INSTITUTE OF MATHEMATICS

Piotr B. Mucha

Šárka Nečasová
Maja Szlenk

Preprint No. 37-2023

A multifluid model with chemically reacting components construction of weak solutions

Piotr B. Mucha, Šárka Nečasová, Maja Szlenk

Abstract

We investigate the existence of weak solutions to the multi-component system, consisting of compressible chemically reacting components, coupled with the compressible Stokes equation for the velocity. Specifically, we consider the case of irreversible chemical reaction and assume the nonlinear relation between the pressure and the particular densities. These assumptions cause the additional difficulties in the mathematical analysis, due to the possible presence of vacuum.

It is shown that there exists a global weak solution, satisfying the L^{∞} bounds for all the components. Moreover, despite the lack of the regularity on the gradients, we obtain strong compactness of densities in L^{p} spaces. The applied method captures the properties of the models of high generality, which admit an arbitrary number of components. Furthermore, the framework we develop can handle models that contain both diffusing and non-diffusing elements.

keywords: compressible Stokes system, multi-component flow, weak solutions, irreversible chemical reaction
MSC: 35Q35,76N10, 35D30

1 Description of the multifluid system

In the recent years, a significant progress has been done in the mathematical theory of mixtures, both compressible and incompressible. The physical background for modeling of mixtures can be found in [35], approach closer to modern understanding of continuum mechanics and thermodynamics in [36]. Let us mention also the book [16], where a general model of compressible chemically reacting mixtures under very general conditions is analyzed from the mathematical point of view, however, only in a small neighborhood of a given static solution. We will be more concerned about results which are not restricted to small data. As the results differ with respect to studied complexity, we mention here for the case of incompressible fluids the paper [37] and the book [31].

In the paper we analyze the system of N compressible, reacting fluids with densities

$$
\varrho_{1}, \ldots, \varrho_{N}: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R},
$$

moving along a common velocity vector $u: \Omega \rightarrow \mathbb{R}^{d}$. We assume the slow motion, therefore the momentum equation is given by the Stokes equation. The pressure p depends on the vector of the densities $\vec{\varrho}=\left(\varrho_{1}, \ldots, \varrho_{N}\right)$. The interactions between the particular components are described by the production rates $\omega_{1}, \ldots, \omega_{N}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}, \omega_{1}, \ldots, \omega_{N} \in C^{1}\left(\overline{\mathbb{R}_{+}^{N}}\right)$ and dissipation is prescribed by fluxes F_{i}.

The full system, incorporating all these phenomena reads

$$
\begin{array}{rlrl}
\partial_{t} \varrho_{i}+\operatorname{div}\left(\varrho_{i} u\right)-\operatorname{div} F_{i} & =\omega_{i}(\vec{\varrho}), & i=1, \ldots, N, & \\
\text { in } \Omega \times(0, T), \tag{1.1}\\
-\mu \Delta u-\nabla((\mu+\lambda) \operatorname{div} u)+\nabla p(\varrho) & =0, & & \text { in } \Omega \times(0, T),
\end{array}
$$

where we assume that μ, λ are constants such that $\mu>0$ and $\lambda+\frac{2}{3} \mu>0$.
The system is considered with the slip boundary conditions for u and the Neumann type constrain for the fluxes, namely on $\partial \Omega \times(0, T)$

$$
\begin{array}{rlrl}
u \cdot n & =0 & & \text { at } \partial \Omega \times(0, T), \\
n \cdot \mathbb{T}(u, p) \cdot \tau_{k}+f u \cdot \tau_{k} & =0, & k=1, \ldots, d-1, & \tag{1.2}\\
F_{i} \cdot n & \text { at } \partial \Omega \times(0, T), \\
& i=1, \ldots, N, & & \text { at } \partial \Omega \times(0, T),
\end{array}
$$

where n and τ_{k} are the normal and tangent vectors respectively, f describes the friction and the stress tensor \mathbb{T} is given by

$$
\mathbb{T}(u, p(\vec{\varrho}))=2 \mu \mathbb{D} u+(\lambda \operatorname{div} u-p(\vec{\varrho})) \mathbb{I} .
$$

The system is finally supplemented by the set of initial data for the species' densities

$$
\left.\varrho_{i}\right|_{t=0}=\varrho_{0, i} .
$$

The kernel of the system is the constitutive relation giving us the form of the pressure. We assume the total pressure p is in the form

$$
p(\vec{\varrho})=\sum_{i=1}^{N} p_{i}\left(\varrho_{i}\right), \quad \text { with } \quad p_{i}\left(\varrho_{i}\right)=\frac{1}{m_{i}} \varrho_{i}^{\gamma_{i}}
$$

where m_{i} are molar masses of the components and $\gamma_{i}>1$. The diffusion fluxes are depending on the pressure. Following [16], we assume that the fluxes have the form

$$
\begin{equation*}
F_{i}=\nabla p_{i}-\frac{\varrho_{i}}{\varrho} \nabla p \tag{1.3}
\end{equation*}
$$

A such form guarantees the fundamental feature of fluxes, namely $\sum_{i=1}^{N} F_{i}=0$, and also non-negativity of densities ρ_{i}. Regarding the reaction terms, we focus on the irreversible reactions in the form

$$
\begin{equation*}
A_{1}+\ldots+A_{K} \rightarrow C_{1}+\ldots+C_{L} \tag{1.4}
\end{equation*}
$$

We impose the conditions on ω_{i} so that the densities remain non-negative for non-negative initial densities, and that the total mass of the system is preserved. To obtain the first property, we have to assume

$$
\begin{equation*}
\omega_{i}(\vec{\varrho}) \geq 0 \quad \text { for } \quad \varrho_{i}=0 \quad \text { and } \quad \varrho_{j} \geq 0, j \neq i \tag{1.5}
\end{equation*}
$$

Moreover, the latter is satisfied if $\sum_{i=1}^{N} \omega_{i}(\vec{\varrho})=0$. This, together with the fact that $\sum_{i=1}^{N} F_{i}=0$, ensures us that the sum of the densities $\varrho=\sum_{i=1}^{N} \varrho_{i}$ satisfies the continuity equation

$$
\partial_{t} \varrho+\operatorname{div}(\varrho u)=0
$$

and as a consequence the total mass $\int_{\Omega} \varrho \mathrm{d} x$ remains constant.

1.1 Main results

To begin with, we state the three main theorems. The first result is the following.
Theorem 1.1. Let $\vec{\varrho}_{0} \in L^{\infty}(\Omega)$. In addition, let us assume that all $\gamma_{i}=2$. Then there exist

$$
\begin{gathered}
\varrho_{1}, \ldots, \varrho_{N} \in L^{\infty}([0, \infty) \times \Omega) \\
\bar{F}_{1}, \ldots, \bar{F}_{N} \in L^{2}((0, \infty) \times \Omega), \quad \sum_{i=1}^{N} \bar{F}_{i}=0
\end{gathered}
$$

and

$$
u \in L^{2}\left(0, \infty ; H^{1}\right), \quad \operatorname{div} u \in L^{\infty}((0, \infty) \times \Omega)
$$

solving the system

$$
\begin{align*}
\partial_{t} \varrho_{i}+\operatorname{div}\left(\varrho_{i} u\right)-\operatorname{div} \bar{F}_{i} & =\omega_{i}(\vec{\varrho}), \quad i=1, \ldots, N, \tag{1.6}\\
-\mu \Delta u-\nabla((\mu+\lambda) \operatorname{div} u)+\nabla p(\vec{\varrho}) & =0
\end{align*}
$$

in $(0, \infty) \times \Omega$ in the sense of distributions with the boundary conditions (1.2). Moreover, assuming $\varrho_{i} \in L^{2}\left(0, T ; H^{1}\right), i=1, \ldots, N$, it gives us that the fluxes \bar{F}_{i} satisfy the relation

$$
\begin{equation*}
\frac{1}{2} \sum_{i=1}^{N} \frac{1}{\varrho_{i}}\left|\bar{F}_{i}\right|^{2} \leq \sum_{i=1}^{N} \bar{F}_{i} \cdot \frac{1}{m_{i}} \nabla \varrho_{i} \quad \text { a. e. in } \quad(0, \infty) \times \Omega . \tag{1.7}
\end{equation*}
$$

The inequality (1.7) can be also rewritten in the following way: if $F_{i}=\nabla p_{i}-\frac{\varrho_{i}}{\varrho} \nabla p$, then (1.7) is equivalent to

$$
\sum_{i=1}^{N} \frac{1}{\varrho_{i}} \bar{F}_{i} \cdot\left(\bar{F}_{i}-F_{i}\right) \leq 0 .
$$

Remark 1.2. Let us discuss the above result. A careful analysis notes that the solutions obtained by this way are not satisfactory enough. It opens rather a lot of questions, then it delivers answers. The first question concerns the meaning of obtained fluxes \bar{F}_{i}. The ground regularity of solutions is too weak to determine \bar{F}_{i} in terms of ρ_{i}. It is acceptable, but then Theorem 1.1 implies the question:

Question. Assume the solution constructed in Theorem 1.1 is smooth. Does \bar{F}_{i} correspond to F_{i} given by (1.3)?

A hint to resolve this problem seems to be in (1.7), but on the other hand it looks that it is not enough. Note that in the literature we find some positive answers to similar questions, but for slightly or significantly different systems. In [41, 42] the author were able to control the fluxes \bar{F}_{i} in terms of gradients of species, but in that framework the densities have L^{2} integrable gradients. It is a consequence of a very special dependence of viscous coefficients on the density. Here, there is no such possibility. In [28], the authors construct the weak solutions to a system of continuity equations involving chemical reactions with a given velocity. In that case, they overcome the lack of regularity for the components by assuming that the total density is in $L^{2}\left(0, T ; H^{1}\right)$, which together with the linear pressure provides the estimates on the gradients of the particular species. However, we are not able to improve the regularity of the total density naturally from the equation.

To underline the nontriviality of Theorem 1.1, we need to refer to the auxillary result of the paper, which obtains the solutions to an approximate system to (1.1). Here the exponents γ_{i} can already be different from 2:

Theorem 1.3. Assume that $p_{i}\left(\varrho_{i}\right)=\frac{1}{m_{i}} \varrho_{i}^{\gamma_{i}}$, where the exponents γ_{i} satisfy the relation

$$
\begin{equation*}
2 \gamma_{\max }<3 \gamma_{\min }-\gamma_{S}+1 \tag{1.8}
\end{equation*}
$$

for $\gamma_{\max }$ and $\gamma_{\min }$ being the maximum and minimum of $\left\{\gamma_{1}, \ldots, \gamma_{N}\right\}$ respectively, and $\gamma_{S}=\max _{j \in S} \gamma_{j}$ with S denoting the components on the right hand side of (1.4). Let F_{i} be given by (1.3). Then, for any $T>0$, there exists at least one weak solution $\left(\varrho_{1}, \ldots, \varrho_{N}, u\right)$ to the system

$$
\begin{align*}
\partial_{t} \varrho_{i}+\operatorname{div}\left(\varrho_{i} u\right)-\operatorname{div} F_{i} & =\omega_{i}(\vec{\varrho})+\varepsilon \Delta \varrho_{i}, \quad i=1, \ldots, N, \tag{1.9}\\
-\mu \Delta u-\nabla((\mu+\lambda) \operatorname{div} u)+\nabla p(\vec{\varrho}) & =0,
\end{align*}
$$

in $[0, T] \times \Omega$ with

$$
\varrho_{\left.i\right|_{t=0}}=\varrho_{0, i, \varepsilon} \in C^{\infty}(\Omega), \quad \varrho_{0, i, \varepsilon} \rightarrow \varrho_{0, i} \quad \text { in } \quad L^{2}(\Omega),
$$

the Neumann boundary condition $\frac{\mathrm{d} \varrho_{i}}{\mathrm{~d} n}=0$ on $\partial \Omega$ and the slip boundary conditions (1.2) for u. Moreover, the obtained solution satisfies

$$
\begin{gathered}
\left\|\varrho_{i}\right\|_{L^{\infty}((0, T) \times \Omega)},\left\|\frac{1}{\sqrt{\varrho_{i}}} F_{i}\right\|_{L^{2}((0, T) \times \Omega)}, \sqrt{\varepsilon}\left\|\varrho_{i}\right\|_{L^{2}\left(0, T ; H^{1}\right)} \leq C, \quad i=1, \ldots, N
\end{gathered}
$$

and

$$
\|u\|_{L^{2}\left(0, T ; H^{1}\right)},\|\nabla u\|_{L^{\infty}(0, T ; B M O)} \leq C,
$$

where the constant C does not depend on ε or T.
Note that the above result delivers well defined objects. Gradients of species are in L^{2}, so F_{i} are well defined in terms of formula (1.7). The proof of Theorem 1.3 is based on the classical techniques. First, we consider a suitable regularization, which makes our fluxes less degenerate, and densities better integrable. Then starting from the Galerkin methods we prove existence of each step of approximation scheme, obtaining the solutions to (1.9) finally. As Theorem 1.3, one can say, belongs to the classical
theory of weak solution to compressible flows, the step to Theorem 1.1 seems to be not. We need to take $\varepsilon \rightarrow 0$, and then determine the limits in the equation. What is unexpected, is the strong convergence of all densities. We prove

$$
\begin{equation*}
\varrho_{i}^{(\varepsilon)} \rightarrow \rho_{i} \quad \text { strongly in } \quad L^{p}(\Omega \times(0, \infty)) . \tag{1.10}
\end{equation*}
$$

In order to justify the above limits we need to apply techniques of convergence adopted from [8]. Thanks to the structure of fluxes, limited in this part just to $\gamma_{i}=2$, we are able to prove (1.10). Note that other tools from compensated compactness theory do not fit to our problem. This points out the nontriviality of Theorem 1.1. It is also an interesting example of the application of the Bresch \& Jabin technique, where all classical compactness methods seem to fail. Another case of the multicomponent setting where this method becomes useful is the result of Dębiec et al. [13], concerning two-species system modelling tumor growth.

The main difficulty in Theorem 1.1 is a possible lack of strict positivity of the particular densities. It turns out that even though we still cannot control the gradients of the densities, assuming that all components are bounded away from zero we can rewrite the fluxes F_{i} in terms of new variables, which are already bounded in $L^{2}\left(0, T ; H^{1}\right)$. We summarize this result below:

Theorem 1.4. Let p_{i} and γ_{i} be as in Theorem 1.3. Let $\left(\vec{\varrho}_{\varepsilon}, u_{\varepsilon}\right)$ be a sequence of solutions to (1.9), such that for every $i=1, \ldots, N$

$$
\varrho_{i, \varepsilon}>c \quad \text { in } \quad[0, T] \times \Omega,
$$

for some $c>0$. Then $\left(\vec{\varrho}_{\varepsilon}, u_{\varepsilon}\right)$ converges to a solution to (1.1), with

$$
F_{i}=\nabla p_{i}-\frac{\varrho_{i}}{\varrho} \nabla p .
$$

The proof is based on the fact that even though the fluxes F_{i} form a degenerate system, we can rewrite them as

$$
\begin{equation*}
F_{i}=\sum_{j=1}^{N-1} b_{i, j} \nabla q_{j}, \tag{1.11}
\end{equation*}
$$

where $\vec{q}=\left(q_{1}, \ldots, q_{N}\right)$ is a certain projection of $\left(\frac{\gamma_{1}}{\gamma_{1}-1} \frac{p_{1}}{\varrho_{1}}, \ldots, \frac{\gamma_{N}}{\gamma_{N}-1} \frac{p_{N}}{\varrho_{N}}\right)$ on the $N-1$-dimensional space orthogonal to $(1, \ldots, 1)$ (in particular $q_{N}=-\sum_{j=1}^{N-1} q_{j}$). It is shown that in the case when $\varrho_{1}, \ldots, \varrho_{N} \neq 0$, the coefficients $b_{i, j}$ from the relation (1.11) form an invertible matrix, which in turn provides an L^{2} bound on ∇q_{i}. Similar approach, with a different definition of the fluxes, was considered for example in $[9,10]$.

It is worth noting that our method also allows the system to contain both diffusive and non-diffusive components. Assuming N_{1} is the number of diffusing elements, the full system reads

$$
\begin{align*}
\partial_{t} \varrho_{i}+\operatorname{div}\left(\varrho_{i} u\right)-\operatorname{div} F_{i} & =\omega_{i}(\vec{\varrho}), & & i=1, \ldots, N_{1}, \\
\partial_{t} \varrho_{j}+\operatorname{div}\left(\varrho_{j} u\right) & =\omega_{j}(\vec{\varrho}), & & j=N_{1}+1, \ldots, N, \tag{1.12}\\
-\mu \Delta u-\nabla((\mu+\lambda) \operatorname{div} u)+\nabla p(\vec{\varrho}) & =0 . & &
\end{align*}
$$

Let us now briefly explain the outline of the rest of the paper and discuss the emerging obstacles:

- In Sections 2-5, we consider the case when diffusion occurs for all the components and the most general diffusive - non-diffusive case is shortly commented in Section 6.
- In Section 2, we present the a priori estimates for the solutions. In particular, we show that the densities ϱ_{i} are in $L^{\infty}((0, T) \times \Omega)$. The used strategy allows us to derive the required estimates in the case where the exponents γ_{i} satisfy the relation (1.8).
- Section 3 is devoted to the construction of solutions to equation (1.9) and in consequence ends the proof of Theorem 1.3. The next step towards the proofs of Theorems 1.1 and 1.4 is the limit passage with $\varepsilon \rightarrow 0$. This final step is done Sections 4 and 5 under the assumptions of Theorem 1.1 and 1.4 respectively.
- Section 4 contains the end of the proof of Theorem 1.1. Due to the presence of the additional terms in the continuity equations, the standard Lions-Feireisl approach [24, 14] is not well-suited for this framework. Instead, we are able to adapt the method of Bresch and Jabin [7, 8], based on the Kolmogorov compatness criterion, which allows us to show the strong convergence of the densities. However, due to the limitations of this method we need to restrict to the case $\gamma_{1}=\ldots, \gamma_{N}=2$.
- In Section 5 we perform the final limit passage in the framework of Theorem 1.4, namely assuming that the sequence of approximate solutions is strictly positive. In this case we again do not need any additional assumptions on the exponents γ_{i} besides (1.8).

1.2 Bibliographical remarks

Let us begin with the seminal work by A. Fick, who summarized on diffusion matter in liquids and formulated in one dimension relation between the molar mass flux $J_{i}^{\text {mol }}$, the molar concentration of constituent A_{i} denoted by $c_{i}, i \in\{1, \ldots, N\}$, the phenomenological coefficient D_{i} (the diffusion coefficient). Nowadays, this relation is called Fick's first law and has a form

$$
\begin{equation*}
j_{i}^{\mathrm{mol}}=-D_{i} \nabla c_{i} . \tag{1.13}
\end{equation*}
$$

It was realized that such a relation is less realistic and it leads to introduce the general setting of the Theory of irreversible processes. We can refer to De Groot and Mazur 1984, where the deficiencies of Fick's law are described together with a new law - the Fick-Onsager form of diffusion fluxes. The diffusion coefficients D_{i} are replaced by a matrix phenomenological coefficients $L_{i j}$ called Osanger coefficients for diffusion. Another approach is the Maxwell-Stefan equations - in the so-called diffusive approximation, which ignore the acceleration of the relative motion, see Dreyer, Druet, Gajewski and Guhlke (2020) or Standart, Taylor and Krishna (1975). For more details concerning modelling, we refer to paper by Bothe, Druet [3].

Maxwell - Stefan type models were studied from the engineering point of view but there are only a few results concerning the mathematical theory. Recently such problems attract a lot of attention, see works of $[2,6,21]$. The mass-based Maxwell-Stefan approach to one-phase multicomponent reactive mixture is analyzed [18]. It is shown the local well-posedness in $L p$ setting and generate a local semiflow on its natural state space. A self-contained introduction to this approach can be find in [20]. Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient was analysis for weak and strong solution by Druet, Jungel [12].

Many mathematical results have been proved in direction of multicomponent diffusion systems where the component share the same velocity and the Maxwell-Stefan system is coupled with the Navier-Stokes equations. The model for the compressible chemically reacting mixtures developed by Giovangigli in [16] in the context of the Fick law were considered in [15]; for non-diagonal mobility matrix in [41]. The paper [27] includes the case when the mean viscosity depends on the total density and fulfils the Bresch - Desjardin relation. The steady problems (with non-diagonal mobility matrix) were studied in [40, 17, 32]. More complex situation is considered in [10]. Strong solution of such type of model was investigated by Piasecki, Shibata, Zatorska [33, 34]. Let us also mention the recent work of Druet concerning the singular limit for multicomponent models, [11].

The above results in principle concern the situation, where the chemical reaction is reversible. Concerning the irreversible reaction, from the mathematical point of view not much is known. A fast irreversible reaction of type (2.1) was investigated by Bothe \& Pierre in the case of reaction-diffusion system [5], where it appears between species A and B with similar concentrations. Purely numerical and experimental results, involving irreversible reactions, were obtained for example in [4, 19, 22].

2 A priori estimates

Now we will proceed with a priori estimates. We assume for simplicity that $N=3$ and that we deal with a reaction of the type

$$
\begin{equation*}
A+B \rightarrow C \tag{2.1}
\end{equation*}
$$

however from the proof it is clear that the reasoning can be adjusted to a one-way reaction with arbitrary number of components. For the one-way reaction, the production rates have fixed signs. The ones corresponding to reagents are negative, whereas the ones corresponding to products are positive. In the special case (2.1), $\omega_{i}=-\alpha_{i} \varrho_{1} \varrho_{2}$ for $i=1,2$ and $\omega_{3}=\left(\alpha_{1}+\alpha_{2}\right) \varrho_{1} \varrho_{2}$, where $\alpha_{i}>0$ depend on the reaction rate and molecular weights of A and B respectively. The above example can be easily generalized for the case

$$
A_{1}+\ldots+A_{K} \rightarrow C_{1}+\ldots+C_{L}
$$

with suitable definitions of ω_{i} 's.
Throughout this section we will assume that $(\vec{\varrho}, u)$ is a sufficiently smooth solution to (1.1). The main goal is to show that

Lemma 2.1. ($\vec{\varrho}, u)$ satisfies

$$
\begin{gathered}
\rho_{i} \geq 0, \quad \int_{\Omega} \rho(t) \mathrm{d} x=\int_{\Omega} \varrho_{0} \mathrm{~d} x \\
\sum_{i=1}^{N}\left\|\varrho_{i}\right\|_{L^{\infty}([0, T] \times \Omega)}+\sum_{i=1}^{N}\left\|\frac{1}{\sqrt{\varrho_{i}}} F_{i}\right\|_{L^{2}([0, T] \times \Omega)}+\|\operatorname{div} u\|_{L^{\infty}([0, T] \times \Omega)} \leq C,
\end{gathered}
$$

where the constant C depends only on $\left\|\vec{\varrho}_{0}\right\|_{L^{\infty}(\Omega)}$.
Proof. The proof is splited into four steps.
Step I. First, let us prove the basic properties of the solution: mass conservation and non-negativity of all densities. As the total density satisfies the continuity equation, after integrating over Ω we get $\frac{\mathrm{d}}{\mathrm{d} t} \int_{\Omega} \varrho \mathrm{d} x=0$, and thus $\int_{\Omega} \varrho(t, x) \mathrm{d} x=\int_{\Omega} \varrho_{0} \mathrm{~d} x$ for all $t>0$.

We will now show that $\varrho_{i} \geq 0$ for all $i=1, \ldots, N$. For a fixed i, let $\Omega_{i}^{-}(t)=\left\{x \in \Omega: \varrho_{i}(t, x)<0\right\}$. Integrating the equation on ϱ_{i} over Ω_{i}^{-}, we get

$$
\int_{\Omega_{i}^{-}(t)} \partial_{t} \varrho_{i} \mathrm{~d} x=\int_{\partial \Omega_{i}^{-}(t)}\left(-\varrho_{i} u+\gamma_{i} \varrho_{i}^{\gamma_{i}-1} \nabla \varrho_{i}-\frac{\varrho_{i}}{\varrho} \nabla p\right) \cdot \mathfrak{n}_{i}^{-}(t) \mathrm{d} S+\int_{\Omega_{i}^{-}(t)} \omega_{i} \mathrm{~d} x
$$

where $\mathfrak{n}_{i}^{-}(t)$ is the outer normal vector to $\Omega_{i}^{-}(t)$. To deal with the last term let us observe:
Remark 2.2. The assumption (1.5) allows us to extend ω_{i} to a function $\tilde{\omega}_{i}$ on \mathbb{R}^{N} in such a way that $\tilde{\omega}_{i}(\vec{\varrho}) \geq 0$ whenever $\varrho_{i}<0$ and $\tilde{\omega}_{i}$ is locally Lipschitz on \mathbb{R}^{N}. If $\omega_{i}=0$ for $\varrho_{i}=0$, we simply put $\tilde{\omega}_{i}=0$ for $\varrho_{i}<0$. If $\omega_{i}>0$ for $\varrho_{i}=0$ and $\varrho_{j} \geq 0$, then we first extend continuously the function $\omega_{\left.i\right|_{\varrho_{i}=0}}$ so that $\omega_{\left.i\right|_{\varrho_{i}=0}} \geq 0$ for all $\varrho_{j} \in \mathbb{R}^{N}, j \neq i$. Then, for $\varrho_{i}<0$ we just put $\tilde{\omega}_{i}\left(\varrho_{1}, \ldots, \varrho_{i}, \ldots, \varrho_{N}\right)=$ $\omega_{i}\left(\varrho_{1}, \ldots, 0, \ldots \varrho_{N}\right)$. For simplicity we will just denote $\tilde{\omega}_{i}$ by ω_{i}.

Therefore, as by Remark $2.2 \omega_{i} \geq 0$ for $\varrho_{i} \leq 0$ and $\varrho_{\left.i\right|_{\partial \Omega_{i}^{-}(t)}}=0$, we get that

$$
-\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\Omega} \varrho_{i}^{-} \mathrm{d} x \geq 0
$$

where $\varrho_{i}^{-} \geq 0$ is the negative part of $\varrho_{i}\left(\varrho_{i}=\varrho_{i}^{+}-\varrho_{i}^{-}\right)$. In consequence,

$$
\int_{\Omega} \varrho_{i}^{-}(t, x) \mathrm{d} x \leq \int_{\Omega} \varrho_{i}^{-}(0, x) \mathrm{d} x=0
$$

which yields $\varrho_{i}^{-}(t, \cdot) \equiv 0$.
Note that we are able to perform the above calculations provided that the set $\Omega_{i}^{-}(t)$ is of class C^{1}. However, from the implicit function theorem and Sard's theorem [38] it follows that we can find $\delta_{n}>0, \delta_{n} \rightarrow 0$ with $n \rightarrow \infty$, such that $\Omega_{i, \delta_{n}}^{-}(t):=\left\{x \in \Omega: \varrho_{i}(t, x)<\delta_{n}\right\}$ have the desired regularity. Then the assertion follows by taking $n \rightarrow \infty$.

Step II. In this part we construct the basic energy estimate, in terms of the point-wise bound on the density and the production rates ω_{i} 's. The goal is to show that

$$
\begin{align*}
\int_{0}^{T} \int_{\Omega} \mu|\nabla u|^{2}+(\lambda+\mu)(\operatorname{div} u)^{2} \mathrm{~d} x \mathrm{~d} t+\sup _{t \in[0, T]} & \sum_{i=1}^{N}
\end{align*} \frac{1}{\gamma_{i}-1} \int_{\Omega} p_{i}\left(\varrho_{i}\right) \mathrm{d} x+\sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \frac{1}{\varrho_{i}}\left|F_{i}\right|^{2} \mathrm{~d} x \mathrm{~d} t .
$$

Note that in the general case (1.4), instead of γ_{3} we need to put γ_{S}, which is the maximum of exponents corresponding to C_{1}, \ldots, C_{L}.

Testing the momentum equation by u, we get

$$
\mu \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x+(\lambda+\mu) \int_{\Omega}(\operatorname{div} u)^{2} \mathrm{~d} x+\int_{\Omega} \nabla p \cdot u=0 .
$$

To obtain the desired estimate, we need to deal with the last term. We have
$\int_{\Omega} \nabla p \cdot u \mathrm{~d} x=\frac{\mathrm{d}}{\mathrm{d} t} \sum_{i=1}^{N} \frac{1}{\gamma_{i}-1} \frac{1}{m_{i}} \int_{\Omega} \varrho_{i}^{\gamma_{i}} \mathrm{~d} x+2 \sum_{i=1}^{N} \frac{\gamma_{i}}{\gamma_{i}-1} \frac{1}{m_{i}} \int_{\Omega} \nabla \varrho_{i}^{\gamma_{i}-1} \cdot F_{i} \mathrm{~d} x-2 \sum_{i=1}^{N} \frac{\gamma_{i}}{m_{i}} \int_{\Omega} \varrho_{i}^{\gamma_{i}-1} \omega_{i} \mathrm{~d} x$.
The choice of the fluxes F_{i} leads to the following important relation:

$$
\begin{equation*}
\sum_{i=1}^{N} \frac{\gamma_{i}}{m_{i}} \nabla \varrho_{i}^{\gamma_{i}-1} \cdot F_{i}=\sum_{i=1}^{N} \frac{1}{\varrho_{i}}\left(\frac{1}{m_{i}} \nabla \varrho_{i}^{\gamma_{i}}-\frac{\varrho_{i}}{\varrho} \nabla p\right) \cdot F_{i}=\sum_{i=1}^{N} \frac{1}{\varrho_{i}}\left|F_{i}\right|^{2} . \tag{2.3}
\end{equation*}
$$

Moreover, as ω_{1} and ω_{2} are nonpositive, we have

$$
-2 \sum_{i=1}^{N} \frac{\gamma_{i}}{m_{i}} \int_{\Omega} \varrho_{i}^{\gamma_{i}-1} \omega_{i} \mathrm{~d} x \geq-2 \frac{\gamma_{3}}{m_{3}} \int_{\Omega} \varrho_{3}^{\gamma_{3}-1} \omega_{3} \mathrm{~d} x
$$

In conclusion, our energy estimates read

$$
\begin{aligned}
\mu \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x+(\lambda+\mu) \int_{\Omega}(\operatorname{div} u)^{2} \mathrm{~d} x+\frac{\mathrm{d}}{\mathrm{~d} t} \sum_{i=1}^{N} \frac{1}{\gamma_{i}-1} & \int_{\Omega} p_{i}\left(\varrho_{i}\right) \mathrm{d} x \\
& +\sum_{i=1}^{N} \int_{\Omega} \frac{1}{\varrho_{i}}\left|F_{i}\right|^{2} \mathrm{~d} x-\frac{\gamma_{3}}{m_{3}} \int_{\Omega} \varrho_{3} \omega_{3}(\vec{\varrho}) \mathrm{d} x \leq 0
\end{aligned}
$$

and after integrating over time and estimating the last term by

$$
C\|\varrho\|_{L^{\infty}([0, T] \times \Omega)}^{\gamma_{3}-1} \int_{0}^{T} \int_{\Omega} \omega_{3}(\vec{\varrho}) \mathrm{d} x \mathrm{~d} t,
$$

we get the inequality

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega} \mu|\nabla u|^{2}+(\lambda+\mu)(\operatorname{div} u)^{2} \mathrm{~d} x \mathrm{~d} t & +\sup _{t \in[0, T]} \sum_{i=1}^{N} \frac{1}{\gamma_{i}-1} \int_{\Omega} p_{i}\left(\varrho_{i}\right) \mathrm{d} x+\sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \frac{1}{\varrho_{i}}\left|F_{i}\right|^{2} \mathrm{~d} x \mathrm{~d} t \\
& \leq \sum_{i=1}^{N} \frac{1}{\gamma_{i}-1} \int_{\Omega} p_{i}\left(\varrho_{0, i}\right) \mathrm{d} x+C\|\varrho\|_{L^{\infty}([0, T] \times \Omega)}^{\gamma_{3}-1} \int_{0}^{T} \int_{\Omega} \omega_{3}(\vec{\varrho}) \mathrm{d} x \mathrm{~d} t .
\end{aligned}
$$

However, the straightforward integration of the equation on ρ_{3} yields

$$
\int_{0}^{T} \int_{\Omega} \omega_{3}(\varrho) \mathrm{d} x \mathrm{~d} s=\int_{\Omega} \varrho_{3}(T, x) \mathrm{d} x-\int_{\Omega} \varrho_{0,3}(x) \mathrm{d} x \leq C
$$

and the inequality (2.2) follows.
Step III. To obtain the estimate for the density, it is required to study the effective viscous flux

$$
\begin{equation*}
(2 \mu+\lambda) \operatorname{div} u=p(\vec{\varrho})-\frac{1}{|\Omega|} \int_{\Omega} p(\vec{\varrho}) \mathrm{d} x+d \tag{2.4}
\end{equation*}
$$

where $\Delta d=0$ in Ω. The formula (2.4) is derived by a projection on the potential part of the momentum equation (1.1).

The structure of the slip conditions allows to split the field into two parts: the divergence-free and potential ones, denoted by $\mathcal{P} u$ and $\mathcal{Q} u$ respectively. Altogether we have $u=\mathcal{P} u+\mathcal{Q} u$, where

$$
\begin{array}{llll}
\operatorname{rot} \mathcal{P} u=\alpha, & \operatorname{div} \mathcal{P} u=0, & \operatorname{div} \mathcal{Q} u=\operatorname{div} u, & \operatorname{rot} \mathcal{Q} u=0 \tag{2.5}\\
n \cdot \mathcal{P} u=0, & n \cdot \mathcal{Q} u=0 & \text { in } \Omega, \\
\text { at } \partial \Omega
\end{array}
$$

The rotation $\alpha=\operatorname{rot} u$ can be determined separately from the equation on the vorticity:

$$
\begin{array}{ll}
-\mu \Delta \alpha=0 & \text { in } \Omega \\
\alpha \cdot \tau_{1}=\left(2 \chi_{1}-f / \mu\right) u \cdot \tau_{1}, \quad \alpha \cdot \tau_{2}=\left(f / \mu-2 \chi_{2}\right) u \cdot \tau_{2} & \text { at } \partial \Omega \tag{2.6}\\
\frac{(\alpha \cdot n)}{\partial n}=-\left(\alpha \cdot \tau_{1}\right)_{\tau_{1}}-\left(\alpha \cdot \tau_{2}\right)_{\tau_{2}} & \text { at } \partial \Omega
\end{array}
$$

The form of boundary conditions in (2.6) is a consequence of fine properties of slip boundary conditions, described in more details, e.g. in [25, 29].

The theory of maximal regularity estimate for the elliptic problems yields

$$
\begin{equation*}
\|\alpha\|_{L^{\infty}\left(0, T ; W_{p}^{1}\right)} \leq C\left\|\left.u\right|_{\partial \Omega}\right\|_{L^{\infty}\left(0, T ; W_{p}^{1-1 / p}\right)} \tag{2.7}
\end{equation*}
$$

see details in [26]. In consequence, as $\|\mathcal{P} u\|_{L^{\infty}\left(0, T ; W^{2, p}\right)} \leq C\|\operatorname{rot} u\|_{L^{\infty}\left(0, T ; W^{1, p}\right)}$, we conclude that

$$
\begin{equation*}
\|\mathcal{P} u\|_{L^{\infty}\left(0, T ; W^{2, p}\right)} \leq C\|u\|_{L^{\infty}\left(0, T ; W^{1, p}\right)} \tag{2.8}
\end{equation*}
$$

We will now estimate the harmonic function d from the equation (2.4). We have $\nabla d=\mathcal{P} \Delta \mathcal{P} u$ and $\int d(x, t) \mathrm{d} x=0$. Then from (2.8) we get

$$
\begin{equation*}
\|d\|_{L^{\infty}\left(0, T ; W^{1, p}\right)} \leq C\|\mathcal{P} u\|_{L^{\infty}\left(0, T ; W^{2, p}\right)} \leq C\|u\|_{L^{\infty}\left(0, T ; W^{1, p}\right)} \tag{2.9}
\end{equation*}
$$

Using (2.2), we are able to estimate different norms of p in terms of $\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}$. In particular, we have

$$
\begin{equation*}
\sup _{t \in[0, T]} \int_{\Omega} p(\underline{\varrho}) \mathrm{d} x \leq C+C\|\varrho\|_{L^{\infty}([0, T] \times \Omega)}^{\gamma_{3}-1} \tag{2.10}
\end{equation*}
$$

Moreover, the structure of the pressure implies that

$$
\begin{equation*}
\frac{1}{N m_{\max }} \varrho^{\gamma_{\min }} \leq p(\vec{\varrho}) \leq \varrho^{\gamma_{\max }} \sum_{i=1}^{N} \frac{1}{m_{i}} \tag{2.11}
\end{equation*}
$$

where $\gamma_{\min }$ and $\gamma_{\max }$ are respectively the minimum and maximum of $\left\{\gamma_{1}, \ldots, \gamma_{N}\right\}$. In consequence, since by the interpolation of L^{p} spaces

$$
\int_{\Omega}|p(\vec{\varrho})|^{p} \mathrm{~d} x \leq\|p(\vec{\varrho})\|_{L^{\infty}(\Omega)}^{p-1} \int_{\Omega} p(\vec{\varrho}) \mathrm{d} x \leq C\|\varrho\|_{L^{\infty}(\Omega)}^{\gamma_{\max }(p-1)}\left(1+\|\varrho\|_{L^{\infty}([0, T] \times \Omega)}^{\gamma_{3}-1}\right)
$$

we get that

$$
\|p(\vec{\varrho})\|_{L^{\infty}\left(0, T ; L^{p}\right)} \leq C+C\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}^{\tilde{\gamma}}
$$

for $\tilde{\gamma}=\gamma_{\max }-\frac{\gamma_{\max }-\gamma_{3}+1}{p}$. Therefore from the elliptic estimates we also have

$$
\|u\|_{L^{\infty}\left(0, T ; W^{1, p}\right)} \leq C+C\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}^{\tilde{\gamma}}
$$

and if $p>3$, then using (2.9) we get

$$
\begin{equation*}
\|d\|_{L^{\infty}((0, T) \times \Omega)} \leq C\|d\|_{L^{\infty}\left(0, T ; W^{1, p}\right)} \leq C+C\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}^{\tilde{\tilde{\gamma}}}{ } \tag{2.12}
\end{equation*}
$$

Note that if $\gamma_{1}, \ldots, \gamma_{N}$ satisfy the relation (1.8), then there exists such $p>3$ that $\tilde{\gamma}<\gamma_{\text {min }}$. Moreover, as $\gamma_{\min } \leq \gamma_{3} \leq \gamma_{\max }$, it also follows that $\gamma_{3}-1<\gamma_{\text {min }}$.

Step IV. The last step finishes our proof of Lemma 2.1. The key point of the estimate requires a special point-wise conditional estimate controlling the sign of the divergence of "bad" regions.

Lemma 2.3. If $\varrho(t, x)>\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}-1$ and $\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}$ is sufficiently large, then

$$
\operatorname{div} u(t, x)>0
$$

Proof. Combining the estimates (2.10), (2.11) and (2.12) with (2.4), we obtain

$$
\begin{aligned}
\operatorname{div} u(t, x) & =p(\vec{\varrho}(t, x))-\frac{1}{|\Omega|} \int_{\Omega} p(\vec{\varrho}) \mathrm{d} x-d \\
& \geq C \varrho(t, x)^{\gamma_{\min }}-C\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}^{\gamma_{3}-1}-\|d\|_{L^{\infty}((0, T) \times \Omega)}^{\tilde{\gamma}} \\
& \geq C\left(\left(\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}-1\right)^{\gamma_{\min }}-\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}^{\tilde{\gamma}}-\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}^{\gamma_{3}-1}\right) .
\end{aligned}
$$

As $\gamma_{\text {min }}>\max \left(\tilde{\gamma}, \gamma_{3}-1\right)$, the function $z \mapsto(z-1)^{\gamma_{\text {min }}}-z^{\tilde{\gamma}}-z^{\gamma_{3}-1}$ is strictly positive for sufficiently large z and thus we arrive to the desired conclusion.

To finish the proof of Lemma 2.1, let us assume that $\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}>\left\|\varrho_{0}\right\|_{L^{\infty}(\Omega)}+1$ (otherwise C from the statement of the Lemma is just equal to $\left.\left\|\varrho_{0}\right\|_{L^{\infty}(\Omega)}+1\right)$ and let $k>\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}-1$. We test the continuity equation on ϱ by $(\varrho-k)_{+}$, where f_{+}denotes the positive part of f. Then

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}(\varrho-k)_{+}^{2}(t, x) \mathrm{d} x-\frac{1}{2} \int_{\Omega}\left(\varrho_{0}-k\right)_{+}^{2} \mathrm{~d} x & =\int_{0}^{t} \int_{\Omega} \varrho u \cdot \nabla(\varrho-k)_{+} \mathrm{d} x \mathrm{~d} s \\
& =-\int_{0}^{t} \int_{\Omega} \operatorname{div} u\left(\frac{1}{2}(\varrho-k)_{+}^{2}+k(\varrho-k)_{+}\right) \mathrm{d} x \mathrm{~d} s
\end{aligned}
$$

Therefore using the fact that $\varrho_{0}<k$, we obtain

$$
\sup _{\tau \in[0, t)} \int_{\Omega}(\varrho-k)_{+}^{2}(x, \tau) \mathrm{d} x \leq-\int_{0}^{t} \int_{\Omega}(\varrho-k)_{+}(\varrho+k) \operatorname{div} u \mathrm{~d} x \mathrm{~d} s .
$$

Now if $\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}$ is large enough, then from Lemma 2.3 the right hand side is non-positive. In consequence $(\varrho-k)_{+}=0$ a.e. in $\left.(0, T) \times \Omega\right)$ and thus

$$
\varrho<\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}-1 \quad \text { a.e. in } \quad[0, T] \times \Omega
$$

This leads to contradiction, and in consequence $\|\varrho\|_{L^{\infty}((0, T) \times \Omega)}$ is bounded by some constant depending only on $\left\|\vec{\varrho}_{0}\right\|_{L^{\infty}(\Omega)}$. Thus Lemma 2.1 is proved.

Remark 2.4. As $\|\varrho\|_{L^{\infty}((0, T) \times \Omega)} \leq C$, by the relation (2.4) $\|\operatorname{div} u\|_{L^{\infty}((0, T) \times \Omega)} \leq C$ as well. Therefore from the elliptic estimates $\|\nabla \mathcal{Q} u\|_{L^{\infty}(0, T ; B M O)} \leq C$, and by (2.8)

$$
\begin{equation*}
\|\nabla u\|_{L^{\infty}(0, T ; B M O)} \leq C \tag{2.13}
\end{equation*}
$$

3 Existence of an approximated system

The goal of this section is to prove Theorem 1.3. Similarly as in Section 2, the proof is valid for different γ_{i}^{\prime} 's under the constraint (1.8), however for simplicity we restrict themselves to the case $\gamma_{1}=\cdots=\gamma_{N}=2$. Note that from the Neumann condition on ϱ_{i} it also follows that $F_{i} \cdot n=0$ for $i=1, \ldots, N$.

Proof of Theorem 1.3: Let us introduce another level of approximation, depending on a small parameter δ. We improve the integrability of the densities, by adding the terms $\delta \tilde{\varrho}^{\beta-2} \varrho_{i}$ for $\tilde{\varrho}=\sum_{i=1}^{N}\left|\varrho_{i}\right|$ and β sufficiently large. We also introduce the truncation of ϱ_{i}, defined as

$$
\varrho_{i}^{\delta}:=\operatorname{sgn}\left(\varrho_{i}\right) \min \left(\left|\varrho_{i}\right|, \frac{1}{\delta}\right) .
$$

Then we put

$$
\omega_{i}^{\delta}(\vec{\varrho}):=\omega_{i}\left(\varrho_{1}^{\delta}, \ldots, \varrho_{N}^{\delta}\right) \quad \text { and } \quad \tilde{\varrho}_{i}^{\delta}:=\min \left(\left|\varrho_{i}\right|, \frac{1}{\delta}\right)=\left|\varrho_{i}^{\delta}\right| .
$$

There is also the need to approximate the pressure and the diffusion fluxes. We put

$$
\begin{equation*}
p_{i}^{\delta}\left(\varrho_{i}\right)=\frac{2}{m_{i}} \int_{0}^{\varrho_{i}} \min \left(|w|, \frac{1}{\delta}\right) \mathrm{d} w \tag{3.1}
\end{equation*}
$$

and define F_{i}^{δ} as

$$
\begin{equation*}
F_{i}^{\delta}=\nabla p_{i}^{\delta}\left(\varrho_{i}\right)-\frac{\tilde{\varrho}_{i}^{\delta}}{\tilde{\varrho}^{\delta}} \nabla p^{\delta}, \quad \text { where } \quad \tilde{\varrho}^{\delta}=\sum_{k=1}^{N}\left|\varrho_{k}^{\delta}\right| \quad \text { and } \quad p^{\delta}=\sum_{k=1}^{N} p_{k}^{\delta}\left(\varrho_{i}\right) . \tag{3.2}
\end{equation*}
$$

Note that F_{i}^{δ} satisfy the same necessary properties as F_{i}, namely $\sum_{i=1}^{N} F_{i}^{\delta}=0$ and

$$
\sum_{i=1}^{N} \frac{1}{m_{i}} \nabla \varrho_{i} \cdot F_{i}^{\delta}=\sum_{i=1}^{N} \frac{\left|F_{i}^{\delta}\right|^{2}}{\left|\varrho_{i}^{\delta}\right|} \geq 0
$$

Finally, the (δ, ε)-approximative system reads

$$
\begin{align*}
\partial_{t} \varrho_{i}+\operatorname{div}\left(\varrho_{i} u\right)-\operatorname{div} F_{i}^{\delta}+\delta \tilde{\varrho}^{\beta-2} \varrho_{i} & =\omega_{i}^{\delta}(\vec{\varrho})+\varepsilon \Delta \varrho_{i}, \quad i=1, \ldots, N, \tag{3.3}\\
-\mu \Delta u-\nabla((\mu+\lambda) \operatorname{div} u)+\nabla p(\vec{\varrho}) & =0 .
\end{align*}
$$

3.1 The Galerkin approximation

We will obtain the solutions to (3.3) using the Galerkin method.
Lemma 3.1. The equation (3.3) admits a global weak solution in $[0, T] \times \Omega$.
Proof. Let $\left\{w_{k}\right\}_{k \in \mathbb{N}} \in C^{\infty}(\Omega)$ and $\left\{v_{k}\right\}_{k \in \mathbb{N}} \in\left(C^{\infty}(\Omega)\right)^{d}$ be the suitable orthogonal bases of $H^{1}(\Omega)$ and $\left(H^{1}(\Omega)\right)^{d}$ respectively. Define

$$
\varrho_{i, n}=\sum_{k=1}^{n} a_{i, k}(t) w_{k} \quad \text { and } \quad u_{n}=\sum_{k=1}^{n} b_{k}(t) v_{k},
$$

where the coefficients $a_{i, k}$ satisfy the system of $n \times N$ ODEs

$$
\begin{align*}
& \dot{a}_{i, k}=\sum_{l, m=1}^{n} a_{i, l} b_{m} \int_{\Omega} w_{l} v_{m} \nabla w_{k} \mathrm{~d} x-\int_{\Omega} F_{i, n}^{\delta} \cdot \nabla w_{k} \mathrm{~d} x \\
&-\varepsilon a_{i, k} \int_{\Omega}\left|\nabla w_{k}\right|^{2} \mathrm{~d} x-\delta \sum_{l=1}^{n} a_{i, l} \int_{\Omega} \tilde{\varrho}_{n}^{\beta-2} w_{l} w_{k} \mathrm{~d} x+\int_{\Omega} \omega_{i}^{\delta}\left(\vec{\varrho}_{n}\right) w_{k} \mathrm{~d} x \tag{3.4}
\end{align*}
$$

and b_{k} is given by

$$
\begin{equation*}
b_{k}=\int_{\Omega} p\left(\vec{\varrho}_{n}\right) \operatorname{div} v_{k} \mathrm{~d} x \tag{3.5}
\end{equation*}
$$

for $\vec{\varrho}_{n}=\left(\varrho_{1, n}, \ldots, \varrho_{N, n}\right)$. Since the functions

$$
\left(z_{1}, \ldots, z_{N}\right) \mapsto \frac{z_{i} z_{j}}{\sum_{k=1}^{N} z_{k}}, \quad i, j=1, \ldots, N
$$

are Lipschitz continuous on $\left\{z \in \mathbb{R}^{N}: z_{k} \geq 0 \forall \forall_{k=1, \ldots, N}\right\}$, the terms $\int_{\Omega} F_{i}^{\delta} \cdot \nabla w_{k} \mathrm{~d} x$ are locally Lipschitz with respect to $a_{i, k} \in \mathbb{R}^{N \times n}$. Therefore, plugging the relation (3.5) into (3.4), we see that the right hand side of (3.4) is locally Lipschitz and from the Picard-Lindelöf theorem there exists a local in time solution to (3.4), corresponding to the initial condition

$$
a_{i, k}(0)=\left\langle\varrho_{0, i, \varepsilon}, w_{k}\right\rangle_{L^{2}} .
$$

To obtain the solution on a whole interval $[0, T]$, we need to find the global estimate. We test the momentum equation by u_{n} and integrate by parts. Then, we get

$$
\begin{gathered}
\mu \int_{0}^{T} \int_{\Omega}\left|\nabla u_{n}\right|^{2} \mathrm{~d} x \mathrm{~d} t+\sup _{t \in[0, T]} \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{\Omega} \varrho_{i, n}^{2} \mathrm{~d} x \\
+\sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \frac{\left|F_{i}^{\delta}\right|^{2}}{\tilde{\varrho}_{i, n}^{\delta}} \mathrm{d} x \mathrm{~d} t+2 \delta \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \tilde{\varrho}_{n}^{\beta-2} \varrho_{i, n}^{2} \mathrm{~d} x \mathrm{~d} t \\
+2 \varepsilon \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega}\left|\nabla \varrho_{i, n}\right|^{2} \mathrm{~d} x \mathrm{~d} t-2 \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, n} \omega_{i}^{\delta}\left(\widehat{\varrho}_{n}\right) \mathrm{d} x \mathrm{~d} t \leq \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{\Omega} \varrho_{0, i, \varepsilon}^{2} \mathrm{~d} x .
\end{gathered}
$$

As $\omega_{i}^{\delta} \in L^{\infty}((0, T) \times \Omega)$, from the Cauchy inequality we have

$$
\int_{0}^{T} \int_{\Omega} \varrho_{i, n} \omega_{i}^{\delta} \mathrm{d} x \leq \eta\left\|\varrho_{i, n}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}^{2}+\frac{C T}{\eta}\left\|\omega_{i}^{\delta}\right\|_{L^{\infty}((0, T) \times \Omega)}^{2}
$$

Therefore choosing η sufficiently small, we get the estimates

$$
\begin{align*}
&\left\|\nabla u_{n}\right\|_{L^{2}((0, T) \times \Omega)}^{2}+\sum_{i=1}^{N}\left(\left\|\varrho_{i, n}\right\|_{L^{\infty}\left(0, T ; L^{2}\right)}^{2}+\varepsilon\left\|\nabla \varrho_{i, n}\right\|_{L^{2}((0, T) \times \Omega)}^{2}+\delta\left\|\varrho_{i, n}\right\|_{L^{\beta}((0, T) \times \Omega)}^{\beta}\right) \\
& \leq C+C(\delta) T . \tag{3.6}
\end{align*}
$$

In particular, we get the bound on $\sum_{i=1}^{N} \sum_{k=1}^{n} a_{i, k}^{2}(t)$, which provides that we can extend the solution to a whole interval $[0, T]$. The inequality (3.6) also provides the estimates uniform in n, which allow us to extract weakly convergent subsequences (indexed again by n)

$$
u_{n}, \varrho_{1, n}, \ldots, \varrho_{N, n} \rightharpoonup u, \varrho_{1}, \ldots, \varrho_{N} \quad \text { in } \quad L^{2}\left(0, T ; W^{1,2}\right) .
$$

From the estimate on $\left\|\varrho_{i, n}\right\|_{L^{\beta}((0, T) \times \Omega)}$ it follows that $\left\|p_{n}\right\|_{L^{\beta / 2}((0, T) \times \Omega)} \leq C$. Therefore, by the momentum equation, we deduce also

$$
\left\|\nabla p_{n}\right\|_{L^{\beta / 2}\left(0, T ; W^{-1, \beta / 2}\right)}+\left\|u_{n}\right\|_{L^{\beta / 2}\left(0, T ; W^{1, \beta / 2}\right)} \leq C .
$$

In particular, if β is large enough, then

$$
\left\|\varrho_{i, n} u_{n}\right\|_{L^{2}((0, T \times \Omega)},\left\|F_{i, n}^{\delta}\right\|_{L^{2}((0, T) \times \Omega)} \leq C .
$$

In consequence, we obtain the uniform bound on $\left\|\partial_{t} \varrho_{i, n}\right\|_{L^{2}\left(0, T ; H^{-1}\right)}$ and from the Aubin-Lions Lemma

$$
\varrho_{i, n} \rightarrow \varrho_{i} \quad \text { in } \quad L^{2}((0, T) \times \Omega) .
$$

This allows us to pass to the limit with $n \rightarrow \infty$ in the weak formulation of (3.3) and in consequence obtain a weak solution.

3.2 Nonnegativity of the components

We will now prove that for $\left(\varrho_{1}, \ldots, \varrho_{N}, u\right)$ solving (3.3), we have

$$
\varrho_{i} \geq 0 \quad \text { a. e. } \quad \forall_{i=1, \ldots, N} .
$$

Note that the low regularity of ϱ_{i} does not allow us to replicate the argument from Section 2. Instead, we will obtain the result by choosing a suitable test function. Let $\varrho_{i}=\varrho_{i}^{+}-\varrho_{i}^{-}$, where $\varrho_{i}^{+}, \varrho_{i}^{-} \geq 0$ denote the positive and negative part of ϱ_{i}. We test the equation on ϱ_{i} by the function $\psi_{i}=\left(l+\varrho_{i}^{-}\right)^{\alpha}$ for $l, \alpha>0$ small. Since ϱ_{i} is in $L^{2}\left(0, T ; W^{1,2}\right), \psi_{i} \in L^{2}\left(0, T ; W^{1,2}\right)$ as well. First, observe that if $\varphi_{\eta}(t, x)$ is the standard mollifier over time and space, then for $\left(\varrho_{i}^{-}\right)_{\eta}=\varrho_{i}^{-} * \varphi_{\eta}$ we have $\left(l+\left(\varrho_{i}^{-}\right)_{\eta}\right)^{\alpha} \rightarrow\left(l+\varrho_{i}^{-}\right)^{\alpha}$ in $L^{2}\left(0, T ; H^{1}\right)$ and $\partial_{t}\left(\varrho_{i}^{-}\right)_{\eta} \Delta^{*} \partial_{t} \varrho_{i}^{-}$in $L^{2}\left(0, T ; H^{-1}\right)$. Thus

$$
\begin{aligned}
\int_{0}^{t} \int_{\Omega} \partial_{t} \varrho_{i}^{-}\left(l+\varrho_{i}^{-}\right)^{\alpha} \mathrm{d} x \mathrm{~d} s & =\lim _{\eta \rightarrow 0} \int_{0}^{t} \int_{\Omega} \partial_{t}\left(\varrho_{i}^{-}\right)_{\eta}\left(l+\left(\varrho_{i}^{-}\right)_{\eta}\right)^{\alpha} \mathrm{d} x \mathrm{~d} s \\
& =\frac{1}{\alpha+1} \lim _{\eta \rightarrow 0} \int_{0}^{t} \int_{\Omega} \partial_{t}\left(l+\left(\varrho_{i}^{-}\right)_{\eta}\right)^{\alpha+1} \mathrm{~d} x \mathrm{~d} s \\
& =\frac{1}{\alpha+1} \lim _{\eta \rightarrow 0}\left[\int_{\Omega}\left(l+\left(\varrho_{i}^{-}\right)_{\eta}(t, x)\right)^{\alpha+1} \mathrm{~d} x-\int_{\Omega}\left(l+\left(\varrho_{i}^{-}\right)_{\eta}(0, x)\right)^{\alpha+1} \mathrm{~d} x\right] \\
& =\frac{1}{\alpha+1}\left[\int_{\Omega}\left(l+\varrho_{i}^{-}(t, x)\right)^{\alpha+1} \mathrm{~d} x-\int_{\Omega}\left(l+\varrho_{i}^{-}(0, x)\right)^{\alpha+1} \mathrm{~d} x\right] .
\end{aligned}
$$

Similarly,

$$
\int_{0}^{t} \int_{\Omega} l^{\alpha} \partial_{t} \varrho_{i}^{+} \mathrm{d} x \mathrm{~d} s=l^{\alpha}\left(\int_{\Omega} \varrho_{i}^{+}(t, x) \mathrm{d} x-\int_{\Omega} \varrho_{i}^{+}(0, x) \mathrm{d} x \mathrm{~d} t\right) .
$$

Therefore

$$
\begin{aligned}
\int_{0}^{t} \int_{\Omega} \partial_{t} \varrho_{i} \psi_{i} \mathrm{~d} x \mathrm{~d} s= & =l^{\alpha} \int_{0}^{t} \int_{\Omega} \partial_{t} \varrho_{i}^{+} \mathrm{d} x \mathrm{~d} s-\int_{0}^{t} \int_{\Omega} \partial_{t} \varrho_{i}^{-}\left(l+\varrho_{i}^{-}\right)^{\alpha} \mathrm{d} x \mathrm{~d} s \\
= & l^{\alpha}\left(\int_{\Omega} \varrho_{-}^{+}(t, x) \mathrm{d} x-\int_{\Omega} \varrho_{i}^{+}(0, x) \mathrm{d} x \mathrm{~d} t\right) \\
& -\frac{1}{\alpha+1}\left[\int_{\Omega}\left(l+\varrho_{i}^{-}(t, x)\right)^{\alpha+1} \mathrm{~d} x-\int_{\Omega}\left(l+\varrho_{i}^{-}(0, x)\right)^{\alpha+1} \mathrm{~d} x\right] .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
-\varepsilon \int_{0}^{t} \int_{\Omega} \Delta \varrho_{i} \psi_{i} \mathrm{~d} x \mathrm{~d} s & =\varepsilon \alpha \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1}\left(\nabla \varrho_{i}^{+}-\nabla \varrho_{i}^{-}\right) \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \\
& =-\varepsilon \alpha \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1}\left|\nabla \varrho_{i}^{-}\right|^{2} \mathrm{~d} x \mathrm{~d} s
\end{aligned}
$$

and

$$
\begin{aligned}
-\int_{0}^{t} \int_{\Omega} \operatorname{div} F_{i}^{\delta} \psi_{i} \mathrm{~d} x \mathrm{~d} s= & \alpha \int_{0}^{t} \int_{\Omega}\left(\frac{1}{m_{i}} \tilde{\varrho}_{i}^{\delta} \nabla\left(\varrho_{i}^{+}-\varrho_{i}^{-}\right)-\frac{\tilde{\varrho}_{i}^{\delta}}{\tilde{\varrho}^{\delta}} \nabla p^{\delta}\right)\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \\
= & -\alpha \int_{0}^{t} \int_{\Omega} \frac{1}{m_{i}}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \tilde{\varrho}_{i}^{\delta}\left|\nabla \varrho_{i}^{-}\right|^{2} \mathrm{~d} x \mathrm{~d} s \\
& -\alpha \int_{0}^{t} \int_{\Omega}\left(l+\alpha_{i}^{-}\right)^{\alpha-1} \frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{\tilde{\varrho}^{\delta}} \nabla p^{\delta} \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s
\end{aligned}
$$

Employing the fact that $\varrho_{i}^{-}(0, x)=0$ and combining the above calculations with the remaining terms, we get

$$
\begin{gathered}
\frac{-1}{\alpha+1} \int_{\Omega}\left(l+\varrho_{i}^{-}(t, \cdot)\right)^{\alpha+1} \mathrm{~d} x+\frac{l^{\alpha+1}|\Omega|}{\alpha+1} \\
+l^{\alpha} \int_{\Omega} \varrho_{i}^{+}(t, \cdot) \mathrm{d} x-l^{\alpha} \int_{\Omega} \varrho_{0, i, \varepsilon} \mathrm{~d} x \\
-\varepsilon \alpha \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1}\left|\nabla \varrho_{i}^{-}\right|^{2} \mathrm{~d} x \mathrm{~d} s \\
+\delta\left(l^{\alpha} \int_{0}^{t} \int_{\Omega} \tilde{\varrho}^{\beta-2} \varrho_{i}^{+} \mathrm{d} x \mathrm{~d} s-\int_{0}^{t} \int_{\Omega} \tilde{\varrho}^{\beta-2} \varrho_{i}^{-}\left(l+\varrho_{i}^{-}\right)^{\alpha} \mathrm{d} x \mathrm{~d} s\right) \\
-\alpha \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \varrho_{i} u \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \\
-\frac{\alpha}{m_{i}} \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \tilde{\varrho}_{i}^{\delta}\left|\nabla \varrho_{i}^{-}\right|^{2} \mathrm{~d} x \mathrm{~d} s \\
-\alpha \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{\varrho^{\delta}} \nabla p^{\delta} \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s=\int_{0}^{t} \int_{\Omega} \omega_{i}^{\delta}(\vec{\varrho})\left(l+\varrho_{i}^{-}\right)^{\alpha} \mathrm{d} x \mathrm{~d} s .
\end{gathered}
$$

Neglecting the nonpositive terms, we get

$$
\begin{gathered}
\frac{-1}{\alpha+1} \int_{\Omega}\left(l+\varrho_{i}^{-}(t, \cdot)\right)^{\alpha+1} \mathrm{~d} x+\frac{l^{\alpha+1}|\Omega|}{\alpha+1} \\
+l^{\alpha} \int_{\Omega} \varrho_{i}^{+}(t, \cdot) \mathrm{d} x-l^{\alpha} \int_{\Omega} \varrho_{0, i, \varepsilon} \mathrm{~d} x \\
-\alpha \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \varrho_{i}^{-} u \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \\
\quad+\delta l^{\alpha} \int_{0}^{t} \int_{\Omega} \tilde{\varrho}^{\beta-2} \varrho_{i}^{+} \mathrm{d} x \mathrm{~d} s \\
-\alpha \int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{\tilde{\varrho}^{\delta}} \nabla p^{\delta} \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \geq \int_{0}^{t} \int_{\Omega} \omega_{i}^{\delta}\left(l-\varrho_{i}\right)^{\alpha} \mathbb{1}_{\varrho_{i} \leq 0} \mathrm{~d} x \mathrm{~d} s \\
\\
\quad+l^{\alpha} \int_{0}^{t} \int_{\Omega} \omega_{i}^{\delta} \mathbb{1}_{\varrho_{i} \geq 0} \mathrm{~d} x \mathrm{~d} s .
\end{gathered}
$$

First, we want to pass to the limit with $l \rightarrow 0$. For small α we have

$$
\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \varrho_{i}^{-}=\frac{\varrho_{i}^{-}}{l+\varrho_{i}^{-}}\left(\varrho_{i}^{-}\right)^{\alpha} \leq \varrho_{i}^{-}
$$

and

$$
\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)=\frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{l+\varrho_{i}^{-}}\left(l+\varrho_{i}^{-}\right)^{\alpha} \leq \frac{1}{\delta}
$$

Therefore from the dominated convergence theorem

$$
\int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \varrho_{i}^{-} u \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \rightarrow \int_{0}^{t} \int_{\Omega}\left(\varrho_{i}^{-}\right)^{\alpha} u \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s
$$

and

$$
\int_{0}^{t} \int_{\Omega}\left(l+\varrho_{i}^{-}\right)^{\alpha-1} \frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{\tilde{\varrho}^{\delta}} \nabla p^{\delta} \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \rightarrow \int_{0}^{t} \int_{\Omega}\left(\varrho_{i}^{-}\right)^{\alpha-1} \frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{\tilde{\varrho}^{\delta}} \nabla p^{\delta} \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s
$$

as $l \rightarrow 0$. After the limit passage, we obtain

$$
\begin{aligned}
& \frac{-1}{\alpha+1} \int_{\Omega}\left(\varrho_{i}^{-}(t, \cdot)\right)^{\alpha+1} \mathrm{~d} x-\alpha \int_{0}^{t} \int_{\Omega}\left(\varrho_{i}^{-}\right)^{\alpha} u \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \\
& \quad-\alpha \int_{0}^{t} \int_{\Omega}\left(\varrho_{i}^{-}\right)^{\alpha-1} \frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{\tilde{\varrho}^{\delta}} \nabla p^{\delta} \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s \geq \int_{0}^{t} \int_{\Omega} \omega_{i}^{\delta}\left|\varrho_{i}\right|^{\alpha} \mathbb{1}_{\varrho_{i} \leq 0} \mathrm{~d} x \mathrm{~d} s
\end{aligned}
$$

Now we want to pass to the limit with $\alpha \rightarrow 0$. As the integrals $\int_{0}^{t} \int_{\Omega}\left(\varrho_{i}^{-}\right)^{\alpha} u \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s$ and $\int_{0}^{t} \int_{\Omega}\left(\varrho_{i}^{-}\right)^{\alpha-1} \frac{\min \left(\varrho_{i}^{-}, \frac{1}{\delta}\right)}{\tilde{\varrho}^{\delta}} \nabla p^{\delta} \cdot \nabla \varrho_{i}^{-} \mathrm{d} x \mathrm{~d} s$ are bounded independently of α, we get

$$
\int_{\Omega} \varrho_{i}^{-}(t, \cdot) \mathrm{d} x \leq-\int_{0}^{t} \int_{\Omega} \omega_{i}^{\delta} \mathbb{1}_{\varrho_{i} \leq 0} \mathrm{~d} x \mathrm{~d} s
$$

From the assumptions on ω_{i} and Remark 2.2, for $\varrho_{i} \leq 0$ we have $\omega_{i}^{\delta} \geq 0$. Therefore

$$
\int_{\Omega} \varrho_{i}^{-}(t, \cdot) \mathrm{d} x \leq 0 .
$$

However, $\varrho_{i}^{-} \geq 0$ by definition, and thus $\varrho_{i}^{-}(t, \cdot) \equiv 0$ for all $t \in[0, T]$.

3.3 Boundedness of ϱ

It turns out that all components are bounded, and their L^{∞} bound does not depend on ε and δ. As we already know that $\varrho_{i} \geq 0$ for all $i=1, \ldots, N$, it is sufficient to prove the L^{∞} estimate for the total density $\varrho=\sum_{i=1}^{N} \varrho_{i}$. Since $\varrho=\tilde{\varrho}$, the total density satisfies the equation

$$
\partial_{t} \varrho+\operatorname{div}(\varrho u)-\varepsilon \Delta \varrho+\delta \varrho^{\beta-1}=0 .
$$

First, let us show that $\varrho \in L^{\infty}((0, T) \times \Omega)$. Recall the following result:
Proposition 3.2. Let $h \in L^{p}\left(0, T ; L^{q}\right)$ for $1<p, q<\infty$. Then the solution to

$$
\partial_{t} \varrho-\varepsilon \Delta \varrho=h, \quad \varrho_{\mid t=0}=\varrho_{0}
$$

satisfies the estimate

$$
\begin{equation*}
\varepsilon^{1-1 / p}\left\|\varrho_{L^{\infty}\left(0, T ; W^{2-2 / p, q}\right)}+\right\| \partial_{t} \varrho\left\|_{L^{p}\left(0, T ; L^{q}\right)}+\varepsilon\right\| \varrho \|_{L^{p}\left(0, T ; W^{2, q}\right)} \leq C\left(\varepsilon^{1-1 / p}\left\|\varrho_{0}\right\|_{W^{1, q}}+\|h\|_{L^{p}\left(0, T ; L^{q}\right)}\right) . \tag{3.7}
\end{equation*}
$$

Moreover, if $h=\operatorname{div} w, w \in L^{p}\left(0, T ; L^{q}\right)$ and $p \geq 2$, then

$$
\begin{equation*}
\varepsilon^{1-1 / p}\|\varrho\|_{L^{\infty}\left(0, T ; L^{q}\right)}+\varepsilon\|\nabla \varrho\|_{L^{p}\left(0, T ; L^{q}\right)} \leq C\left(\varepsilon^{1-1 / p}\left\|\varrho_{0}\right\|_{L^{q}}+\|w\|_{L^{p}\left(0, T ; L^{q}\right)}\right) . \tag{3.8}
\end{equation*}
$$

Note that if β is large enough, then in particular $\varrho u \in L^{p}\left(0, T ; L^{q}\right)$ for some suitable $p \geq 2$ and $q>3$. Therefore from Proposition 3.2, we have

$$
\varrho \in L^{\infty}\left(0, T ; L^{q}\right) .
$$

Then, using the property (2.11) from the elliptic estimates we have $p \in L^{\infty}\left(0, T ; L^{q / 2}\right)$ and thus we get that

$$
u \in L^{\infty}\left(0, T ; W^{1, q / 2}\right)
$$

In consequence,

$$
\varrho u \in L^{\infty}\left(0, T ; L^{r}\right)
$$

for some $r>3$. Therefore applying the De Giorgi technique (see e.g. [39], Chapter 4), we get that

$$
\varrho \in L^{\infty}((0, T) \times \Omega) .
$$

We will now prove that in fact the L^{∞} bound on ϱ depends only on $\left\|\varrho_{0}\right\|_{L^{\infty}(\Omega)}$, using the reasoning analogous as in Section 2. Similarly as for the a priori estimates, we have

$$
-2 \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{\Omega} \varrho_{i} \omega_{i}^{\delta} \mathrm{d} x \geq-2 \frac{1}{m_{3}} \int_{\Omega} \varrho_{3} \omega_{3}^{\delta} \mathrm{d} x .
$$

Therefore analogously we get the bound

$$
\begin{align*}
& \mu \int_{0}^{T} \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x \mathrm{~d} t+\sup _{t \in[0, T]} \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{\Omega} \varrho_{i}^{2} \mathrm{~d} x+\sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \frac{\left|F_{i}^{\delta}\right|^{2}}{\varrho_{i}^{\delta}} \mathrm{d} x \mathrm{~d} t \\
&+2 \delta \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho^{\beta-2} \varrho_{i}^{2} \mathrm{~d} x \mathrm{~d} t+\varepsilon \sum_{i=1}^{N} \frac{2}{m_{i}} \int_{0}^{T} \int_{\Omega}\left|\nabla \varrho_{i}\right|^{2} \mathrm{~d} x \mathrm{~d} t \tag{3.9}\\
& \leq \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{\Omega} \varrho_{0, i, \mathrm{c}}^{2} \mathrm{~d} x+C\left\|\varrho_{3}\right\|_{L^{\infty}((0, T) \times \Omega)} \int_{0}^{T} \int_{\Omega} \omega_{3}^{\delta} \mathrm{d} x .
\end{align*}
$$

As

$$
\int_{\Omega} \varrho(t, x) \mathrm{d} x+\delta \int_{0}^{t} \int_{\Omega} \varrho^{\beta-1} \mathrm{~d} x=\int_{\Omega} \varrho_{0, \varepsilon} \mathrm{~d} x
$$

we also have

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega} \omega_{3}^{\delta} \mathrm{d} x \mathrm{~d} t=\int_{\Omega} \varrho_{i}(T, \cdot) \mathrm{d} x-\int_{\Omega} \varrho_{i, 0, \varepsilon} \mathrm{~d} x+\delta \int_{0}^{T} \int_{\Omega} \varrho^{\beta-2} \varrho_{i} \mathrm{dd} s \leq \int_{\Omega} \varrho_{0, \varepsilon} \mathrm{~d} x \leq \int_{\Omega} \varrho_{0} \mathrm{~d} x . \tag{3.10}
\end{equation*}
$$

Now we repeat Step IV of the proof of Lemma 2.1. If $\|\varrho\|_{L^{\infty}((0, T) \times \Omega)} \leq\left\|\varrho_{0}\right\|_{L^{\infty}(\Omega)}+1$, then the assertion follows. If $\left\|\varrho_{L^{\infty}((0, T) \times \Omega)}>\right\| \varrho_{0} \|_{L^{\infty}(\Omega)}+1$, then let $k>\| \varrho_{L^{\infty}((0, T) \times \Omega)}-1$. We test the equation on ϱ by $(\varrho-k)_{+}$. We have

$$
\begin{aligned}
\frac{1}{2} \int_{\Omega}(\varrho-k)_{+}^{2}(t, x) \mathrm{d} x-\frac{1}{2} \int_{\Omega}\left(\varrho_{0}-k\right)_{+}^{2} \mathrm{~d} x & \\
+\varepsilon \int_{0}^{t} \int_{\Omega}\left|\nabla(\varrho-k)_{+}\right|^{2} \mathrm{~d} x \mathrm{~d} s+\delta \int_{0}^{t} \int_{\Omega} \varrho^{\beta-1}(\varrho-k)_{+} \mathrm{d} x \mathrm{~d} s & =\int_{0}^{t} \int_{\Omega} \varrho u \cdot \nabla(\varrho-k)_{+} \mathrm{d} x \mathrm{~d} s \\
& =-\int_{0}^{t} \int_{\Omega} \operatorname{div} u\left(\frac{1}{2}(\varrho-k)_{+}^{2}+k(\varrho-k)_{+}\right) \mathrm{d} x \mathrm{~d} s
\end{aligned}
$$

Therefore using the fact that $\varrho_{0}<k$, we obtain

$$
\int_{\Omega}(\varrho-k)_{+}^{2} \mathrm{~d} x \leq-\int_{0}^{t} \int_{\Omega}(\varrho-k)_{+}(\varrho+k) \operatorname{div} u \mathrm{~d} x \mathrm{~d} s .
$$

Combining (3.9) and (3.10), we obtain the estimate

$$
\|p\|_{L^{\infty}\left(0, T ; L^{1}\right)} \leq C+C\|\varrho\|_{L^{\infty}((0, T) \times \Omega)} .
$$

Then we proceed in the same way as in the proof of Lemma 2.3 to get $\operatorname{div} u \mathbb{1}_{Q>k}>0$ for k sufficiently large and in consequence

$$
\|\varrho\|_{L^{\infty}((0, T) \times \Omega)} \leq C,
$$

where C is the absolute constant independent from ε and δ, given in terms of the L^{∞} norm of ρ_{0}.

3.4 Limit passage with $\delta \rightarrow 0$.

Having the uniform L^{∞} bounds on ϱ and nonnegativity, we know that for sufficiently small δ

$$
\omega_{i}^{\delta}=\omega_{i}, \quad \varrho_{i}^{\delta}=\tilde{\varrho}_{i}^{\delta}=\varrho_{i} \quad \text { and } \quad F_{i}^{\delta}=F_{i}, \quad i=1, \ldots, N .
$$

Moreover, using (3.9) we get the estimates

$$
\|\nabla u\|_{L^{2}((0, T) \times \Omega)}^{2}+\sum_{i=1}^{N}\left(\varepsilon\left\|\nabla \varrho_{i}\right\|_{L^{2}((0, T) \times \Omega)}^{2}+\delta\left\|\varrho_{i}\right\|_{L^{\beta}((0, T) \times \Omega)}^{\beta}+\left\|\frac{1}{\sqrt{\varrho_{i}}} F_{i}\right\|_{L^{2}((0, T) \times \Omega)}\right) \leq C,
$$

where C does not depend on ε and δ. In consequence, we also get

$$
\left\|\partial_{t} \varrho_{i}\right\|_{L^{2}\left(0, T ; H^{-1}\right)} \leq C
$$

Therefore, if ($\left.\stackrel{\varrho}{\varepsilon, \delta}, u_{\varepsilon, \delta}\right)$ is a solution to (3.3), then up to a subsequence

$$
\varrho_{1, \varepsilon, \delta}, \ldots, \varrho_{N, \varepsilon, \delta}, u_{\varepsilon, \delta} \rightharpoonup \varrho_{1, \varepsilon}, \ldots, \varrho_{N, \varepsilon}, u_{\varepsilon} \quad \text { in } \quad L^{2}\left(0, T ; W^{1,2}\right)
$$

and from the Aubin-Lions lemma

$$
\varrho_{i, \varepsilon, \delta} \rightarrow \varrho_{i, \varepsilon} \quad \text { in } \quad L^{2}((0, T) \times \Omega) .
$$

Thus passing to the limit in the weak formulation (note that the terms $\int_{0}^{T} \int_{\Omega} \varrho_{\varepsilon, \delta}^{\beta-2} \varrho_{i, \varepsilon, \delta} \varphi \mathrm{~d} x \mathrm{~d} t$ for $\varphi \in C_{0}^{\infty}((0, T) \times \Omega)$ are bounded independently of $\left.\delta\right)$ we obtain the weak solution to the system (1.9).

4 End of the proof of Theorem 1.1. The Bresch \& Jabin method

The main goal of this section is to perform the final limit passage with $\varepsilon \rightarrow 0$ in context of Theorem 1.1. We will show that if $\vec{\varrho}_{k}=\left(\varrho_{1, k}, \varrho_{2, k}, \ldots, \varrho_{N, k}\right)$ and u_{k} solve the system (1.9) with $\varepsilon=\frac{1}{k}$ and $\gamma_{1}=\cdots=\gamma_{N}=2$, then for any $i=1, \ldots, N$ the sequence $\left(\varrho_{i, k}\right)_{n \in \mathbb{N}}$ is compact in $L^{2}((0, T) \times \Omega)$. From the calculations in Section 3, we have the following estimates uniform in k :

$$
\sum_{i=1}^{N}\left\|\varrho_{i, k}\right\|_{L^{\infty}((0, T) \times \Omega)}+\frac{1}{\sqrt{k}} \sum_{i=1}^{N}\left\|\nabla \varrho_{i, k}\right\|_{L^{2}((0, T) \times \Omega)}+\left\|\operatorname{div} u_{k}\right\|_{L^{\infty}((0, T) \times \Omega)}+\left\|\nabla u_{k}\right\|_{L^{\infty}(0, T ; B M O)} \leq C .
$$

Let us now formulate the main result of this section:
Lemma 4.1. Let $\vec{\varrho}_{0} \in L^{\infty}(\Omega)$ and $\left(\varrho_{1, k}, \ldots, \varrho_{N, k}, u_{k}\right)$ be a sequence of solutions to (1.9) with $\varepsilon=\frac{1}{k}$ and initial conditions $\varrho_{0, i, k} \rightarrow \varrho_{0, i}$ in $L^{2}(\Omega)$ with $k \rightarrow \infty$. Then $\left(\varrho_{i, k}\right)_{k \in \mathbb{N}}$ is compact in $L^{2}((0, T) \times \Omega)$ for any $i=1, \ldots, N$.

Proof. We use the following version of the compactness criterion from [7, 8]:
Proposition 4.2. Let ϱ_{k} be a sequence uniformly bounded in $L^{p}((0, T) \times \Omega)$ for $1 \leq p<\infty$. Assume that $\left\{K_{h}\right\}_{h>0}$ is a family of positive, bounded functions on \mathbb{R}^{3}, satisfying:

- $\forall_{\eta>0} \quad \sup _{h>0} \int_{\mathbb{R}^{3}} K_{h}(x) \mathbb{1}_{\{|x|>\eta\}} \mathrm{d} x<\infty$,
- $\left\|K_{h}\right\|_{L^{1}} \rightarrow \infty$ as $h \rightarrow 0$.

If $\partial_{t} \varrho_{k}$ is uniformly bounded in $L^{q}\left(0, T ; W^{-1, p}\right)$ for some $q>1$ and

$$
\underset{k}{\limsup } \int_{0}^{T} \frac{1}{\left\|K_{h}\right\|_{1}} \iint_{\Omega \times \Omega} K_{h}(x-y)\left|\varrho_{k}(t, x)-\varrho_{k}(t, y)\right|^{p} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

then $\left\{\varrho_{k}\right\}_{k \in \mathbb{N}}$ is compact in $L^{p}((0, T) \times \Omega)$. Conversely, if $\left\{\varrho_{k}\right\}_{k \in \mathbb{N}}$ is compact in $L^{p}((0, T) \times \Omega)$, then the above quantity converges to 0 .

Following [7], we choose the functions K_{h} in the following way:
Let $K_{h}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by

$$
K_{h}(x)=\frac{1}{(|x|+h)^{3}} \quad \text { for } \quad|x| \leq \frac{1}{2}
$$

and let K_{h} be independent of h for $|x|>\frac{2}{3}$, zero outside the ball $B\left(0, \frac{3}{4}\right)$ and such that $K_{h} \in C^{\infty}\left(\mathbb{R}^{3}\right)$. Denote also $\bar{K}_{h}=\frac{K_{h}}{\left\|K_{h}\right\|_{1}}$. An important property of K_{h} is that $\left\|K_{h}\right\|_{1} \sim|\log h|$. To use the Proposition 4.2, we will estimate the quantity

$$
\mathcal{R}_{h}(t)=\sum_{i=1}^{N} \mathcal{R}_{h}^{i}(t)=\sum_{i=1}^{N} \frac{1}{\left\|K_{h}\right\|_{1}} \frac{1}{m_{i}} \iint_{\Omega \times \Omega} K_{h}(x-y)\left|\varrho_{i, k}(t, x)-\varrho_{i, k}(t, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y .
$$

We need to estimate $\frac{\mathrm{d}}{\mathrm{d} t} \mathcal{R}_{h}(t)$. In the following calculations we drop the index k where it does not raise confusion, and use the notation $f^{x}:=f(t, x)$.

From the equation on ϱ_{i}, we get

$$
\begin{aligned}
\partial_{t}\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)^{2}= & 2\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\left(-\operatorname{div}\left(\varrho_{i}^{x} u^{x}\right)+\operatorname{div}\left(\varrho_{i}^{y} u^{y}\right)+\operatorname{div} F_{i}^{x}-\operatorname{div} F_{i}^{y}+\omega_{i}\left(\vec{\varrho}^{x}\right)-\omega_{i}\left(\vec{\varrho}^{y}\right)\right) \\
= & -\operatorname{div}_{x}\left(u^{x}\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)^{2}\right)-\operatorname{div} y\left(u^{y}\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)^{2}\right)-\left(\operatorname{div} u^{x}-\operatorname{div} u^{y}\right)\left(\varrho_{i}^{x}+\varrho_{i}^{y}\right)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right) \\
& +2\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\left(\operatorname{div}_{x} F_{i}^{x}-\operatorname{div} F_{i}^{y}\right)+2\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\left(\omega_{i}\left(\varrho^{x}\right)-\omega_{i}\left(\vec{\varrho}^{y}\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{R}_{h}^{i}(t)= & \frac{2}{\left\|K_{h}\right\|_{1}} \frac{1}{m_{i}} \iint_{\Omega \times \Omega} \nabla K_{h}(x-y)\left(u^{x}-u^{y}\right)\left|\varrho_{i}^{x}-\varrho_{i}^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& -\frac{2}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\operatorname{div} u^{x}-\operatorname{div} u^{y}\right)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right) \varrho_{i}^{x} \mathrm{~d} x \mathrm{~d} y \\
& +\frac{2}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\left(\operatorname{div}_{x} F_{i}^{x}-\operatorname{div}_{y} F_{i}^{y}\right) \mathrm{d} x \mathrm{~d} y \\
& +\frac{2}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\left(\omega_{i}\left(\stackrel{\varrho}{ }^{x}\right)-\omega_{i}\left(\vec{\varrho}^{y}\right)\right) \mathrm{d} x \mathrm{~d} y \\
& -\frac{4 \varepsilon}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|\nabla \varrho_{i}^{x}\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
= & A_{1}^{i}+A_{2}^{i}+A_{3}^{i}+A_{4}^{i}+A_{5}^{i} .
\end{aligned}
$$

The last term has a good sign, so we just estimate it by 0 . The first term is estimated in the same way as in [7]. By definition of K_{h}, we have

$$
\left|\nabla K_{h}(z)\right| \leq \frac{C K_{h}(z)}{|z|} .
$$

Using the inequality

$$
|f(x)-f(y)| \leq C|x-y|(M|\nabla f|(x)+M|\nabla f|(y))
$$

where M denotes the maximal function, we arrive at

$$
A_{1}^{i} \leq C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(M|\nabla u|^{x}+M|\nabla u|^{y}\right)\left|\varrho_{i}^{x}-\varrho_{i}^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

and in consequence

$$
A_{1}^{i} \leq C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) M|\nabla u|^{x}\left|\varrho_{i}^{x}-\varrho_{i}^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

We will now estimate A_{2}^{i}. From (2.4) and the L^{∞} estimates on $\vec{\varrho}$, we get

$$
\begin{aligned}
\left|\operatorname{div} u^{x}-\operatorname{div} u^{y}\right| & \leq\left|d^{x}-d^{y}\right|+\left|p\left(\vec{\varrho}^{x}\right)-p\left(\varrho^{y}\right)\right| \\
& \leq\left|d^{x}-d^{y}\right|+C \sum_{j=1}^{N}\left|\varrho_{j}^{x}-\varrho_{j}^{y}\right|
\end{aligned}
$$

Therefore, by the Cauchy inequality and the L^{∞} bound on ϱ_{i},

$$
\begin{aligned}
A_{2}^{i} & \leq C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\left|d^{x}-d^{y}\right|+C \sum_{j=1}^{N}\left|\varrho_{j}^{x}-\varrho_{j}^{y}\right|\right)\left|\varrho_{i}^{x}-\varrho_{i}^{y}\right| \mathrm{d} x \mathrm{~d} y \\
& \leq C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\frac{1}{2}\left|d^{x}-d^{y}\right|^{2}+\frac{N+1}{2}\left|\varrho_{i}^{x}-\varrho_{i}^{y}\right|^{2}+\frac{C}{2} \sum_{j=1}^{N}\left|\varrho_{j}^{x}-\varrho_{j}^{y}\right|^{2}\right) \mathrm{d} x \mathrm{~d} t \\
& \leq C \mathcal{R}_{h}(t)+C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|d^{x}-d^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

From (2.9) we know that

$$
\|\nabla d\|_{L^{\infty}\left(0, T ; L^{2}\right)} \leq C .
$$

Denoting by $E d$ an $H^{1}\left(\mathbb{R}^{3}\right)$ extension of d, we have

$$
\begin{aligned}
\iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|d^{x}-d^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y & \leq \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \bar{K}_{h}(z)|E d(t, y+z)-E d(t, y)|^{2} \mathrm{~d} y \mathrm{~d} z \\
& \leq \int_{0}^{1} \int_{\mathbb{R}^{3}} \bar{K}_{h}(z)|z|^{2} \int_{\mathbb{R}^{3}}|\nabla E d(t, y+s z)|^{2} \mathrm{~d} y \mathrm{~d} z \mathrm{~d} s \\
& \leq\|\nabla d\|_{L^{\infty}\left(0, T ; L^{2}\right)}^{2} \frac{1}{|\log h|} \int_{\mathbb{R}^{3}} K_{h}(z)|z|^{2} \mathrm{~d} z .
\end{aligned}
$$

In conclusion, since $\sup _{h} \int_{\mathbb{R}^{3}} K_{h}(z)|z|^{2} \mathrm{~d} z \leq C$, we get

$$
A_{2}^{i} \leq C \mathcal{R}_{h}(t)+\frac{C}{|\log h|}
$$

For the term A_{4}^{i}, as ω_{i} is locally Lipschitz, we get

$$
\begin{aligned}
A_{4}^{i} & \leq \frac{1}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)^{2} \mathrm{~d} x \mathrm{~d} y+\iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\omega_{i}\left(\vec{\varrho}^{x}\right)-\omega_{i}\left(\vec{\varrho}^{y}\right)\right)^{2} \mathrm{~d} x \mathrm{~d} y \\
& \leq \mathcal{R}_{h}^{i}(t)+C \sum_{j=1}^{N} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\varrho_{j}^{x}-\varrho_{j}^{y}\right)^{2} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

and in consequence

$$
\sum_{i=1}^{N} A_{4}^{i} \leq C \mathcal{R}_{h}(t)
$$

Finally, we estimate A_{3}^{i}, the key point of the proof of Theorem 1.1. Here we find the place where we are obliged to assume all $\gamma_{i}=2$. We have

$$
\begin{aligned}
\frac{1}{m_{i}} \iint_{\Omega \times \Omega} & \bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\left(\operatorname{div}_{x} F_{i}^{x}-\operatorname{div}{ }_{y} F_{i}^{y}\right) \mathrm{d} x \mathrm{~d} y \\
= & -\frac{1}{m_{i}} \iint_{\Omega \times \Omega} F_{i}^{x} \cdot \nabla_{x}\left(\bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\right) \mathrm{d} x \mathrm{~d} y+\frac{1}{m_{i}} \iint_{\Omega \times \Omega} F_{i}^{y} \cdot \nabla_{y}\left(\bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)\right) \mathrm{d} x \mathrm{~d} y \\
= & -\frac{1}{m_{i}} \iint_{\Omega \times \Omega} F_{i}^{x} \cdot \nabla \bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right) \mathrm{d} x \mathrm{~d} y-\frac{1}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) F_{i}^{x} \cdot \nabla \varrho_{i}^{x} \mathrm{~d} x \mathrm{~d} y \\
& -\frac{1}{m_{i}} \iint_{\Omega \times \Omega} F_{i}^{y} \cdot \nabla \bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right) \mathrm{d} x \mathrm{~d} y-\frac{1}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) F_{i}^{y} \cdot \nabla \varrho_{i}^{y} \mathrm{~d} x \mathrm{~d} y \\
= & -2 \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) F_{i}^{x} \cdot \frac{1}{m_{i}} \nabla \varrho_{i}^{x} \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

Using the relation

$$
\sum_{i=1}^{N} F_{i} \cdot \frac{1}{m_{i}} \nabla \varrho_{i}=\sum_{i=1}^{N} \frac{1}{\varrho_{i}}\left|F_{i}\right|^{2} \geq 0
$$

we arrive at

$$
\sum_{i=1}^{N} A_{3}^{i} \leq 0
$$

Combining all estimates, we arrive at

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{R}_{h}(t) \leq C & \sum_{i=1}^{N} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) M\left|\nabla u^{x}\right|\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)^{2} \mathrm{~d} x \mathrm{~d} y \\
& +C \mathcal{R}_{h}(t)+\frac{C}{|\log h|}
\end{aligned}
$$

For the first term, as the maximal function is bounded in $B M O$ (cf. Theorem 4.2 in [1]), we use the following logarithmic inequality from [30]:

$$
\int_{\mathbb{R}^{d}} f(x) g(x) \mathrm{d} x \leq C\|f\|_{B M O}\|g\|_{L^{1}}\left(\mid \log \|g\|_{L^{1}}+\log \left(1+\|g\|_{L^{\infty}}\right)\right)
$$

applied to $M\left|\nabla u^{x}\right|$ and $\int_{\Omega} \bar{K}_{h}(x-y)\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)^{2} \mathrm{~d} y$ extended by 0 outside Ω. We get

$$
\begin{aligned}
\iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) M\left|\nabla u^{x}\right|\left(\varrho_{i}^{x}-\varrho_{i}^{y}\right)^{2} \mathrm{~d} x \mathrm{~d} y & \\
& \leq C\|\nabla u\|_{B M O} \mathcal{R}_{h}^{i}(t)\left(\left|\log \mathcal{R}_{h}^{i}(t)\right|+\log \left(1+C\left\|\varrho_{i}\right\|_{L^{\infty}}^{2}\right)\right)
\end{aligned}
$$

In conclusion, using the uniform bounds on $\varrho_{i, k}$ and ∇u_{k} and integrating over time, we obtain the following inequality

$$
\mathcal{R}_{h}(t)-\mathcal{R}_{h}(0) \leq C \sum_{i=1}^{N} \int_{0}^{t} \mathcal{R}_{h}^{i}(\tau)\left(1+\left|\log \mathcal{R}_{h}^{i}(\tau)\right|\right) \mathrm{d} \tau+C T|\log h|^{-1} .
$$

Using properties of the function $|\log x|$ and the fact that $x(|\log x|+1)$ is concave for small x, we finally arrive at

$$
\mathcal{R}_{h}(t)-\mathcal{R}_{h}(0) \leq C \int_{0}^{t} \mathcal{R}_{h}(\tau)\left(1+\left|\log \mathcal{R}_{h}(\tau)\right|\right) \mathrm{d} \tau+C|\log h|^{-1}
$$

Then

$$
\limsup _{k \rightarrow \infty} \sup _{t} R_{h}(t) \rightarrow 0 \quad \text { as } \quad h \rightarrow 0,
$$

by the standard comparison criterion and the following Proposition (with $\varepsilon=|\log h|^{-1}$):
Proposition 4.3. Let

$$
0 \leq x_{\varepsilon}(t) \leq x_{\varepsilon}(0)+\varepsilon+\int_{0}^{t} x_{\varepsilon}\left(\left|\ln x_{\varepsilon}\right|+1\right) \mathrm{d} \tau
$$

with $x_{\varepsilon}(0) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Then $\sup _{t \in[0, T]} x_{\varepsilon}(t) \rightarrow 0$ as $\varepsilon \rightarrow 0$.
Proof. Denote $y_{\varepsilon}(t)=x_{\varepsilon}(0)+\varepsilon+\int_{0}^{t} x_{\varepsilon}\left(\left|\ln x_{\varepsilon}\right|+1\right) \mathrm{d} \tau$. As the function $x(|\ln x|+1)$ is increasing, we have

$$
\dot{y}_{\varepsilon}=x_{\varepsilon}\left(\left|\ln x_{\varepsilon}\right|+1\right) \leq y_{\varepsilon}\left(\left|\ln y_{\varepsilon}\right|+1\right) .
$$

Therefore from the standard comparison criterion for ODEs we have

$$
x_{\varepsilon}(t) \leq y_{\varepsilon}(t) \leq z_{\varepsilon}(t),
$$

where z_{ε} solves

$$
\dot{z}_{\varepsilon}=z_{\varepsilon}\left(\left|\ln z_{\varepsilon}\right|+1\right), \quad z_{\varepsilon}(0)=x_{\varepsilon}(0)+\varepsilon .
$$

However, it is now easy to see that $\sup _{t \in[0, T]} z_{\varepsilon}(t) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Indeed, as $z_{\varepsilon}(t) \geq z_{\varepsilon}(0)$, we get $\left|\ln z_{\varepsilon}(t)\right| \leq\left|\ln z_{\varepsilon}(0)\right|$. Then from Gronwall's lemma

$$
z_{\varepsilon}(t) \leq z_{\varepsilon}(0) e^{t+t\left|\ln z_{\varepsilon}(0)\right|}=e^{t}\left(z_{\varepsilon}(0)\right)^{1-t}
$$

Therefore $\sup _{t \in\left[0, t_{1}\right]} z_{\varepsilon}(t) \rightarrow 0$ for some $t_{1}<1$. Note that in particular $z_{\varepsilon}\left(t_{1}\right) \rightarrow 0$, hence we are able to repeat these estimates on the consecutive intervals, and in consequence obtain the convergence on any finite interval $[0, T]$.

To finish the proof of Lemma 4.2, it is enough to show that the sequence $\left(\partial_{t} \varrho_{i, k}\right)_{k \in \mathbb{N}}$ is bounded in $L^{2}\left(0, T ; W^{-1, p}\right)$. It is however an immediate consequence of the uniform bounds on $\vec{\varrho}_{k}$ and u_{k}.

Using Lemma 4.1 and the estimates from Theorem 1.3, we are able to extract a sequence converging to a solution to (1.6). If $\left(\varrho_{1, \varepsilon}, \ldots, \varrho_{N, \varepsilon}, u_{\varepsilon}\right)$ is a solution to (1.9), then from the uniform estimates we have up to a subsequence

$$
u_{\varepsilon} \rightharpoonup u \quad \text { in } \quad L^{2}\left(0, T ; H^{1}\right)
$$

and

$$
F_{i, \varepsilon} \rightharpoonup \bar{F}_{i} \quad \text { in } \quad L^{2}((0, T) \times \Omega)
$$

for some functions $\bar{F}_{i} \in L^{2}((0, T) \times \Omega)$. Moreover, for any $\varphi \in C_{0}^{\infty}((0, T) \times \Omega)$,

$$
\varepsilon \int_{0}^{T} \int_{\Omega} \nabla \varrho_{i} \cdot \nabla \varphi \mathrm{~d} x \rightarrow 0
$$

By Lemma 4.1, we also have strong convergence

$$
\varrho_{i, \varepsilon} \rightarrow \varrho_{i} \quad \text { in } \quad L^{2}((0, T) \times \Omega)
$$

which allows us to pass to the limit in the weak formulation.
In the end, let us show that if the solution to (1.6) has higher regularity, then it satisfies the relation (1.7). At the level of approximated equation (1.9), testing the continuity by $\frac{1}{m_{i}} \varrho_{i, \varepsilon} \varphi$ for some smooth, positive $\varphi \in C_{0}^{\infty}((0, T) \times \Omega)$ yields

$$
\begin{aligned}
& -\frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon}^{2} \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\frac{1}{2 m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon}^{2} \operatorname{div}\left(\varphi u_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t-\frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon}^{2} u_{\varepsilon} \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \quad+\int_{0}^{T} \int_{\Omega} \varphi F_{i, \varepsilon} \cdot \frac{1}{m_{i}} \nabla \varrho_{i, \varepsilon} \mathrm{~d} x \mathrm{~d} t+\frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon} F_{i, \varepsilon} \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \\
& \quad+\frac{\varepsilon}{m_{i}} \int_{0}^{T} \int_{\Omega}\left|\nabla \varrho_{i, \varepsilon}\right|^{2} \varphi \mathrm{~d} x \mathrm{~d} t+\frac{\varepsilon}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon} \nabla \varrho_{i, \varepsilon} \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t=\frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon} \omega_{i}\left(\vec{\varrho}_{\varepsilon}\right) \varphi \mathrm{d} x \mathrm{~d} t .
\end{aligned}
$$

Summing the above equality over i and using (2.3), we get

$$
\begin{align*}
& -\int_{0}^{T} \int_{\Omega} p_{\varepsilon} \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\frac{1}{2} \int_{0}^{T} \int_{\Omega} p_{\varepsilon} \operatorname{div}\left(\varphi u_{\varepsilon}\right) \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} p_{\varepsilon} u_{\varepsilon} \cdot \nabla \varphi \mathrm{d} x \mathrm{~d} t \\
& \quad+\sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \frac{1}{\varrho_{i, \varepsilon}}\left|F_{i, \varepsilon}\right|^{2} \mathrm{~d} x \mathrm{~d} t+\sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon} F_{i, \varepsilon} \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \tag{4.1}\\
& \quad+\varepsilon \sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon} \nabla \varrho_{i, \varepsilon} \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \leq \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i, \varepsilon} \omega_{i}\left(\vec{\varrho}_{\varepsilon}\right) \varphi \mathrm{d} x \mathrm{~d} t
\end{align*}
$$

Using the strong convergence of $\varrho_{i, \varepsilon}$, weak convergences of $F_{i, \varepsilon}, u_{\varepsilon}$ and weakly lower semicontinuity of convex functions, after passing to the limit in (4.1) we get

$$
\begin{align*}
& -\int_{0}^{T} \int_{\Omega} p \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\frac{1}{2} \int_{0}^{T} \int_{\Omega} p \operatorname{div}(\varphi u) \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} p u \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \\
& \quad \quad+\sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \frac{1}{\varrho_{i}}\left|\bar{F}_{i}\right|^{2} \varphi \mathrm{~d} x \mathrm{~d} t+\sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i} \bar{F}_{i} \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \leq \sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i} \omega_{i} \varphi \mathrm{~d} x \mathrm{~d} t \tag{4.2}
\end{align*}
$$

Now let us test the limit equation by $\varrho_{i} \varphi$, provided that $\nabla \varrho_{i} \in L^{2}((0, T) \times \Omega)$. Performing the analogous calculations, we arrive at the equality

$$
\begin{align*}
& -\int_{0}^{T} \int_{\Omega} p \varphi_{t} \mathrm{~d} x \mathrm{~d} t+\frac{1}{2} \int_{0}^{T} \int_{\Omega} p \operatorname{div}(\varphi u) \mathrm{d} x \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} p u \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t \\
& \quad \quad+\sum_{i=1}^{N} \int_{0}^{T} \int_{\Omega} \varphi \bar{F}_{i} \cdot \frac{1}{m_{i}} \nabla \varrho_{i} \mathrm{~d} x \mathrm{~d} t+\sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i} \bar{F}_{i} \cdot \nabla \varphi \mathrm{~d} x \mathrm{~d} t=\sum_{i=1}^{N} \frac{1}{m_{i}} \int_{0}^{T} \int_{\Omega} \varrho_{i} \omega_{i} \varphi \mathrm{~d} x \mathrm{~d} t \tag{4.3}
\end{align*}
$$

After substracting (4.3) from (4.2), we get

$$
\int_{0}^{T} \int_{\Omega} \sum_{i=1}^{N}\left(\frac{1}{2} \frac{1}{\varrho_{i}}\left|\bar{F}_{i}\right|^{2}-\bar{F}_{i} \cdot \frac{1}{m_{i}} \nabla \varrho_{i} \mathrm{~d} x \mathrm{~d} t\right) \varphi \mathrm{d} x \mathrm{~d} t \leq 0
$$

for any positive $\varphi \in C_{0}^{\infty}((0, T) \times \Omega)$ and in consequence we obtain the inequality (1.7) a. e. in $(0, T) \times \Omega$.

5 End of the proof of Theorem 1.4

In this section we perform the limit passage $\varepsilon \rightarrow 0$ with the additional assumption that all densities are bounded away from zero. First, note that we can rewrite F_{i} in a following way:

$$
F_{i}=\sum_{j=1}^{N} C_{i, j} \nabla \frac{1}{m_{j}} \varrho_{j}^{\gamma_{j}}=\sum_{j=1}^{N} \tilde{C}_{i, j} \frac{\gamma_{j}}{\gamma_{j}-1} \frac{1}{m_{j}} \nabla \varrho_{j}^{\gamma_{j}-1}
$$

where

$$
\tilde{C}_{i, j}=\left\{\begin{aligned}
\frac{\varrho_{i}}{\varrho} \sum_{k \neq i} \varrho_{k}, & i=j \\
-\frac{\varrho_{i} \varrho_{j}}{\varrho}, & i \neq j
\end{aligned}\right.
$$

is symmetric.
Using the above relation we can write F_{1}, \ldots, F_{N-1} as a combination of $\nabla q_{1}, \ldots, \nabla q_{N-1}$ for

$$
q_{i}=\frac{\gamma_{i}}{\gamma_{i}-1} \frac{1}{m_{i}} \varrho_{i}^{\gamma_{i}-1}-\frac{\gamma_{i+1}}{\gamma_{i+1}-1} \frac{1}{m_{i+1}} \varrho_{i+1}^{\gamma_{i+1}-1}
$$

namely

$$
F_{i}=\sum_{j=1}^{N-1} b_{i, j} \nabla q_{j}
$$

with

$$
b_{i, j}= \begin{cases}-\frac{\varrho_{i}}{\varrho} \sum_{k=1}^{j} \varrho_{k}, & j<i \\ \frac{\varrho_{i}}{\varrho} \sum_{k=j+1}^{N} \varrho_{k}, & j \geq i\end{cases}
$$

By performing elementary operations on the matrix $B=\left(b_{i, j}\right)_{i, j=1, \ldots, N-1}$, it is easy to see that det $B=$ $\frac{1}{\varrho} \varrho_{1} \ldots \varrho_{N}$. Indeed, adding the verses $2, \ldots, N-1$ to the first one and dividing it by $\frac{\varrho_{N}}{\varrho}$, we get the matrix

$$
\left[\begin{array}{ccccc}
\varrho_{1} & \varrho_{1}+\varrho_{2} & \ldots & \ldots & \sum_{k=1}^{N-1} \varrho_{k} \\
-\frac{\varrho_{1} \varrho_{2}}{\varrho} & \frac{\varrho_{2}}{\varrho} \sum_{k=3}^{N} \varrho_{k} & \ldots & \ldots & \frac{\varrho_{2}}{\varrho} \varrho_{N} \\
-\frac{\varrho_{1} \varrho_{3}}{\varrho} & -\frac{\varrho_{3}}{\varrho} \sum_{k=1}^{2} \varrho_{k} & \ldots & \ldots & \frac{\varrho_{3}}{\varrho} \varrho_{N} \\
\vdots & \vdots & \ldots & \ldots & \vdots \\
-\frac{\varrho_{1} \varrho_{N-1}}{\varrho} & -\frac{\varrho_{N-1}}{\varrho} \sum_{k=1}^{2} \varrho_{k} & \ldots & \ldots & \frac{\varrho_{N-1}}{\varrho} \varrho_{N}
\end{array}\right]
$$

Now to the i-th verse we add the first one multiplied by $\frac{\varrho_{i}}{\varrho}$. After that operation, we obtain the triangular matrix with $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{N-1}$ on the diagonal. In conclusion

$$
\operatorname{det} B=\frac{\varrho_{N}}{\varrho} \cdot \varrho_{1} \ldots \varrho_{N-1}
$$

as we claimed.

In consequence, the matrix B is invertible whenever $\varrho_{1} \ldots \varrho_{N} \neq 0$ and if $\varrho_{1} \ldots \varrho_{N} \geq c$ for some $c>0$, then

$$
\sum_{i=1}^{N-1}\left|\nabla q_{i}\right|^{2} \leq C \sum_{i=1}^{N-1}\left|F_{i}\right|^{2}
$$

for some constant C depending on c and B^{-1}. In particular, from the L^{2} bound on F_{i} we get

$$
\sum_{i=1}^{N-1}\left\|\nabla q_{i}\right\|_{L^{2}((0, T) \times \Omega)} \leq C
$$

Now, let us show the Lipschitz estimate on $\varrho_{1}, \ldots, \varrho_{N}$ with respect to $q_{1}, \ldots, q_{N-1}, \varrho$. Let

$$
G\left(z_{1}, \ldots, z_{N}\right)=\left[\begin{array}{c}
\frac{\gamma_{1}}{\gamma_{1}-1} \frac{1}{m_{1}} z_{1}^{\gamma_{1}-1}-\frac{\gamma_{2}}{\gamma_{2}-1} \frac{1}{m_{2}} z_{2}^{\gamma_{2}-1} \\
\frac{\gamma_{2}}{\gamma_{2}-1} \frac{1}{m_{2}} z_{2}^{\gamma_{2}-1}-\frac{\gamma_{3}}{\gamma_{3}-1} \frac{1}{m_{3}} z_{3}^{\gamma_{3}-1} \\
\vdots \\
\frac{\gamma_{N-1}}{\gamma_{N-1}-1} \frac{1}{m_{N-1}} z_{N-1}^{\gamma_{N-1}-1}-\frac{\gamma_{N}}{\gamma_{N}-1} \frac{1}{m_{N}} z_{N}^{\gamma_{N}-1} \\
z_{1}+\cdots+z_{N}
\end{array}\right]
$$

Then

$$
(\vec{q}, \varrho)=G(\vec{\varrho})
$$

We will now prove that G is invertible. First, let us show two auxillary results:
Proposition 5.1. $\operatorname{det} D G(\vec{z}) \neq 0$ for any $\vec{z} \in \mathcal{U}:=\left\{\vec{z} \in \mathbb{R}^{N}: z_{1}, \ldots, z_{N}>0\right\}$.
Proof. We have

$$
D G(\vec{z})=\left[\begin{array}{ccccc}
a_{1} & -a_{2} & 0 & \ldots & 0 \\
0 & a_{2} & -a_{3} & \ldots & 0 \\
\vdots & \ldots & \ddots & \ldots & \vdots \\
0 & \ldots & 0 & a_{N-1} & -a_{N} \\
1 & \ldots & \ldots & \ldots & 1
\end{array}\right]
$$

for $a_{i}=\frac{\gamma_{i}}{m_{i}} z_{i}^{\gamma_{i}-2}$. By elementary operations, we can transform this matrix into

$$
\left[\begin{array}{ccccc}
a_{1} & -a_{2} & 0 & \ldots & 0 \\
0 & a_{2} & -a_{3} & \ldots & 0 \\
\vdots & \cdots & \ddots & \ldots & \vdots \\
0 & \cdots & 0 & a_{N-1} & -a_{N} \\
0 & \cdots & \cdots & 0 & 1+a_{N} \sum_{j=1}^{N-1} \frac{1}{a_{j}}
\end{array}\right]
$$

Therefore

$$
\operatorname{det} D G(\vec{z})=\sum_{i=1}^{N} \prod_{j \neq i} a_{j}>0
$$

for $z_{1}, \ldots, z_{N}>0$
In the next Proposition we analyze the codomain of G. For simplicity we assume that $\frac{\gamma_{i}}{\gamma_{i}-1} \frac{1}{m_{i}}=1$, otherwise we can additionally rescale the variables to get the same result. For clarity, below we present the precise formulation for only 3 components, however we can proceed analogously for arbitrary N.

Proposition 5.2 (For $N=3$). $G(\mathcal{U}) \subseteq \mathcal{V}:=\left\{\left(s_{1}, s_{2}, s_{3}\right): s_{3}>g\left(s_{1}, s_{2}\right)\right\}$, with

$$
g\left(s_{1}, s_{2}\right)=\left\{\begin{aligned}
\left(-s_{1}\right)^{1 / \alpha_{2}}+\left(-s_{1}-s_{2}\right)^{1 / \alpha_{3}}, & \left(s_{1}, s_{2}\right) \in I_{1} \\
s_{1}^{1 / \alpha_{1}}+\left(-s_{2}\right)^{1 / \alpha_{3}}, & \left(s_{1}, s_{2}\right) \in I_{2} \\
\left(s_{1}+s_{2}\right)^{1 / \alpha_{1}}+s_{2}^{1 / \alpha_{2}}, & \left(s_{1}, s_{2}\right) \in I_{3}
\end{aligned}\right.
$$

for $\alpha_{i}=\gamma_{i}-1$ and

$$
\begin{aligned}
I_{1} & =\left\{s_{1}<0, s_{1}+s_{2}<0\right\}, \\
I_{2} & =\left\{s_{1}>0, s_{2}<0\right\}, \\
I_{3} & =\left\{s_{2}>0, s_{1}+s_{2}>0\right\}
\end{aligned}
$$

Proof. It is enough to examine the behavior of G at $\partial \mathcal{U}$. We have

$$
G\left(0, z_{2}, z_{3}\right)=\left[\begin{array}{c}
-z_{2}^{\alpha_{2}}, \\
z_{2}^{\alpha_{2}}-z_{3}^{\alpha_{3}} \\
z_{2}+z_{3}
\end{array}\right] .
$$

Therefore using the parametrisation $s_{1}=-z_{2}^{\alpha_{2}}, s_{2}=z_{2}^{\alpha_{2}}-z_{3}^{\alpha_{3}}$ we see that

$$
z_{2}+z_{3}=\left|s_{1}\right|^{1 / \alpha_{2}}+\left(\left|s_{1}\right|-s_{2}\right)^{1 / \alpha_{3}} .
$$

Moreover, since $z_{2}, z_{3} \geq 0$, we have $\left(s_{1}, s_{2}\right) \in I_{1}$. Proceeding analogously for the remaining components of $\partial \mathcal{U}$, we get that $G(\partial \mathcal{U})$ is a graph of a function g.

Note that in the case of arbitrary N analogous calculations show that the function g has a form

$$
g\left(s_{1}, \ldots, s_{N-1}\right)=\sum_{j=1}^{i-2}\left(\sum_{l=j}^{i-1} s_{l}\right)^{1 / \alpha_{j}}+s_{i-1}^{1 / \alpha_{i-1}}+\left(-s_{i}\right)^{1 / \alpha_{i}}+\sum_{j=i+2}^{N}\left(-\sum_{l=i}^{j-1} s_{l}\right)^{1 / \alpha_{j}}
$$

for $\left(s_{1}, \ldots, s_{N-1}\right) \in I_{i}$, where

$$
I_{i}=\left\{\sum_{l=j}^{i-1} s_{l} \geq 0, j=1, \ldots, i-1, \quad \text { and } \quad \sum_{l=i}^{k} s_{l} \leq 0, k=i, \ldots, N-1\right\} .
$$

The above propositions allows us to conclude invertibility of G. By Proposition $5.1 G$ is a local diffeomorphism. Then, since \mathcal{V} is simply connected and $G: \mathcal{U} \rightarrow \mathcal{V}$ is proper, by the Hadamard's theorem (see e.g. Theorem 6.2.8 in [23]), G is invertible.

Since G is a diffeomorphism, we know that

$$
\vec{\varrho}=G^{-1}(\vec{q}, \varrho)
$$

is locally Lipschitz. Therefore in particular

$$
\begin{equation*}
|p(\varrho(\varrho)(t, x))-p(\stackrel{\rightharpoonup}{\varrho}(t, y))| \leq C|\varrho(t, x)-\varrho(t, y)|+C \sum_{j=1}^{N-1}\left|q_{j}(t, x)-q_{j}(t, y)\right| . \tag{5.1}
\end{equation*}
$$

We will use the above information to first show the compactness of the total density again via Bresch \& Jabin method (note that in this case $\left(\partial_{t} \varrho_{i, \varepsilon}\right)$ is also bounded in $L^{2}\left(0, T ; W^{-1, p}\right)$ for each i). Let K_{h} be as in Section 4 and define

$$
\mathcal{R}_{h}(t)=\iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)|\varrho(t, x)-\varrho(t, y)|^{2} \mathrm{~d} x \mathrm{~d} y .
$$

By analogous calculations as in the previous section, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{R}_{h}(t)= & \frac{2}{\left\|K_{h}\right\|_{1}} \iint_{\Omega \times \Omega} \nabla K_{h}(x-y)\left(u^{x}-u^{y}\right)\left|\varrho^{x}-\varrho^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& -2 \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\operatorname{div} u^{x}-\operatorname{div} u^{y}\right)\left(\varrho^{x}-\varrho^{y}\right) \varrho^{x} \mathrm{~d} x \mathrm{~d} y \\
& -\frac{4 \varepsilon}{m_{i}} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|\nabla \varrho_{i}^{x}\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
= & A_{1}+A_{2}+A_{3} .
\end{aligned}
$$

Then similarly as before

$$
A_{1} \leq C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) M|\nabla u|^{x}\left|\varrho^{x}-\varrho^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

and

$$
A_{2} \leq C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\left|d^{x}-d^{y}\right|+\left|p^{x}-p^{y}\right|\right)\left|\varrho^{x}-\varrho^{y}\right| \mathrm{d} x \mathrm{~d} y
$$

Using (5.1) and Young inequality, we can further estimate A_{2} by

$$
A_{2} \leq C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left(\left|d^{x}-d^{y}\right|^{2}+\sum_{j=1}^{N-1}\left|q_{j}^{x}-q_{j}^{y}\right|^{2}\right) \mathrm{d} x \mathrm{~d} y+C \mathcal{R}_{h}(t)
$$

We have

$$
\iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|d^{x}-d^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y \leq \frac{\|\nabla d\|_{L^{2}}^{2}}{|\log h|} \int_{\mathbb{R}^{3}} K_{h}(z)|z|^{2} \mathrm{~d} z
$$

and similarly

$$
\iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|q_{j}^{x}-q_{j}^{y}\right|^{2} \mathrm{~d} x \mathrm{~d} y \leq \frac{\left\|\nabla q_{j}\right\|_{L^{2}}^{2}}{|\log h|} \int_{\mathbb{R}^{3}} K_{h}(z)|z|^{2} \mathrm{~d} z .
$$

Then, since the integral $\int_{\mathbb{R}^{3}} K_{h}(z)|z|^{2} \mathrm{~d} z$ is bounded independently of h, we get

$$
A_{2} \leq C \mathcal{R}_{h}(t)+\frac{C}{|\log h|}\left(\|\nabla d\|_{L^{2}(\Omega)}^{2}+\sum_{j=1}^{N-1}\left\|\nabla q_{j}\right\|_{L^{2}(\Omega)}^{2}\right) .
$$

In conclusion,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{R}_{h}(t) \leq & C \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y) M\left|\nabla u^{x}\right|\left(\varrho^{x}-\varrho^{y}\right)^{2} \mathrm{~d} x \mathrm{~d} y+C \mathcal{R}_{h}(t) \\
& +\frac{C}{|\log h|}\left(\|\nabla d\|_{L^{2}(\Omega)}^{2}+\sum_{j=1}^{N-1}\left\|\nabla q_{j}\right\|_{L^{2}(\Omega)}^{2}\right)
\end{aligned}
$$

and after applying the logarithmic inequality from [30] and integrating over time, we end up with

$$
\begin{aligned}
\mathcal{R}_{h}(t)-\mathcal{R}_{h}(0) & \leq C \int_{0}^{t} \mathcal{R}_{h}(\tau)\left(1+\left|\log \mathcal{R}_{h}(\tau)\right|\right) \mathrm{d} \tau+\frac{C}{|\log h|}\left(\|\nabla d\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}+\sum_{j=1}^{N-1}\left\|\nabla q_{j}\right\|_{L^{2}\left(0, T ; L^{2}\right)}^{2}\right) \\
& \leq C \int_{0}^{t} \mathcal{R}_{h}(\tau)\left(1+\left|\log \mathcal{R}_{h}(\tau)\right|\right) \mathrm{d} \tau+\frac{C}{|\log h|} .
\end{aligned}
$$

Then, proceeding in the same way as in Section 4, we arrive at

$$
\limsup _{k \rightarrow \infty} \sup _{t} R_{h}(t) \rightarrow 0 \quad \text { as } \quad h \rightarrow 0 .
$$

In conclusion, the sequence $\left(\varrho_{\varepsilon}\right)$ is compact in $L^{2}((0, T) \times \Omega)$. Now, from the higher space regularity of q_{j}, we can extract compactness of all particular densities as well. For each i we simply put

$$
\begin{aligned}
& \int_{0}^{T} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|\varrho_{i, \varepsilon}(t, x)-\varrho_{i, \varepsilon}(t, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \\
& \leq C \int_{0}^{T} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|\varrho_{\varepsilon}(t, x)-\varrho_{\varepsilon}(t, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \\
&+C \sum_{j=1}^{N-1} \int_{0}^{T} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|q_{j, \varepsilon}(t, x)-q_{j, \varepsilon}(t, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \\
& \leq C \int_{0}^{T} \iint_{\Omega \times \Omega} \bar{K}_{h}(x-y)\left|\varrho_{\varepsilon}(t, x)-\varrho_{\varepsilon}(t, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} t \\
&+\frac{C}{|\log h|} \sum_{j=1}^{N-1}\left\|\nabla q_{j, \varepsilon}\right\|_{L^{2}((0, T) \times \Omega)}^{2}
\end{aligned}
$$

and then the compactness of $\left(\varrho_{i, \varepsilon}\right)$ follows immediately from Proposition 4.2.

6 The general diffusing/non-diffusing case

In the last section, we briefly present the necessary modifications for the system (1.12). In that case, we need to divide the total density and the pressure into two parts, where the first part depends only on the diffusive components. In other words, $p=p^{(1)}+p^{(2)}$ and $\varrho=\varrho^{(1)}+\varrho^{(2)}$, where

$$
p^{(1)}=\sum_{i=1}^{N_{1}} p_{i}\left(\varrho_{i}\right), \quad \varrho^{(1)}=\sum_{i=1}^{N_{1}} \varrho_{i}
$$

and N_{1} is the number of diffusive components. With such decomposition of p and ϱ, we define the fluxes only in terms of the first N_{1} components, namely

$$
F_{i}=\nabla p_{i}-\frac{\varrho_{i}}{\varrho^{(1)}} \nabla p^{(1)}, \quad i=1, \ldots, N_{1}
$$

Note that with the above definition we preserve the important properties of F_{i} 's. In consequence, we are able to repeat the arguments from Sections 2 and 3 and derive the existence of solutions to the approximate system

$$
\begin{align*}
\partial_{t} \varrho_{i}+\operatorname{div}\left(\varrho_{i} u\right)-\operatorname{div} F_{i} & =\omega_{i}(\vec{\varrho})+\varepsilon \Delta \varrho_{i}, \\
\partial_{t} \varrho_{j}+\operatorname{div}\left(\varrho_{j} u\right) & =\omega_{j}(\vec{\varrho})+\varepsilon \Delta \varrho_{j}, \quad j=N_{1}+1, \ldots, N, \tag{6.1}\\
-\mu \Delta u-\nabla((\mu+\lambda) \operatorname{div} u)+\nabla p(\vec{\varrho}) & =0
\end{align*}
$$

in the same way as before. To apply the reasoning from Section 4, we can perform the Bresch \& Jabin argument together for all the components. Defining

$$
\mathcal{R}_{h}(t)=\sum_{i=1}^{N} \mathcal{R}_{h}^{i}(t)=\sum_{i=1}^{N} \frac{1}{\left\|K_{h}\right\|_{1}} \frac{1}{m_{i}} \iint_{\Omega \times \Omega} K_{h}(x-y)\left|\varrho_{i, k}(t, x)-\varrho_{i, k}(t, y)\right|^{2} \mathrm{~d} x \mathrm{~d} y
$$

and computing $\frac{\mathrm{d}}{\mathrm{d} t} \mathcal{R}_{h}$, it is clear that for the non-diffusing components the equivalents of the terms A_{1}, A_{2}, A_{4} and A_{5} can be dealt with in the same manner, whereas A_{3} is just equal to 0 . In consequence, the computations from Section 4 give the strong convergence of densities for both diffusing and nondiffusing components.

Acknowledgments:

The first (PBM) author was partially supported by the National Science Centre grant no.
2022/45/B/ST1/03432 (Opus). The work of (MS) was supported by the National Science Centre grant no. $2022 / 45 / \mathrm{N} / \mathrm{ST} / 03900$ (Preludium). The work of $\check{\mathrm{S}}$. N. was supported by Praemium Academiae of \check{S}. Nečasová and by the Czech Science Foundation (GAČR) through project GA22-01591S. The Institute of Mathematics, Czech Academy of Sciences, is supported by RVO:67985840.

References

[1] C. Bennett, R. A. DeVore, and R. Sharpley. Weak- L^{∞} and BMO. Annals of Mathematics, 113(3):601-611, 1981.
[2] D. Bothe. On the Maxwell-Stefan approach to multicomponent diffusion, volume 80 of Parabolic problems, Progr. Nonlinear Differential Equations Appl. Birkhäuser/Springer Basel AG, Basel, 2011.
[3] D. Bothe and P.-E. Druet. On the structure of continuum thermodynamical diffusion fluxes-a novel closure scheme and its relation to the maxwell-stefan and the fick-onsager approach. Internat. J. Engrg. Sci., 184(103818), 2023.
[4] D. Bothe, M. Kroeger, and H.-J. Warnecke. A vof-based approach for the simulation of reactive mass transfer from rising bubbles. Fluid Dynamics \& Materials Processing, 7:303-316, 012011.
[5] D. Bothe and M. Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete Contin. Dyn. Syst. Ser. S, 5(1):49-59, 2012.
[6] L. Boudin, B. Grec, and F. Salvarani. A mathematical and numerical analysis of the maxwellstefan diffusion equations. Discrete Contin. Dyn. Syst. Ser. B, 17(5):1427-1440.
[7] D. Bresch and P. Jabin. Global weak solutions of pdes for compressible media: A compactness criterion to cover new physical situations. Springer INdAM Series, 17:33-54, 2017.
[8] D. Bresch and P.-E. Jabin. Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor. Annals of Mathematics, 188(2):577-684, 2018.
[9] M. Bulíček, A. Jüngel, M. Pokorný, and N. Zamponi. Existence analysis of a stationary compressible fluid model for heat-conducting and chemically reacting mixtures. Journal of Mathematical Physics, 63(5), 052022.
[10] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Analysis of improved nernst-planck-poisson models of compressible isothermal electrolytes. Z. Angew. Math. Phys., 71(4):68 pp., 2020.
[11] P.-E. Druet. Incompressible limit for a fluid mixture. Nonlinear Anal. Real World Appl., 72(103859), 2023.
[12] P.-E. Druet and A. Jüngel. Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient. SIAM J. Math. Anal., 52(2):2179-2197, 2020.
[13] T. Dębiec, B. Perthame, M. Schmidtchen, and N. Vauchelet. Incompressible limit for a two-species model with coupling through brinkman's law in any dimension. Journal de Mathématiques Pures et Appliquées, 145:204-239, 2021.
[14] E. Feireisl. On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin., 42(1):83-98, 2001.
[15] E. Feireisl, H. Petzeltová, and K. Trivisa. Multicomponent reactive flows: global-in-time existence for large data. Commun. Pure Appl. Anal., 7:1017-1047, 2008.
[16] V. Giovangigli. Multicomponent flow modeling. Modeling and Simulation in Science Engineering and Technology. Birkhäuser Boston Inc., Boston, MA, 1999.
[17] V. Giovangigli, M. Pokorný, and E. Zatorska. On the steady flow of reactive gaseous mixture. Analysis, 5:319-341, 2015.
[18] M. Herberg, M. Meyries, J. Pruss, and M. Wilke. Reaction-diffusion systems of Maxwell-Stefan type with reversible mass-action kinetics. Nonlinear Anal., 159:264-284, 2017.
[19] G. Juncu. Unsteady heat and/or mass transfer from a fluid sphere in creeping flow. International Journal of Heat and Mass Transfer, 44(12):2239-2246, 2001.
[20] A. Jüngel. Entropy methods for diffusive partial differential equations. SpringerBriefs in Mathematics. Springer, Cham, 2016.
[21] A. Jüngel and I. V. Stelzer. Existence analysis of Maxwell-Stefan systems for multicomponent mixtures. SIAM J. Math. Anal., 45(4):2421-2440, 2013.
[22] A. Koynov, J. G. Khinast, and G. Tryggvason. Mass transfer and chemical reactions in bubble swarms with dynamic interfaces. AIChE Journal, 51(10):2786-2800, 2005.
[23] S. Krantz and H. Parks. The implicit function theorem. History, theory, and applications. Birkhäuser New York, NY, 012013.
[24] P.-L. Lions. Mathematical Topics in Fluid Mechanics, Vol. 2: Compressible Models. Oxford University Press, 1998.
[25] P. B. Mucha. On cylindrical symmetric flows through pipe-like domains. J. Differential Equations, 201(2):304-323, 2004.
[26] P. B. Mucha and M. Pokorný. The rot-div system in exterior domains. J. Math. Fluid Mech., 16(4):701-720, 2014.
[27] P. B. Mucha, M. Pokorný, and E. Zatorska. Heat-conducting, compressible mixtures with multicomponent diffusion: Construction of a weak solution. SIAM J. Math. Anal., 47:3747-3797, 2015.
[28] P. B. Mucha, M. Pokorný, and E. Zatorska. Chemically reacting mixtures in terms of degenerated parabolic setting. Journal of Mathematical Physics, 54(7), 072013.
[29] P. B. Mucha and R. Rautmann. Convergence of Rothe's scheme for the Navier-Stokes equations with slip conditions in 2D domains. ZAMM Z. Angew. Math. Mech., 86(9):691-701, 2006.
[30] P. B. Mucha and W. Rusin. Zygmund spaces, inviscid limit and uniqueness of Euler flows. Communications in Mathematical Physics, 280:831-841, 062008.
[31] H. Öttinger. Beyond Equilibrium Thermodynamics. Wiley Interscience, Hoboken, New Jersey, 2005.
[32] T. Piasecki and M. Pokorný. Weak and variational entropy solutions to the system describing steady flow of a compressible reactive mixture. Nonlinear Anal., 159:365-392, 2017.
[33] T. Piasecki, Y. Shibata, and E. Zatorska. On strong dynamics of compressible two-component mixture flow. SIAM J. Math. Anal., 51(4):2793-2849, 2019.
[34] T. Piasecki, Y. Shibata, and E. Zatorska. On the isothermal compressible multi-component mixture flow: The local existence and maximal lp-lq regularity of solutions. Nonlinear Anal., 189(111571), 2019.
[35] I. Prigogine. Thermodynamics of Irreversible Processes. Interscience Publishers, John Wiley \& Sons, New York, 1967.
[36] K. Rajagopal and L. Tao. Mechanics of Mixtures. World Scientific, Singapore, 1995.
[37] T. Roubíček. Incompressible ionized non-newtonian fluid mixtures. SIAM J. Math. Anal., 39:863890, 2007.
[38] A. Sard. The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc., 48:883-890, 1942.
[39] Z. Wu, J. Yin, and C. Wang. Elliptic and parabolic equations. Hackensack, NJ: World Scientific, 2006.
[40] E. Zatorska. On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity, 24(11):3267, oct 2011.
[41] E. Zatorska. On the flow of chemically reacting gaseous mixture. J. Differential Equations, 12(253):3471-3500, 2012.
[42] E. Zatorska. Mixtures: Sequential stability of variational entropy solutions. Journal of Mathematical Fluid Mechanics, 17:437-461, 2013.

