28], the authors construct the weak solutions to a system of continuity equations
involving chemical reactions with a given velocity. In that case, they overcome the lack of regularity for
the components by assuming that the total density is in L2(0, T ;H1), which together with the linear
pressure provides the estimates on the gradients of the particular species. However, we are not able to
improve the regularity of the total density naturally from the equation.

To underline the nontriviality of Theorem 1.1, we need to refer to the auxillary result of the paper,
which obtains the solutions to an approximate system to (1.1). Here the exponents γi can already be
different from 2:

Theorem 1.3. Assume that pi(ϱi) = 1
mi
ϱγii , where the exponents γi satisfy the relation

2γmax < 3γmin − γS + 1 (1.8)

for γmax and γmin being the maximum and minimum of {γ1, . . . , γN} respectively, and γS = maxj∈S γj
with S denoting the components on the right hand side of (1.4). Let Fi be given by (1.3). Then, for
any T > 0, there exists at least one weak solution (ϱ1, . . . , ϱN , u) to the system

∂tϱi + div (ϱiu)− divFi = ωi(ϱ⃗ ) + ε∆ϱi, i = 1, . . . , N,

−µ∆u−∇((µ+ λ)div u) +∇p(ϱ⃗ ) = 0,
(1.9)

in [0, T ]× Ω with
ϱi|t=0

= ϱ0,i,ε ∈ C∞(Ω), ϱ0,i,ε → ϱ0,i in L2(Ω),

the Neumann boundary condition dϱi
dn = 0 on ∂Ω and the slip boundary conditions (1.2) for u. Moreover,

the obtained solution satisfies
ϱi ≥ 0, i = 1, . . . , N,

∥ϱi∥L∞((0,T )×Ω),

∥∥∥∥ 1
√
ϱi
Fi

∥∥∥∥
L2((0,T )×Ω)

,
√
ε∥ϱi∥L2(0,T ;H1) ≤ C, i = 1, . . . , N

and
∥u∥L2(0,T ;H1), ∥∇u∥L∞(0,T ;BMO) ≤ C,

where the constant C does not depend on ε or T .

Note that the above result delivers well defined objects. Gradients of species are in L2, so Fi are
well defined in terms of formula (1.7). The proof of Theorem 1.3 is based on the classical techniques.
First, we consider a suitable regularization, which makes our fluxes less degenerate, and densities better
integrable. Then starting from the Galerkin methods we prove existence of each step of approximation
scheme, obtaining the solutions to (1.9) finally. As Theorem 1.3, one can say, belongs to the classical
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theory of weak solution to compressible flows, the step to Theorem 1.1 seems to be not. We need
to take ε → 0, and then determine the limits in the equation. What is unexpected, is the strong
convergence of all densities. We prove

ϱ
(ε)
i → ρi strongly in Lp(Ω× (0,∞)). (1.10)

In order to justify the above limits we need to apply techniques of convergence adopted from [8].
Thanks to the structure of fluxes, limited in this part just to γi = 2, we are able to prove (1.10). Note
that other tools from compensated compactness theory do not fit to our problem. This points out the
nontriviality of Theorem 1.1. It is also an interesting example of the application of the Bresch & Jabin
technique, where all classical compactness methods seem to fail. Another case of the multicomponent
setting where this method becomes useful is the result of Dębiec et al. [13], concerning two-species
system modelling tumor growth.

The main difficulty in Theorem 1.1 is a possible lack of strict positivity of the particular densities.
It turns out that even though we still cannot control the gradients of the densities, assuming that all
components are bounded away from zero we can rewrite the fluxes Fi in terms of new variables, which
are already bounded in L2(0, T ;H1). We summarize this result below:

Theorem 1.4. Let pi and γi be as in Theorem 1.3. Let (ϱ⃗ε, uε) be a sequence of solutions to (1.9),
such that for every i = 1, . . . , N

ϱi,ε > c in [0, T ]× Ω,

for some c > 0. Then (ϱ⃗ε, uε) converges to a solution to (1.1), with

Fi = ∇pi −
ϱi
ϱ
∇p.

The proof is based on the fact that even though the fluxes Fi form a degenerate system, we can
rewrite them as

Fi =
N−1∑
j=1

bi,j∇qj , (1.11)

where q⃗ = (q1, . . . , qN ) is a certain projection of
(

γ1
γ1−1

p1
ϱ1
, . . . , γN

γN−1
pN
ϱN

)
on the N − 1-dimensional

space orthogonal to (1, . . . , 1) (in particular qN = −
∑N−1

j=1 qj). It is shown that in the case when
ϱ1, . . . , ϱN ̸= 0, the coefficients bi,j from the relation (1.11) form an invertible matrix, which in turn
provides an L2 bound on ∇qi. Similar approach, with a different definition of the fluxes, was considered
for example in [9, 10].

It is worth noting that our method also allows the system to contain both diffusive and non-diffusive
components. Assuming N1 is the number of diffusing elements, the full system reads

∂tϱi + div (ϱiu)− divFi = ωi(ϱ⃗ ), i = 1, . . . , N1,

∂tϱj + div (ϱju) = ωj(ϱ⃗), j = N1 + 1, . . . , N,

−µ∆u−∇((µ+ λ)div u) +∇p(ϱ⃗ ) = 0.

(1.12)

Let us now briefly explain the outline of the rest of the paper and discuss the emerging obstacles:

• In Sections 2–5, we consider the case when diffusion occurs for all the components and the most
general diffusive – non-diffusive case is shortly commented in Section 6.

• In Section 2, we present the a priori estimates for the solutions. In particular, we show that the
densities ϱi are in L∞((0, T )× Ω). The used strategy allows us to derive the required estimates
in the case where the exponents γi satisfy the relation (1.8).

• Section 3 is devoted to the construction of solutions to equation (1.9) and in consequence ends
the proof of Theorem 1.3. The next step towards the proofs of Theorems 1.1 and 1.4 is the limit
passage with ε→ 0. This final step is done Sections 4 and 5 under the assumptions of Theorem
1.1 and 1.4 respectively.
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• Section 4 contains the end of the proof of Theorem 1.1. Due to the presence of the additional
terms in the continuity equations, the standard Lions–Feireisl approach [24, 14] is not well-suited
for this framework. Instead, we are able to adapt the method of Bresch and Jabin [7, 8], based
on the Kolmogorov compatness criterion, which allows us to show the strong convergence of
the densities. However, due to the limitations of this method we need to restrict to the case
γ1 = . . . , γN = 2.

• In Section 5 we perform the final limit passage in the framework of Theorem 1.4, namely assuming
that the sequence of approximate solutions is strictly positive. In this case we again do not need
any additional assumptions on the exponents γi besides (1.8).

1.2 Bibliographical remarks

Let us begin with the seminal work by A. Fick, who summarized on diffusion matter in liquids and
formulated in one dimension relation between the molar mass flux Jmol

i , the molar concentration
of constituent Ai denoted by ci, i ∈ {1, ..., N}, the phenomenological coefficient Di (the diffusion
coefficient). Nowadays, this relation is called Fick’s first law and has a form

jmol
i = −Di∇ci. (1.13)

It was realized that such a relation is less realistic and it leads to introduce the general setting of the
Theory of irreversible processes. We can refer to De Groot and Mazur 1984, where the deficiencies
of Fick’s law are described together with a new law - the Fick-Onsager form of diffusion fluxes. The
diffusion coefficients Di are replaced by a matrix phenomenological coefficients Lij called Osanger
coefficients for diffusion. Another approach is the Maxwell-Stefan equations - in the so-called diffusive
approximation, which ignore the acceleration of the relative motion, see Dreyer, Druet, Gajewski and
Guhlke (2020) or Standart, Taylor and Krishna (1975). For more details concerning modelling, we
refer to paper by Bothe, Druet [3].

Maxwell - Stefan type models were studied from the engineering point of view but there are only a
few results concerning the mathematical theory. Recently such problems attract a lot of attention, see
works of [2, 6, 21]. The mass-based Maxwell-Stefan approach to one-phase multicomponent reactive
mixture is analyzed [18]. It is shown the local well-posedness in Lp setting and generate a local semiflow
on its natural state space. A self-contained introduction to this approach can be find in [20]. Analysis
of cross-diffusion systems for fluid mixtures driven by a pressure gradient was analysis for weak and
strong solution by Druet, Jungel [12].

Many mathematical results have been proved in direction of multicomponent diffusion systems
where the component share the same velocity and the Maxwell-Stefan system is coupled with the
Navier-Stokes equations. The model for the compressible chemically reacting mixtures developed by
Giovangigli in [16] in the context of the Fick law were considered in [15]; for non-diagonal mobility
matrix in [41]. The paper [27] includes the case when the mean viscosity depends on the total density
and fulfils the Bresch - Desjardin relation. The steady problems (with non-diagonal mobility matrix)
were studied in [40, 17, 32]. More complex situation is considered in [10]. Strong solution of such type
of model was investigated by Piasecki, Shibata, Zatorska [33, 34]. Let us also mention the recent work
of Druet concerning the singular limit for multicomponent models, [11].

The above results in principle concern the situation, where the chemical reaction is reversible.
Concerning the irreversible reaction, from the mathematical point of view not much is known. A fast
irreversible reaction of type (2.1) was investigated by Bothe & Pierre in the case of reaction-diffusion
system [5], where it appears between species A and B with similar concentrations. Purely numerical
and experimental results, involving irreversible reactions, were obtained for example in [4, 19, 22].

2 A priori estimates

Now we will proceed with a priori estimates. We assume for simplicity that N = 3 and that we deal
with a reaction of the type

A+B → C, (2.1)
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however from the proof it is clear that the reasoning can be adjusted to a one-way reaction with
arbitrary number of components. For the one-way reaction, the production rates have fixed signs. The
ones corresponding to reagents are negative, whereas the ones corresponding to products are positive.
In the special case (2.1), ωi = −αiϱ1ϱ2 for i = 1, 2 and ω3 = (α1 + α2)ϱ1ϱ2, where αi > 0 depend on
the reaction rate and molecular weights of A and B respectively. The above example can be easily
generalized for the case

A1 + ...+AK → C1 + ...+ CL,

with suitable definitions of ωi’s.
Throughout this section we will assume that (ϱ⃗, u) is a sufficiently smooth solution to (1.1). The

main goal is to show that

Lemma 2.1. (ϱ⃗, u) satisfies

ρi ≥ 0,

∫
Ω
ρ(t) dx =

∫
Ω
ϱ0 dx,

N∑
i=1

∥ϱi∥L∞([0,T ]×Ω) +

N∑
i=1

∥∥∥∥ 1
√
ϱi
Fi

∥∥∥∥
L2([0,T ]×Ω)

+ ∥div u∥L∞([0,T ]×Ω) ≤ C,

where the constant C depends only on ∥ϱ⃗0∥L∞(Ω).

Proof. The proof is splited into four steps.
Step I. First, let us prove the basic properties of the solution: mass conservation and non-negativity

of all densities. As the total density satisfies the continuity equation, after integrating over Ω we get
d
dt

∫
Ω ϱ dx = 0, and thus

∫
Ω
ϱ(t, x)dx =

∫
Ω
ϱ0 dx for all t > 0.

We will now show that ϱi ≥ 0 for all i = 1, . . . , N. For a fixed i, let Ω−
i (t) = {x ∈ Ω : ϱi(t, x) < 0}.

Integrating the equation on ϱi over Ω−
i , we get∫

Ω−
i (t)

∂tϱidx =

∫
∂Ω−

i (t)

(
−ϱiu+ γiϱ

γi−1
i ∇ϱi −

ϱi
ϱ
∇p
)
· n−

i (t)dS +

∫
Ω−

i (t)
ωidx,

where n−
i (t) is the outer normal vector to Ω−

i (t). To deal with the last term let us observe:

Remark 2.2. The assumption (1.5) allows us to extend ωi to a function ω̃i on RN in such a way that
ω̃i(ϱ⃗ ) ≥ 0 whenever ϱi < 0 and ω̃i is locally Lipschitz on RN . If ωi = 0 for ϱi = 0, we simply put
ω̃i = 0 for ϱi < 0. If ωi > 0 for ϱi = 0 and ϱj ≥ 0, then we first extend continuously the function
ωi|ϱi=0

so that ωi|ϱi=0
≥ 0 for all ϱj ∈ RN , j ̸= i. Then, for ϱi < 0 we just put ω̃i(ϱ1, . . . , ϱi, . . . , ϱN ) =

ωi(ϱ1, . . . , 0, . . . ϱN ). For simplicity we will just denote ω̃i by ωi.

Therefore, as by Remark 2.2 ωi ≥ 0 for ϱi ≤ 0 and ϱi|
∂Ω−

i
(t)

= 0, we get that

− d

dt

∫
Ω
ϱ−i dx ≥ 0,

where ϱ−i ≥ 0 is the negative part of ϱi (ϱi = ϱ+i − ϱ−i ). In consequence,∫
Ω
ϱ−i (t, x)dx ≤

∫
Ω
ϱ−i (0, x)dx = 0,

which yields ϱ−i (t, ·) ≡ 0.
Note that we are able to perform the above calculations provided that the set Ω−

i (t) is of class
C1. However, from the implicit function theorem and Sard’s theorem [38] it follows that we can find
δn > 0, δn → 0 with n → ∞, such that Ω−

i,δn
(t) := {x ∈ Ω : ϱi(t, x) < δn} have the desired regularity.

Then the assertion follows by taking n→ ∞.

6



Step II. In this part we construct the basic energy estimate, in terms of the point-wise bound on
the density and the production rates ωi’s. The goal is to show that

∫ T

0

∫
Ω
µ|∇u|2 + (λ+ µ)(div u)2 dxdt+ sup

t∈[0,T ]

N∑
i=1

1

γi − 1

∫
Ω
pi(ϱi)dx+

N∑
i=1

∫ T

0

∫
Ω

1

ϱi
|Fi|2dxdt

≤
N∑
i=1

1

γi − 1

∫
Ω
pi(ϱ0,i)dx+ C∥ϱ∥γ3−1

L∞([0,T ]×Ω). (2.2)

Note that in the general case (1.4), instead of γ3 we need to put γS , which is the maximum of exponents
corresponding to C1, . . . , CL.

Testing the momentum equation by u, we get

µ

∫
Ω
|∇u|2dx+ (λ+ µ)

∫
Ω
(div u)2dx+

∫
Ω
∇p · u = 0.

To obtain the desired estimate, we need to deal with the last term. We have∫
Ω
∇p · udx =

d

dt

N∑
i=1

1

γi − 1

1

mi

∫
Ω
ϱγii dx+ 2

N∑
i=1

γi
γi − 1

1

mi

∫
Ω
∇ϱγi−1

i · Fi dx− 2
N∑
i=1

γi
mi

∫
Ω
ϱγi−1
i ωi dx.

The choice of the fluxes Fi leads to the following important relation:

N∑
i=1

γi
mi

∇ϱγi−1
i · Fi =

N∑
i=1

1

ϱi

(
1

mi
∇ϱγii − ϱi

ϱ
∇p
)
· Fi =

N∑
i=1

1

ϱi
|Fi|2. (2.3)

Moreover, as ω1 and ω2 are nonpositive, we have

−2
N∑
i=1

γi
mi

∫
Ω
ϱγi−1
i ωi dx ≥ −2

γ3
m3

∫
Ω
ϱγ3−1
3 ω3 dx.

In conclusion, our energy estimates read

µ

∫
Ω
|∇u|2 dx+ (λ+ µ)

∫
Ω
(div u)2 dx+

d

dt

N∑
i=1

1

γi − 1

∫
Ω
pi(ϱi) dx

+
N∑
i=1

∫
Ω

1

ϱi
|Fi|2dx− γ3

m3

∫
Ω
ϱ3ω3(ϱ⃗ ) dx ≤ 0

and after integrating over time and estimating the last term by

C∥ϱ∥γ3−1
L∞([0,T ]×Ω)

∫ T

0

∫
Ω
ω3(ϱ⃗ )dxdt,

we get the inequality

∫ T

0

∫
Ω
µ|∇u|2 + (λ+ µ)(div u)2 dxdt+ sup

t∈[0,T ]

N∑
i=1

1

γi − 1

∫
Ω
pi(ϱi)dx+

N∑
i=1

∫ T

0

∫
Ω

1

ϱi
|Fi|2dxdt

≤
N∑
i=1

1

γi − 1

∫
Ω
pi(ϱ0,i)dx+ C∥ϱ∥γ3−1

L∞([0,T ]×Ω)

∫ T

0

∫
Ω
ω3(ϱ⃗ )dxdt.

However, the straightforward integration of the equation on ρ3 yields∫ T

0

∫
Ω
ω3(ϱ) dxds =

∫
Ω
ϱ3(T, x)dx−

∫
Ω
ϱ0,3(x)dx ≤ C
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and the inequality (2.2) follows.
Step III. To obtain the estimate for the density, it is required to study the effective viscous flux

(2µ+ λ)div u = p(ϱ⃗ )− 1

|Ω|

∫
Ω
p(ϱ⃗ )dx+ d, (2.4)

where ∆d = 0 in Ω. The formula (2.4) is derived by a projection on the potential part of the momentum
equation (1.1).

The structure of the slip conditions allows to split the field into two parts: the divergence-free and
potential ones, denoted by Pu and Qu respectively. Altogether we have u = Pu+Qu, where

rotPu = α, divPu = 0,
n · Pu = 0,

divQu = div u, rotQu = 0 in Ω,
n · Qu = 0 at ∂Ω. (2.5)

The rotation α = rotu can be determined separately from the equation on the vorticity:

−µ∆α = 0 in Ω,
α · τ1 = (2χ1 − f/µ)u · τ1, α · τ2 = (f/µ− 2χ2)u · τ2 at ∂Ω,
(α·n)
∂n = −(α · τ1)τ1 − (α · τ2)τ2 at ∂Ω.

(2.6)

The form of boundary conditions in (2.6) is a consequence of fine properties of slip boundary conditions,
described in more details, e.g. in [25, 29].

The theory of maximal regularity estimate for the elliptic problems yields

∥α∥L∞(0,T ;W 1
p )

≤ C∥u|∂Ω∥L∞(0,T ;W
1−1/p
p )

, (2.7)

see details in [26]. In consequence, as ∥Pu∥L∞(0,T ;W 2,p) ≤ C∥rotu∥L∞(0,T ;W 1,p), we conclude that

∥Pu∥L∞(0,T ;W 2,p) ≤ C∥u∥L∞(0,T ;W 1,p). (2.8)

We will now estimate the harmonic function d from the equation (2.4). We have ∇d = P∆Pu and∫
d(x, t) dx = 0. Then from (2.8) we get

∥d∥L∞(0,T ;W 1,p) ≤ C∥Pu∥L∞(0,T ;W 2,p) ≤ C∥u∥L∞(0,T ;W 1,p). (2.9)

Using (2.2), we are able to estimate different norms of p in terms of ∥ϱ∥L∞((0,T )×Ω). In particular,
we have

sup
t∈[0,T ]

∫
Ω
p(ϱ⃗ ) dx ≤ C + C∥ϱ∥γ3−1

L∞([0,T ]×Ω). (2.10)

Moreover, the structure of the pressure implies that

1

Nmmax
ϱγmin ≤ p(ϱ⃗ ) ≤ ϱγmax

N∑
i=1

1

mi
, (2.11)

where γmin and γmax are respectively the minimum and maximum of {γ1, . . . , γN}. In consequence,
since by the interpolation of Lp spaces∫

Ω
|p(ϱ⃗ )|pdx ≤ ∥p(ϱ⃗ )∥p−1

L∞(Ω)

∫
Ω
p(ϱ⃗ )dx ≤ C∥ϱ∥γmax(p−1)

L∞(Ω) (1 + ∥ϱ∥γ3−1
L∞([0,T ]×Ω)),

we get that
∥p(ϱ⃗ )∥L∞(0,T ;Lp) ≤ C + C∥ϱ∥γ̃L∞((0,T )×Ω)

for γ̃ = γmax − γmax−γ3+1
p . Therefore from the elliptic estimates we also have

∥u∥L∞(0,T ;W 1,p) ≤ C + C∥ϱ∥γ̃L∞((0,T )×Ω)
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and if p > 3, then using (2.9) we get

∥d∥L∞((0,T )×Ω) ≤ C∥d∥L∞(0,T ;W 1,p) ≤ C + C∥ϱ∥γ̃L∞((0,T )×Ω). (2.12)

Note that if γ1, . . . , γN satisfy the relation (1.8), then there exists such p > 3 that γ̃ < γmin.
Moreover, as γmin ≤ γ3 ≤ γmax, it also follows that γ3 − 1 < γmin.

Step IV. The last step finishes our proof of Lemma 2.1. The key point of the estimate requires a
special point-wise conditional estimate controlling the sign of the divergence of "bad" regions.

Lemma 2.3. If ϱ(t, x) > ∥ϱ∥L∞((0,T )×Ω) − 1 and ∥ϱ∥L∞((0,T )×Ω) is sufficiently large, then

div u(t, x) > 0.

Proof. Combining the estimates (2.10), (2.11) and (2.12) with (2.4), we obtain

div u(t, x) = p(ϱ⃗(t, x))− 1

|Ω|

∫
Ω
p(ϱ⃗ )dx− d

≥ Cϱ(t, x)γmin − C∥ϱ∥γ3−1
L∞((0,T )×Ω) − ∥d∥γ̃L∞((0,T )×Ω)

≥ C
((

∥ϱ∥L∞((0,T )×Ω) − 1
)γmin − ∥ϱ∥γ̃L∞((0,T )×Ω) − ∥ϱ∥γ3−1

L∞((0,T )×Ω)

)
.

As γmin > max(γ̃, γ3 − 1), the function z 7→ (z − 1)γmin − zγ̃ − zγ3−1 is strictly positive for sufficiently
large z and thus we arrive to the desired conclusion.

To finish the proof of Lemma 2.1, let us assume that ∥ϱ∥L∞((0,T )×Ω) > ∥ϱ0∥L∞(Ω) +1 (otherwise C
from the statement of the Lemma is just equal to ∥ϱ0∥L∞(Ω) + 1) and let k > ∥ϱ∥L∞((0,T )×Ω) − 1. We
test the continuity equation on ϱ by (ϱ− k)+, where f+ denotes the positive part of f . Then

1

2

∫
Ω
(ϱ− k)2+(t, x)dx− 1

2

∫
Ω
(ϱ0 − k)2+dx =

∫ t

0

∫
Ω
ϱu · ∇(ϱ− k)+dxds

= −
∫ t

0

∫
Ω
div u

(
1

2
(ϱ− k)2+ + k(ϱ− k)+

)
dxds.

Therefore using the fact that ϱ0 < k, we obtain

sup
τ∈[0,t)

∫
Ω
(ϱ− k)2+(x, τ)dx ≤ −

∫ t

0

∫
Ω
(ϱ− k)+(ϱ+ k)div udxds.

Now if ∥ϱ∥L∞((0,T )×Ω) is large enough, then from Lemma 2.3 the right hand side is non-positive.
In consequence (ϱ− k)+ = 0 a.e. in (0, T )× Ω) and thus

ϱ < ∥ϱ∥L∞((0,T )×Ω) − 1 a.e. in [0, T ]× Ω.

This leads to contradiction, and in consequence ∥ϱ∥L∞((0,T )×Ω) is bounded by some constant depending
only on ∥ϱ⃗0∥L∞(Ω). Thus Lemma 2.1 is proved.

Remark 2.4. As ∥ϱ∥L∞((0,T )×Ω) ≤ C, by the relation (2.4) ∥div u∥L∞((0,T )×Ω) ≤ C as well. Therefore
from the elliptic estimates ∥∇Qu∥L∞(0,T ;BMO) ≤ C, and by (2.8)

∥∇u∥L∞(0,T ;BMO) ≤ C. (2.13)

3 Existence of an approximated system

The goal of this section is to prove Theorem 1.3. Similarly as in Section 2, the proof is valid for
different γi’s under the constraint (1.8), however for simplicity we restrict themselves to the case
γ1 = · · · = γN = 2. Note that from the Neumann condition on ϱi it also follows that Fi · n = 0 for
i = 1, . . . , N .
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Proof of Theorem 1.3: Let us introduce another level of approximation, depending on a small

parameter δ. We improve the integrability of the densities, by adding the terms δϱ̃β−2ϱi for ϱ̃ =

N∑
i=1

|ϱi|

and β sufficiently large. We also introduce the truncation of ϱi, defined as

ϱδi := sgn(ϱi)min

(
|ϱi|,

1

δ

)
.

Then we put

ωδ
i (ϱ⃗) := ωi

(
ϱδ1, . . . , ϱ

δ
N

)
and ϱ̃δi := min

(
|ϱi|,

1

δ

)
= |ϱδi |.

There is also the need to approximate the pressure and the diffusion fluxes. We put

pδi (ϱi) =
2

mi

∫ ϱi

0
min

(
|w|, 1

δ

)
dw (3.1)

and define F δ
i as

F δ
i = ∇pδi (ϱi)−

ϱ̃δi
ϱ̃δ

∇pδ, where ϱ̃δ =
N∑
k=1

∣∣∣ϱδk∣∣∣ and pδ =
N∑
k=1

pδk(ϱi). (3.2)

Note that F δ
i satisfy the same necessary properties as Fi, namely

N∑
i=1

F δ
i = 0 and

N∑
i=1

1

mi
∇ϱi · F δ

i =

N∑
i=1

|F δ
i |2

|ϱδi |
≥ 0.

Finally, the (δ, ε)-approximative system reads

∂tϱi + div (ϱiu)− divF δ
i + δϱ̃β−2ϱi = ωδ

i (ϱ⃗ ) + ε∆ϱi, i = 1, . . . , N,

−µ∆u−∇((µ+ λ)div u) +∇p(ϱ⃗ ) = 0.
(3.3)

3.1 The Galerkin approximation

We will obtain the solutions to (3.3) using the Galerkin method.

Lemma 3.1. The equation (3.3) admits a global weak solution in [0, T ]× Ω.

Proof. Let {wk}k∈N ∈ C∞(Ω) and {vk}k∈N ∈ (C∞(Ω))d be the suitable orthogonal bases of H1(Ω)
and (H1(Ω))d respectively. Define

ϱi,n =

n∑
k=1

ai,k(t)wk and un =

n∑
k=1

bk(t)vk,

where the coefficients ai,k satisfy the system of n×N ODEs

ȧi,k =
n∑

l,m=1

ai,lbm

∫
Ω
wlvm∇wkdx−

∫
Ω
F δ
i,n · ∇wkdx

− εai,k

∫
Ω
|∇wk|2dx− δ

n∑
l=1

ai,l

∫
Ω
ϱ̃β−2
n wlwkdx+

∫
Ω
ωδ
i (ϱ⃗n)wkdx (3.4)

and bk is given by

bk =

∫
Ω
p(ϱ⃗n)div vkdx (3.5)
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for ϱ⃗n = (ϱ1,n, . . . , ϱN,n). Since the functions

(z1, . . . , zN ) 7→ zizj∑N
k=1 zk

, i, j = 1, . . . , N

are Lipschitz continuous on {z ∈ RN : zk ≥ 0 ∀k=1,...,N}, the terms
∫
Ω
F δ
i ·∇wkdx are locally Lipschitz

with respect to ai,k ∈ RN×n. Therefore, plugging the relation (3.5) into (3.4), we see that the right
hand side of (3.4) is locally Lipschitz and from the Picard-Lindelöf theorem there exists a local in time
solution to (3.4), corresponding to the initial condition

ai,k(0) = ⟨ϱ0,i,ε, wk⟩L2 .

To obtain the solution on a whole interval [0, T ], we need to find the global estimate. We test the
momentum equation by un and integrate by parts. Then, we get

µ

∫ T

0

∫
Ω
|∇un|2dxdt+ sup

t∈[0,T ]

N∑
i=1

1

mi

∫
Ω
ϱ2i,ndx

+
N∑
i=1

∫ T

0

∫
Ω

|F δ
i |2

ϱ̃δi,n
dxdt+ 2δ

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱ̃β−2
n ϱ2i,ndxdt

+2ε
N∑
i=1

1

mi

∫ T

0

∫
Ω
|∇ϱi,n|2dxdt− 2

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱi,nω

δ
i (ϱ⃗n)dxdt ≤

N∑
i=1

1

mi

∫
Ω
ϱ20,i,εdx.

As ωδ
i ∈ L∞((0, T )× Ω), from the Cauchy inequality we have∫ T

0

∫
Ω
ϱi,nω

δ
i dx ≤ η∥ϱi,n∥2L∞(0,T ;L2) +

CT

η
∥ωδ

i ∥2L∞((0,T )×Ω).

Therefore choosing η sufficiently small, we get the estimates

∥∇un∥2L2((0,T )×Ω) +
N∑
i=1

(
∥ϱi,n∥2L∞(0,T ;L2) + ε∥∇ϱi,n∥2L2((0,T )×Ω) + δ∥ϱi,n∥βLβ((0,T )×Ω)

)
≤ C + C(δ)T. (3.6)

In particular, we get the bound on
∑N

i=1

∑n
k=1 a

2
i,k(t), which provides that we can extend the solution

to a whole interval [0, T ]. The inequality (3.6) also provides the estimates uniform in n, which allow
us to extract weakly convergent subsequences (indexed again by n)

un, ϱ1,n, . . . , ϱN,n ⇀ u, ϱ1, . . . , ϱN in L2(0, T ;W 1,2).

From the estimate on ∥ϱi,n∥Lβ((0,T )×Ω) it follows that ∥pn∥Lβ/2((0,T )×Ω) ≤ C. Therefore, by the mo-
mentum equation, we deduce also

∥∇pn∥Lβ/2(0,T ;W−1,β/2) + ∥un∥Lβ/2(0,T ;W 1,β/2) ≤ C.

In particular, if β is large enough, then

∥ϱi,nun∥L2((0,T×Ω), ∥F δ
i,n∥L2((0,T )×Ω) ≤ C.

In consequence, we obtain the uniform bound on ∥∂tϱi,n∥L2(0,T ;H−1) and from the Aubin-Lions Lemma

ϱi,n → ϱi in L2((0, T )× Ω).

This allows us to pass to the limit with n → ∞ in the weak formulation of (3.3) and in consequence
obtain a weak solution.
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3.2 Nonnegativity of the components

We will now prove that for (ϱ1, . . . , ϱN , u) solving (3.3), we have

ϱi ≥ 0 a. e. ∀i=1,...,N .

Note that the low regularity of ϱi does not allow us to replicate the argument from Section 2. Instead,
we will obtain the result by choosing a suitable test function. Let ϱi = ϱ+i − ϱ−i , where ϱ+i , ϱ

−
i ≥ 0

denote the positive and negative part of ϱi. We test the equation on ϱi by the function ψi = (l+ϱ−i )
α for

l, α > 0 small. Since ϱi is in L2(0, T ;W 1,2), ψi ∈ L2(0, T ;W 1,2) as well. First, observe that if φη(t, x)
is the standard mollifier over time and space, then for (ϱ−i )η = ϱ−i ∗φη we have (l+(ϱ−i )η)

α → (l+ϱ−i )
α

in L2(0, T ;H1) and ∂t(ϱ−i )η ⇀
∗ ∂tϱ

−
i in L2(0, T ;H−1). Thus∫ t

0

∫
Ω
∂tϱ

−
i (l + ϱ−i )

αdxds = lim
η→0

∫ t

0

∫
Ω
∂t(ϱ

−
i )η(l + (ϱ−i )η)

αdxds

=
1

α+ 1
lim
η→0

∫ t

0

∫
Ω
∂t(l + (ϱ−i )η)

α+1dxds

=
1

α+ 1
lim
η→0

[∫
Ω
(l + (ϱ−i )η(t, x))

α+1dx−
∫
Ω
(l + (ϱ−i )η(0, x))

α+1dx

]
=

1

α+ 1

[∫
Ω
(l + ϱ−i (t, x))

α+1dx−
∫
Ω
(l + ϱ−i (0, x))

α+1dx

]
.

Similarly, ∫ t

0

∫
Ω
lα∂tϱ

+
i dxds = lα

(∫
Ω
ϱ+i (t, x)dx−

∫
Ω
ϱ+i (0, x)dxdt

)
.

Therefore ∫ t

0

∫
Ω
∂tϱiψidxds =l

α

∫ t

0

∫
Ω
∂tϱ

+
i dxds−

∫ t

0

∫
Ω
∂tϱ

−
i (l + ϱ−i )

αdxds

=lα
(∫

Ω
ϱ+−(t, x)dx−

∫
Ω
ϱ+i (0, x)dxdt

)
− 1

α+ 1

[∫
Ω
(l + ϱ−i (t, x))

α+1dx−
∫
Ω
(l + ϱ−i (0, x))

α+1dx

]
.

Moreover,

−ε
∫ t

0

∫
Ω
∆ϱiψidxds = εα

∫ t

0

∫
Ω
(l + ϱ−i )

α−1(∇ϱ+i −∇ϱ−i ) · ∇ϱ
−
i dxds

= −εα
∫ t

0

∫
Ω
(l + ϱ−i )

α−1|∇ϱ−i |
2dxds

and

−
∫ t

0

∫
Ω
divF δ

i ψidxds =α

∫ t

0

∫
Ω

(
1

mi
ϱ̃δi∇(ϱ+i − ϱ−i )−

ϱ̃δi
ϱ̃δ

∇pδ
)
(l + ϱ−i )

α−1∇ϱ−i dxds

=− α

∫ t

0

∫
Ω

1

mi
(l + ϱ−i )

α−1ϱ̃δi |∇ϱ−i |
2dxds

− α

∫ t

0

∫
Ω
(l + α−

i )
α−1min(ϱ−i ,

1
δ )

ϱ̃δ
∇pδ · ∇ϱ−i dxds.

Employing the fact that ϱ−i (0, x) = 0 and combining the above calculations with the remaining terms,
we get
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−1

α+ 1

∫
Ω
(l + ϱ−i (t, ·))

α+1dx+
lα+1|Ω|
α+ 1

+lα
∫
Ω
ϱ+i (t, ·)dx− lα

∫
Ω
ϱ0,i,εdx

−εα
∫ t

0

∫
Ω
(l + ϱ−i )

α−1|∇ϱ−i |
2dxds

+δ

(
lα
∫ t

0

∫
Ω
ϱ̃β−2ϱ+i dxds−

∫ t

0

∫
Ω
ϱ̃β−2ϱ−i (l + ϱ−i )

αdxds

)
−α

∫ t

0

∫
Ω
(l + ϱ−i )

α−1ϱiu · ∇ϱ−i dxds

− α

mi

∫ t

0

∫
Ω
(l + ϱ−i )

α−1ϱ̃δi |∇ϱ−i |
2dxds

−α
∫ t

0

∫
Ω
(l + ϱ−i )

α−1min(ϱ−i ,
1
δ )

ϱ̃δ
∇pδ · ∇ϱ−i dxds =

∫ t

0

∫
Ω
ωδ
i (ϱ⃗ )(l + ϱ−i )

αdxds.

Neglecting the nonpositive terms, we get

−1

α+ 1

∫
Ω
(l + ϱ−i (t, ·))

α+1dx+
lα+1|Ω|
α+ 1

+lα
∫
Ω
ϱ+i (t, ·)dx− lα

∫
Ω
ϱ0,i,εdx

−α
∫ t

0

∫
Ω
(l + ϱ−i )

α−1ϱ−i u · ∇ϱ−i dxds

+δlα
∫ t

0

∫
Ω
ϱ̃β−2ϱ+i dxds

−α
∫ t

0

∫
Ω
(l + ϱ−i )

α−1min(ϱ−i ,
1
δ )

ϱ̃δ
∇pδ · ∇ϱ−i dxds ≥

∫ t

0

∫
Ω
ωδ
i (l − ϱi)

α
1ϱi≤0 dxds

+ lα
∫ t

0

∫
Ω
ωδ
i 1ϱi≥0 dxds.

First, we want to pass to the limit with l → 0. For small α we have

(l + ϱ−i )
α−1ϱ−i =

ϱ−i
l + ϱ−i

(ϱ−i )
α ≤ ϱ−i

and

(l + ϱ−i )
α−1min(ϱ−i ,

1

δ
) =

min(ϱ−i ,
1
δ )

l + ϱ−i
(l + ϱ−i )

α ≤ 1

δ
.

Therefore from the dominated convergence theorem∫ t

0

∫
Ω
(l + ϱ−i )

α−1ϱ−i u · ∇ϱ−i dxds→
∫ t

0

∫
Ω
(ϱ−i )

αu · ∇ϱ−i dxds

and ∫ t

0

∫
Ω
(l + ϱ−i )

α−1min(ϱ−i ,
1
δ )

ϱ̃δ
∇pδ · ∇ϱ−i dxds→

∫ t

0

∫
Ω
(ϱ−i )

α−1min(ϱ−i ,
1
δ )

ϱ̃δ
∇pδ · ∇ϱ−i dxds

as l → 0. After the limit passage, we obtain

−1

α+ 1

∫
Ω
(ϱ−i (t, ·))

α+1dx− α

∫ t

0

∫
Ω
(ϱ−i )

αu · ∇ϱ−i dxds

−α
∫ t

0

∫
Ω
(ϱ−i )

α−1min(ϱ−i ,
1
δ )

ϱ̃δ
∇pδ · ∇ϱ−i dxds ≥

∫ t

0

∫
Ω
ωδ
i |ϱi|α1ϱi≤0dxds.
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Now we want to pass to the limit with α → 0. As the integrals
∫ t

0

∫
Ω
(ϱ−i )

αu · ∇ϱ−i dxds and∫ t

0

∫
Ω
(ϱ−i )

α−1min(ϱ−i ,
1
δ )

ϱ̃δ
∇pδ · ∇ϱ−i dxds are bounded independently of α, we get

∫
Ω
ϱ−i (t, ·)dx ≤ −

∫ t

0

∫
Ω
ωδ
i 1ϱi≤0dxds.

From the assumptions on ωi and Remark 2.2, for ϱi ≤ 0 we have ωδ
i ≥ 0. Therefore∫

Ω
ϱ−i (t, ·)dx ≤ 0.

However, ϱ−i ≥ 0 by definition, and thus ϱ−i (t, ·) ≡ 0 for all t ∈ [0, T ].

3.3 Boundedness of ϱ

It turns out that all components are bounded, and their L∞ bound does not depend on ε and δ. As
we already know that ϱi ≥ 0 for all i = 1, . . . , N , it is sufficient to prove the L∞ estimate for the total
density ϱ =

∑N
i=1 ϱi. Since ϱ = ϱ̃, the total density satisfies the equation

∂tϱ+ div (ϱu)− ε∆ϱ+ δϱβ−1 = 0.

First, let us show that ϱ ∈ L∞((0, T )× Ω). Recall the following result:

Proposition 3.2. Let h ∈ Lp(0, T ;Lq) for 1 < p, q <∞. Then the solution to

∂tϱ− ε∆ϱ = h, ϱ|t=0
= ϱ0

satisfies the estimate

ε1−1/p∥ϱ∥L∞(0,T ;W 2−2/p,q) + ∥∂tϱ∥Lp(0,T ;Lq) + ε∥ϱ∥Lp(0,T ;W 2,q) ≤ C
(
ε1−1/p∥ϱ0∥W 1,q + ∥h∥Lp(0,T ;Lq)

)
.

(3.7)
Moreover, if h = divw, w ∈ Lp(0, T ;Lq) and p ≥ 2, then

ε1−1/p∥ϱ∥L∞(0,T ;Lq) + ε∥∇ϱ∥Lp(0,T ;Lq) ≤ C
(
ε1−1/p∥ϱ0∥Lq + ∥w∥Lp(0,T ;Lq)

)
. (3.8)

Note that if β is large enough, then in particular ϱu ∈ Lp(0, T ;Lq) for some suitable p ≥ 2 and
q > 3. Therefore from Proposition 3.2, we have

ϱ ∈ L∞(0, T ;Lq).

Then, using the property (2.11) from the elliptic estimates we have p ∈ L∞(0, T ;Lq/2) and thus we
get that

u ∈ L∞(0, T ;W 1,q/2).

In consequence,
ϱu ∈ L∞(0, T ;Lr)

for some r > 3. Therefore applying the De Giorgi technique (see e.g. [39], Chapter 4), we get that

ϱ ∈ L∞((0, T )× Ω).

We will now prove that in fact the L∞ bound on ϱ depends only on ∥ϱ0∥L∞(Ω), using the reasoning
analogous as in Section 2. Similarly as for the a priori estimates, we have

−2
N∑
i=1

1

mi

∫
Ω
ϱiω

δ
i dx ≥ −2

1

m3

∫
Ω
ϱ3ω

δ
3 dx.
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Therefore analogously we get the bound

µ

∫ T

0

∫
Ω
|∇u|2dxdt+ sup

t∈[0,T ]

N∑
i=1

1

mi

∫
Ω
ϱ2i dx+

N∑
i=1

∫ T

0

∫
Ω

|F δ
i |2

ϱ̃δi
dxdt

+2δ

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱβ−2ϱ2i dxdt+ ε

N∑
i=1

2

mi

∫ T

0

∫
Ω
|∇ϱi|2dxdt

≤
N∑
i=1

1

mi

∫
Ω
ϱ20,i,εdx+ C∥ϱ3∥L∞((0,T )×Ω)

∫ T

0

∫
Ω
ωδ
3dx.

(3.9)

As ∫
Ω
ϱ(t, x)dx+ δ

∫ t

0

∫
Ω
ϱβ−1dx =

∫
Ω
ϱ0,εdx,

we also have∫ T

0

∫
Ω
ωδ
3dxdt =

∫
Ω
ϱi(T, ·)dx−

∫
Ω
ϱi,0,εdx+ δ

∫ T

0

∫
Ω
ϱβ−2ϱidds ≤

∫
Ω
ϱ0,εdx ≤

∫
Ω
ϱ0dx. (3.10)

Now we repeat Step IV of the proof of Lemma 2.1. If ∥ϱ∥L∞((0,T )×Ω) ≤ ∥ϱ0∥L∞(Ω) + 1, then the
assertion follows. If ∥ϱ∥L∞((0,T )×Ω) > ∥ϱ0∥L∞(Ω) + 1, then let k > ∥ϱ∥L∞((0,T )×Ω) − 1. We test the
equation on ϱ by (ϱ− k)+. We have

1

2

∫
Ω
(ϱ− k)2+(t, x)dx− 1

2

∫
Ω
(ϱ0 − k)2+dx

+ε

∫ t

0

∫
Ω
|∇(ϱ− k)+|2dxds+ δ

∫ t

0

∫
Ω
ϱβ−1(ϱ− k)+dxds =

∫ t

0

∫
Ω
ϱu · ∇(ϱ− k)+dxds

= −
∫ t

0

∫
Ω
div u

(
1

2
(ϱ− k)2+ + k(ϱ− k)+

)
dxds.

Therefore using the fact that ϱ0 < k, we obtain∫
Ω
(ϱ− k)2+dx ≤ −

∫ t

0

∫
Ω
(ϱ− k)+(ϱ+ k)div udxds.

Combining (3.9) and (3.10), we obtain the estimate

∥p∥L∞(0,T ;L1) ≤ C + C∥ϱ∥L∞((0,T )×Ω).

Then we proceed in the same way as in the proof of Lemma 2.3 to get divu1ϱ>k > 0 for k sufficiently
large and in consequence

∥ϱ∥L∞((0,T )×Ω) ≤ C,

where C is the absolute constant independent from ε and δ, given in terms of the L∞ norm of ρ0.

3.4 Limit passage with δ → 0.

Having the uniform L∞ bounds on ϱ and nonnegativity, we know that for sufficiently small δ

ωδ
i = ωi, ϱδi = ϱ̃δi = ϱi and F δ

i = Fi, i = 1, . . . , N.

Moreover, using (3.9) we get the estimates

∥∇u∥2L2((0,T )×Ω) +
N∑
i=1

(
ε∥∇ϱi∥2L2((0,T )×Ω) + δ∥ϱi∥βLβ((0,T )×Ω)

+

∥∥∥∥ 1
√
ϱi
Fi

∥∥∥∥
L2((0,T )×Ω)

)
≤ C,
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where C does not depend on ε and δ. In consequence, we also get

∥∂tϱi∥L2(0,T ;H−1) ≤ C.

Therefore, if (ϱ⃗ε,δ, uε,δ) is a solution to (3.3), then up to a subsequence

ϱ1,ε,δ, . . . , ϱN,ε,δ, uε,δ ⇀ ϱ1,ε, . . . , ϱN,ε, uε in L2(0, T ;W 1,2)

and from the Aubin–Lions lemma

ϱi,ε,δ → ϱi,ε in L2((0, T )× Ω).

Thus passing to the limit in the weak formulation (note that the terms
∫ T
0

∫
Ω ϱ

β−2
ε,δ ϱi,ε,δφ dxdt for

φ ∈ C∞
0 ((0, T )×Ω) are bounded independently of δ) we obtain the weak solution to the system (1.9).

4 End of the proof of Theorem 1.1. The Bresch & Jabin method

The main goal of this section is to perform the final limit passage with ε → 0 in context of Theorem
1.1. We will show that if ϱ⃗k = (ϱ1,k, ϱ2,k, . . . , ϱN,k) and uk solve the system (1.9) with ε = 1

k and
γ1 = · · · = γN = 2, then for any i = 1, . . . , N the sequence (ϱi,k)n∈N is compact in L2((0, T ) × Ω).
From the calculations in Section 3, we have the following estimates uniform in k:

N∑
i=1

∥ϱi,k∥L∞((0,T )×Ω) +
1√
k

N∑
i=1

∥∇ϱi,k∥L2((0,T )×Ω) + ∥div uk∥L∞((0,T )×Ω) + ∥∇uk∥L∞(0,T ;BMO) ≤ C.

Let us now formulate the main result of this section:

Lemma 4.1. Let ϱ⃗0 ∈ L∞(Ω) and (ϱ1,k, . . . , ϱN,k, uk) be a sequence of solutions to (1.9) with ε = 1
k

and initial conditions ϱ0,i,k → ϱ0,i in L2(Ω) with k → ∞. Then (ϱi,k)k∈N is compact in L2((0, T )×Ω)
for any i = 1, . . . , N .

Proof. We use the following version of the compactness criterion from [7, 8]:

Proposition 4.2. Let ϱk be a sequence uniformly bounded in Lp((0, T )× Ω) for 1 ≤ p <∞. Assume
that {Kh}h>0 is a family of positive, bounded functions on R3, satisfying:

• ∀η>0 sup
h>0

∫
R3

Kh(x)1{|x|>η}dx <∞,

• ∥Kh∥L1 → ∞ as h→ 0.

If ∂tϱk is uniformly bounded in Lq(0, T ;W−1,p) for some q > 1 and

lim sup
k

∫ T

0

1

∥Kh∥1

∫∫
Ω×Ω

Kh(x− y)|ϱk(t, x)− ϱk(t, y)|p dxdydt→ 0 as h→ 0,

then {ϱk}k∈N is compact in Lp((0, T )×Ω). Conversely, if {ϱk}k∈N is compact in Lp((0, T )×Ω), then
the above quantity converges to 0.

Following [7], we choose the functions Kh in the following way:
Let Kh : R3 → R be given by

Kh(x) =
1

(|x|+ h)3
for |x| ≤ 1

2

and let Kh be independent of h for |x| > 2
3 , zero outside the ball B(0, 34) and such that Kh ∈ C∞(R3).

Denote also Kh = Kh
∥Kh∥1 . An important property of Kh is that ∥Kh∥1 ∼ | log h|. To use the Proposition

4.2, we will estimate the quantity

Rh(t) =

N∑
i=1

Ri
h(t) =

N∑
i=1

1

∥Kh∥1
1

mi

∫∫
Ω×Ω

Kh(x− y)|ϱi,k(t, x)− ϱi,k(t, y)|2dxdy.
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We need to estimate d
dtRh(t). In the following calculations we drop the index k where it does not raise

confusion, and use the notation fx := f(t, x).
From the equation on ϱi, we get

∂t(ϱ
x
i − ϱyi )

2 = 2(ϱxi − ϱyi )(−div (ϱxi u
x) + div (ϱyi u

y) + divF x
i − divF y

i + ωi(ϱ⃗
x)− ωi(ϱ⃗

y))

= −div x(u
x(ϱxi − ϱyi )

2)− div y(u
y(ϱxi − ϱyi )

2)− (div ux − div uy)(ϱxi + ϱyi )(ϱ
x
i − ϱyi )

+ 2(ϱxi − ϱyi )(div xF
x
i − div yF

y
i ) + 2(ϱxi − ϱyi )(ωi(ϱ⃗

x)− ωi(ϱ⃗
y)).

Therefore
d

dt
Ri

h(t) =
2

∥Kh∥1
1

mi

∫∫
Ω×Ω

∇Kh(x− y)(ux − uy)|ϱxi − ϱyi |
2dxdy

− 2

mi

∫∫
Ω×Ω

Kh(x− y)(div ux − div uy)(ϱxi − ϱyi )ϱ
x
i dxdy

+
2

mi

∫∫
Ω×Ω

Kh(x− y)(ϱxi − ϱyi )(div xF
x
i − div yF

y
i )dxdy

+
2

mi

∫∫
Ω×Ω

Kh(x− y)(ϱxi − ϱyi )(ωi(ϱ⃗
x)− ωi(ϱ⃗

y))dxdy

− 4ε

mi

∫∫
Ω×Ω

Kh(x− y)|∇ϱxi |2dxdy

=Ai
1 +Ai

2 +Ai
3 +Ai

4 +Ai
5.

The last term has a good sign, so we just estimate it by 0. The first term is estimated in the same
way as in [7]. By definition of Kh, we have

|∇Kh(z)| ≤
CKh(z)

|z|
.

Using the inequality
|f(x)− f(y)| ≤ C|x− y|(M |∇f |(x) +M |∇f |(y)),

where M denotes the maximal function, we arrive at

Ai
1 ≤ C

∫∫
Ω×Ω

Kh(x− y)(M |∇u|x +M |∇u|y)|ϱxi − ϱyi |
2dxdy

and in consequence

Ai
1 ≤ C

∫∫
Ω×Ω

Kh(x− y)M |∇u|x|ϱxi − ϱyi |
2dxdy.

We will now estimate Ai
2. From (2.4) and the L∞ estimates on ϱ⃗, we get

|div ux − div uy| ≤ |dx − dy|+ |p(ϱ⃗ x)− p(ϱ⃗ y)|

≤ |dx − dy|+ C

N∑
j=1

|ϱxj − ϱyj |.

Therefore, by the Cauchy inequality and the L∞ bound on ϱi,

Ai
2 ≤ C

∫∫
Ω×Ω

Kh(x− y)

|dx − dy|+ C

N∑
j=1

|ϱxj − ϱyj |

 |ϱxi − ϱyi |dxdy

≤ C

∫∫
Ω×Ω

Kh(x− y)

1

2
|dx − dy|2 + N + 1

2
|ϱxi − ϱyi |

2 +
C

2

N∑
j=1

|ϱxj − ϱyj |
2

dxdt

≤ CRh(t) + C

∫∫
Ω×Ω

Kh(x− y)|dx − dy|2dxdy.
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From (2.9) we know that
∥∇d∥L∞(0,T ;L2) ≤ C.

Denoting by Ed an H1(R3) extension of d, we have∫∫
Ω×Ω

Kh(x− y)|dx − dy|2dxdy ≤
∫∫

R3×R3

Kh(z)|Ed(t, y + z)− Ed(t, y)|2dydz

≤
∫ 1

0

∫
R3

Kh(z)|z|2
∫
R3

|∇Ed(t, y + sz)|2dydzds

≤ ∥∇d∥2L∞(0,T ;L2)

1

| log h|

∫
R3

Kh(z)|z|2dz.

In conclusion, since sup
h

∫
R3

Kh(z)|z|2dz ≤ C, we get

Ai
2 ≤ CRh(t) +

C

| log h|
.

For the term Ai
4, as ωi is locally Lipschitz, we get

Ai
4 ≤

1

mi

∫∫
Ω×Ω

Kh(x− y)(ϱxi − ϱyi )
2dxdy +

∫∫
Ω×Ω

Kh(x− y)(ωi(ϱ⃗
x)− ωi(ϱ⃗

y))2dxdy

≤ Ri
h(t) + C

N∑
j=1

∫∫
Ω×Ω

Kh(x− y)(ϱxj − ϱyj )
2dxdy

and in consequence
N∑
i=1

Ai
4 ≤ CRh(t).

Finally, we estimate Ai
3, the key point of the proof of Theorem 1.1. Here we find the place where

we are obliged to assume all γi = 2. We have

1

mi

∫∫
Ω×Ω

Kh(x− y)(ϱxi − ϱyi )(div xF
x
i − div yF

y
i )dxdy

=− 1

mi

∫∫
Ω×Ω

F x
i · ∇x

(
Kh(x− y)(ϱxi − ϱyi )

)
dxdy +

1

mi

∫∫
Ω×Ω

F y
i · ∇y

(
Kh(x− y)(ϱxi − ϱyi )

)
dxdy

=− 1

mi

∫∫
Ω×Ω

F x
i · ∇Kh(x− y)(ϱxi − ϱyi )dxdy −

1

mi

∫∫
Ω×Ω

Kh(x− y)F x
i · ∇ϱxi dxdy

− 1

mi

∫∫
Ω×Ω

F y
i · ∇Kh(x− y)(ϱxi − ϱyi )dxdy −

1

mi

∫∫
Ω×Ω

Kh(x− y)F y
i · ∇ϱyi dxdy

=− 2

∫∫
Ω×Ω

Kh(x− y)F x
i · 1

mi
∇ϱxi dxdy.

Using the relation
N∑
i=1

Fi ·
1

mi
∇ϱi =

N∑
i=1

1

ϱi
|Fi|2 ≥ 0

we arrive at
N∑
i=1

Ai
3 ≤ 0.

Combining all estimates, we arrive at

d

dt
Rh(t) ≤ C

N∑
i=1

∫∫
Ω×Ω

Kh(x− y)M |∇ux|(ϱxi − ϱyi )
2dxdy

+ CRh(t) +
C

| log h|
.
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For the first term, as the maximal function is bounded in BMO (cf. Theorem 4.2 in [1]), we use
the following logarithmic inequality from [30]:∫

Rd

f(x)g(x)dx ≤ C∥f∥BMO∥g∥L1

(
| log ∥g∥L1 + log(1 + ∥g∥L∞)

)
applied to M |∇ux| and

∫
Ω
Kh(x− y)(ϱxi − ϱyi )

2dy extended by 0 outside Ω. We get

∫∫
Ω×Ω

Kh(x− y)M |∇ux|(ϱxi − ϱyi )
2dxdy

≤ C∥∇u∥BMORi
h(t)

(
| logRi

h(t)|+ log(1 + C∥ϱi∥2L∞)
)
.

In conclusion, using the uniform bounds on ϱi,k and ∇uk and integrating over time, we obtain the
following inequality

Rh(t)−Rh(0) ≤ C
N∑
i=1

∫ t

0
Ri

h(τ)(1 + | logRi
h(τ)|)dτ + CT | log h|−1.

Using properties of the function | log x| and the fact that x(| log x|+1) is concave for small x, we finally
arrive at

Rh(t)−Rh(0) ≤ C

∫ t

0
Rh(τ)(1 + | logRh(τ)|)dτ + C| log h|−1.

Then
lim sup
k→∞

sup
t
Rh(t) → 0 as h→ 0,

by the standard comparison criterion and the following Proposition (with ε = | log h|−1):

Proposition 4.3. Let

0 ≤ xε(t) ≤ xε(0) + ε+

∫ t

0
xε(| lnxε|+ 1)dτ

with xε(0) → 0 as ε→ 0. Then sup
t∈[0,T ]

xε(t) → 0 as ε→ 0.

Proof. Denote yε(t) = xε(0) + ε+

∫ t

0
xε(| lnxε|+ 1)dτ . As the function x(| lnx|+ 1) is increasing, we

have
ẏε = xε(| lnxε|+ 1) ≤ yε(| ln yε|+ 1).

Therefore from the standard comparison criterion for ODEs we have

xε(t) ≤ yε(t) ≤ zε(t),

where zε solves
żε = zε(| ln zε|+ 1), zε(0) = xε(0) + ε.

However, it is now easy to see that sup
t∈[0,T ]

zε(t) → 0 as ε → 0. Indeed, as zε(t) ≥ zε(0), we get

| ln zε(t)| ≤ | ln zε(0)|. Then from Gronwall’s lemma

zε(t) ≤ zε(0)e
t+t| ln zε(0)| = et(zε(0))

1−t.

Therefore supt∈[0,t1] zε(t) → 0 for some t1 < 1. Note that in particular zε(t1) → 0, hence we are able
to repeat these estimates on the consecutive intervals, and in consequence obtain the convergence on
any finite interval [0, T ].

To finish the proof of Lemma 4.2, it is enough to show that the sequence (∂tϱi,k)k∈N is bounded in
L2(0, T ;W−1,p). It is however an immediate consequence of the uniform bounds on ϱ⃗k and uk.
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Using Lemma 4.1 and the estimates from Theorem 1.3, we are able to extract a sequence converging
to a solution to (1.6). If (ϱ1,ε, . . . , ϱN,ε, uε) is a solution to (1.9), then from the uniform estimates we
have up to a subsequence

uε ⇀ u in L2(0, T ;H1)

and
Fi,ε ⇀ F̄i in L2((0, T )× Ω)

for some functions F̄i ∈ L2((0, T )× Ω). Moreover, for any φ ∈ C∞
0 ((0, T )× Ω),

ε

∫ T

0

∫
Ω
∇ϱi · ∇φ dx→ 0.

By Lemma 4.1, we also have strong convergence

ϱi,ε → ϱi in L2((0, T )× Ω),

which allows us to pass to the limit in the weak formulation.
In the end, let us show that if the solution to (1.6) has higher regularity, then it satisfies the relation

(1.7). At the level of approximated equation (1.9), testing the continuity by 1
mi
ϱi,εφ for some smooth,

positive φ ∈ C∞
0 ((0, T )× Ω) yields

− 1

mi

∫ T

0

∫
Ω
ϱ2i,εφt dxdt+

1

2mi

∫ T

0

∫
Ω
ϱ2i,εdiv (φuε) dxdt−

1

mi

∫ T

0

∫
Ω
ϱ2i,εuε · ∇φ dxdt

+

∫ T

0

∫
Ω
φFi,ε ·

1

mi
∇ϱi,ε dxdt+

1

mi

∫ T

0

∫
Ω
ϱi,εFi,ε · ∇φ dxdt

+
ε

mi

∫ T

0

∫
Ω
|∇ϱi,ε|2φ dxdt+

ε

mi

∫ T

0

∫
Ω
ϱi,ε∇ϱi,ε · ∇φ dxdt =

1

mi

∫ T

0

∫
Ω
ϱi,εωi(ϱ⃗ε)φ dxdt.

Summing the above equality over i and using (2.3), we get

−
∫ T

0

∫
Ω
pεφt dxdt+

1

2

∫ T

0

∫
Ω
pεdiv (φuε)dxdt−

∫ T

0

∫
Ω
pεuε · ∇φ dxdt

+
N∑
i=1

∫ T

0

∫
Ω

1

ϱi,ε
|Fi,ε|2dxdt+

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱi,εFi,ε · ∇φ dxdt

+ ε

N∑
i=1

∫ T

0

∫
Ω
ϱi,ε∇ϱi,ε · ∇φ dxdt ≤

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱi,εωi(ϱ⃗ε)φ dxdt.

(4.1)

Using the strong convergence of ϱi,ε, weak convergences of Fi,ε, uε and weakly lower semicontinuity of
convex functions, after passing to the limit in (4.1) we get

−
∫ T

0

∫
Ω
pφt dxdt+

1

2

∫ T

0

∫
Ω
pdiv (φu)dxdt−

∫ T

0

∫
Ω
pu · ∇φ dxdt

+

N∑
i=1

∫ T

0

∫
Ω

1

ϱi
|F̄i|2φ dxdt+

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱiF̄i · ∇φ dxdt ≤

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱiωiφ dxdt.

(4.2)
Now let us test the limit equation by ϱiφ, provided that ∇ϱi ∈ L2((0, T ) × Ω). Performing the

analogous calculations, we arrive at the equality

−
∫ T

0

∫
Ω
pφt dxdt+

1

2

∫ T

0

∫
Ω
pdiv (φu)dxdt−

∫ T

0

∫
Ω
pu · ∇φ dxdt

+

N∑
i=1

∫ T

0

∫
Ω
φF̄i ·

1

mi
∇ϱi dxdt+

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱiF̄i · ∇φ dxdt =

N∑
i=1

1

mi

∫ T

0

∫
Ω
ϱiωiφ dxdt.

(4.3)
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After substracting (4.3) from (4.2), we get∫ T

0

∫
Ω

N∑
i=1

(
1

2

1

ϱi
|F̄i|2 − F̄i ·

1

mi
∇ϱi dxdt

)
φ dxdt ≤ 0

for any positive φ ∈ C∞
0 ((0, T ) × Ω) and in consequence we obtain the inequality (1.7) a. e. in

(0, T )× Ω.

5 End of the proof of Theorem 1.4

In this section we perform the limit passage ε → 0 with the additional assumption that all densities
are bounded away from zero. First, note that we can rewrite Fi in a following way:

Fi =

N∑
j=1

Ci,j∇
1

mj
ϱ
γj
j =

N∑
j=1

C̃i,j
γj

γj − 1

1

mj
∇ϱγj−1

j ,

where

C̃i,j =


ϱi
ϱ

∑
k ̸=i

ϱk, i = j,

−ϱiϱj
ϱ
, i ̸= j

is symmetric.
Using the above relation we can write F1, . . . , FN−1 as a combination of ∇q1, . . . ,∇qN−1 for

qi =
γi

γi − 1

1

mi
ϱγi−1
i − γi+1

γi+1 − 1

1

mi+1
ϱ
γi+1−1
i+1 ,

namely

Fi =

N−1∑
j=1

bi,j∇qj

with

bi,j =


−ϱi
ϱ

j∑
k=1

ϱk, j < i,

ϱi
ϱ

N∑
k=j+1

ϱk, j ≥ i

By performing elementary operations on the matrix B = (bi,j)i,j=1,...,N−1, it is easy to see that detB =
1
ϱϱ1 . . . ϱN . Indeed, adding the verses 2, . . . , N − 1 to the first one and dividing it by ϱN

ϱ , we get the
matrix 

ϱ1 ϱ1 + ϱ2 . . . . . .
∑N−1

k=1 ϱk
−ϱ1ϱ2

ϱ
ϱ2
ϱ

∑N
k=3 ϱk . . . . . . ϱ2

ϱ ϱN

−ϱ1ϱ3
ϱ −ϱ3

ϱ

∑2
k=1 ϱk . . . . . . ϱ3

ϱ ϱN
...

... . . . . . .
...

−ϱ1ϱN−1

ϱ −ϱN−1

ϱ

∑2
k=1 ϱk . . . . . .

ϱN−1

ϱ ϱN


Now to the i-th verse we add the first one multiplied by ϱi

ϱ . After that operation, we obtain the
triangular matrix with ϱ1, ϱ2, . . . , ϱN−1 on the diagonal. In conclusion

detB =
ϱN
ϱ

· ϱ1 . . . ϱN−1

as we claimed.
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In consequence, the matrix B is invertible whenever ϱ1 . . . ϱN ̸= 0 and if ϱ1 . . . ϱN ≥ c for some
c > 0, then

N−1∑
i=1

|∇qi|2 ≤ C

N−1∑
i=1

|Fi|2

for some constant C depending on c and B−1. In particular, from the L2 bound on Fi we get

N−1∑
i=1

∥∇qi∥L2((0,T )×Ω) ≤ C.

Now, let us show the Lipschitz estimate on ϱ1, . . . , ϱN with respect to q1, . . . , qN−1, ϱ. Let

G(z1, . . . , zN ) =



γ1
γ1 − 1

1

m1
zγ1−1
1 − γ2

γ2 − 1

1

m2
zγ2−1
2

γ2
γ2 − 1

1

m2
zγ2−1
2 − γ3

γ3 − 1

1

m3
zγ3−1
3

...
γN−1

γN−1 − 1

1

mN−1
z
γN−1−1
N−1 − γN

γN − 1

1

mN
zγN−1
N

z1 + · · ·+ zN


.

Then
(q⃗, ϱ) = G(ϱ⃗ ).

We will now prove that G is invertible. First, let us show two auxillary results:

Proposition 5.1. detDG(z⃗) ̸= 0 for any z⃗ ∈ U := {z⃗ ∈ RN : z1, . . . , zN > 0}.

Proof. We have

DG(z⃗ ) =


a1 −a2 0 . . . 0
0 a2 −a3 . . . 0
... . . .

. . . . . .
...

0 . . . 0 aN−1 −aN
1 . . . . . . . . . 1


for ai = γi

mi
zγi−2
i . By elementary operations, we can transform this matrix into

a1 −a2 0 . . . 0
0 a2 −a3 . . . 0
... . . .

. . . . . .
...

0 . . . 0 aN−1 −aN
0 . . . . . . 0 1 + aN

∑N−1
j=1

1
aj


Therefore

detDG(z⃗) =

N∑
i=1

∏
j ̸=i

aj > 0

for z1, . . . , zN > 0

In the next Proposition we analyze the codomain of G. For simplicity we assume that γi
γi−1

1
mi

= 1,
otherwise we can additionally rescale the variables to get the same result. For clarity, below we present
the precise formulation for only 3 components, however we can proceed analogously for arbitrary N .
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Proposition 5.2 (For N = 3). G(U) ⊆ V := {(s1, s2, s3) : s3 > g(s1, s2)}, with

g(s1, s2) =


(−s1)1/α2 + (−s1 − s2)

1/α3 , (s1, s2) ∈ I1

s
1/α1

1 + (−s2)1/α3 , (s1, s2) ∈ I2

(s1 + s2)
1/α1 + s

1/α2

2 , (s1, s2) ∈ I3

for αi = γi − 1 and
I1 = {s1 < 0, s1 + s2 < 0},
I2 = {s1 > 0, s2 < 0},
I3 = {s2 > 0, s1 + s2 > 0}

Proof. It is enough to examine the behavior of G at ∂U . We have

G(0, z2, z3) =

 −zα2
2 ,

zα2
2 − zα3

3 ,
z2 + z3

 .
Therefore using the parametrisation s1 = −zα2

2 , s2 = zα2
2 − zα3

3 we see that

z2 + z3 = |s1|1/α2 + (|s1| − s2)
1/α3 .

Moreover, since z2, z3 ≥ 0, we have (s1, s2) ∈ I1. Proceeding analogously for the remaining components
of ∂U , we get that G(∂U) is a graph of a function g.

Note that in the case of arbitrary N analogous calculations show that the function g has a form

g(s1, . . . , sN−1) =
i−2∑
j=1

 i−1∑
l=j

sl

1/αj

+ s
1/αi−1

i−1 + (−si)1/αi +
N∑

j=i+2

(
−

j−1∑
l=i

sl

)1/αj

for (s1, . . . , sN−1) ∈ Ii, where

Ii =


i−1∑
l=j

sl ≥ 0, j = 1, . . . , i− 1, and
k∑
l=i

sl ≤ 0, k = i, . . . , N − 1

 .

The above propositions allows us to conclude invertibility of G. By Proposition 5.1 G is a local
diffeomorphism. Then, since V is simply connected and G : U → V is proper, by the Hadamard’s
theorem (see e.g. Theorem 6.2.8 in [23]), G is invertible.

Since G is a diffeomorphism, we know that

ϱ⃗ = G−1(q⃗, ϱ)

is locally Lipschitz. Therefore in particular

|p(ϱ⃗(t, x))− p(ϱ⃗(t, y))| ≤ C|ϱ(t, x)− ϱ(t, y)|+ C

N−1∑
j=1

|qj(t, x)− qj(t, y)|. (5.1)

We will use the above information to first show the compactness of the total density again via
Bresch & Jabin method (note that in this case (∂tϱi,ε) is also bounded in L2(0, T ;W−1,p) for each i).
Let Kh be as in Section 4 and define

Rh(t) =

∫∫
Ω×Ω

Kh(x− y)|ϱ(t, x)− ϱ(t, y)|2dxdy.

By analogous calculations as in the previous section, we have
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d

dt
Rh(t) =

2

∥Kh∥1

∫∫
Ω×Ω

∇Kh(x− y)(ux − uy)|ϱx − ϱy|2dxdy

− 2

∫∫
Ω×Ω

Kh(x− y)(div ux − div uy)(ϱx − ϱy)ϱxdxdy

− 4ε

mi

∫∫
Ω×Ω

Kh(x− y)|∇ϱxi |2dxdy

=A1 +A2 +A3.

Then similarly as before

A1 ≤ C

∫∫
Ω×Ω

Kh(x− y)M |∇u|x|ϱx − ϱy|2dxdy

and
A2 ≤ C

∫∫
Ω×Ω

Kh(x− y)(|dx − dy|+ |px − py|)|ϱx − ϱy|dxdy.

Using (5.1) and Young inequality, we can further estimate A2 by

A2 ≤ C

∫∫
Ω×Ω

Kh(x− y)

|dx − dy|2 +
N−1∑
j=1

|qxj − qyj |
2

 dxdy + CRh(t).

We have ∫∫
Ω×Ω

Kh(x− y)|dx − dy|2dxdy ≤
∥∇d∥2L2

| log h|

∫
R3

Kh(z)|z|2dz

and similarly ∫∫
Ω×Ω

Kh(x− y)|qxj − qyj |
2dxdy ≤

∥∇qj∥2L2

| log h|

∫
R3

Kh(z)|z|2dz.

Then, since the integral
∫
R3 Kh(z)|z|2dz is bounded independently of h, we get

A2 ≤ CRh(t) +
C

| log h|

∥∇d∥2L2(Ω) +

N−1∑
j=1

∥∇qj∥2L2(Ω)

 .

In conclusion,
d

dt
Rh(t) ≤C

∫∫
Ω×Ω

Kh(x− y)M |∇ux|(ϱx − ϱy)2dxdy + CRh(t)

+
C

| log h|

∥∇d∥2L2(Ω) +

N−1∑
j=1

∥∇qj∥2L2(Ω)


and after applying the logarithmic inequality from [30] and integrating over time, we end up with

Rh(t)−Rh(0) ≤ C

∫ t

0
Rh(τ)(1 + | logRh(τ)|)dτ +

C

| log h|

∥∇d∥2L2(0,T ;L2) +

N−1∑
j=1

∥∇qj∥2L2(0,T ;L2)


≤ C

∫ t

0
Rh(τ)(1 + | logRh(τ)|)dτ +

C

| log h|
.

Then, proceeding in the same way as in Section 4, we arrive at

lim sup
k→∞

sup
t
Rh(t) → 0 as h→ 0.

24



In conclusion, the sequence (ϱε) is compact in L2((0, T ) × Ω). Now, from the higher space regularity
of qj , we can extract compactness of all particular densities as well. For each i we simply put∫ T

0

∫∫
Ω×Ω

Kh(x− y)|ϱi,ε(t, x)− ϱi,ε(t, y)|2dxdydt

≤C
∫ T

0

∫∫
Ω×Ω

Kh(x− y)|ϱε(t, x)− ϱε(t, y)|2dxdydt

+ C

N−1∑
j=1

∫ T

0

∫∫
Ω×Ω

Kh(x− y)|qj,ε(t, x)− qj,ε(t, y)|2dxdydt

≤C
∫ T

0

∫∫
Ω×Ω

Kh(x− y)|ϱε(t, x)− ϱε(t, y)|2dxdydt

+
C

| log h|

N−1∑
j=1

∥∇qj,ε∥2L2((0,T )×Ω)

and then the compactness of (ϱi,ε) follows immediately from Proposition 4.2.

6 The general diffusing/non-diffusing case

In the last section, we briefly present the necessary modifications for the system (1.12). In that case,
we need to divide the total density and the pressure into two parts, where the first part depends only
on the diffusive components. In other words, p = p(1) + p(2) and ϱ = ϱ(1) + ϱ(2), where

p(1) =

N1∑
i=1

pi(ϱi), ϱ(1) =

N1∑
i=1

ϱi

and N1 is the number of diffusive components. With such decomposition of p and ϱ, we define the
fluxes only in terms of the first N1 components, namely

Fi = ∇pi −
ϱi

ϱ(1)
∇p(1), i = 1, . . . , N1.

Note that with the above definition we preserve the important properties of Fi’s. In consequence, we
are able to repeat the arguments from Sections 2 and 3 and derive the existence of solutions to the
approximate system

∂tϱi + div (ϱiu)− divFi = ωi(ϱ⃗ ) + ε∆ϱi, i = 1, . . . , N1,

∂tϱj + div (ϱju) = ωj(ϱ⃗ ) + ε∆ϱj , j = N1 + 1, . . . , N,

−µ∆u−∇((µ+ λ)div u) +∇p(ϱ⃗ ) = 0

(6.1)

in the same way as before. To apply the reasoning from Section 4, we can perform the Bresch & Jabin
argument together for all the components. Defining

Rh(t) =

N∑
i=1

Ri
h(t) =

N∑
i=1

1

∥Kh∥1
1

mi

∫∫
Ω×Ω

Kh(x− y)|ϱi,k(t, x)− ϱi,k(t, y)|2dxdy

and computing d
dtRh, it is clear that for the non-diffusing components the equivalents of the terms A1,

A2, A4 and A5 can be dealt with in the same manner, whereas A3 is just equal to 0. In consequence,
the computations from Section 4 give the strong convergence of densities for both diffusing and non-
diffusing components.
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